
Encoding Aerial Pursuit/Evasion Games with Fixed Wing
Aircraft into a Nonlinear Model Predictive Tracking

Controller

Jonathan Sprinkle, J. Mikael Eklund, H. Jin Kim and Shankar Sastry

Abstract— Unmanned Aerial Vehicles (UAVs)
have shown themselves to be highly capable in intelli-
gence gathering, as well as a possible future deploy-
ment platform for munitions. Currently UAVs are
supervised or piloted remotely, meaning that their
behavior is not autonomous throughout the flight.
For uncontested missions this is a viable method;
however, if confronted by an adversary, UAVs may be
required to execute maneuvers faster than a remote
pilot could perform them in order to evade being
targeted. In this paper we give a description of
a non-linear model predictive controller in which
evasive maneuvers in three dimensions are encoded
for a fixed wing UAV for the purposes of this pur-
suit/evasion game.

I. Introduction

The recent success of the Unmanned Aerial Vehicle
(UAV) in gathering military intelligence [1] has invigo-
rated research into UAV autonomy. Several reasons that
a UAV is a viable alternative to a manned aircraft are
its smaller size, reduced risk of loss of life, and smaller
expense.

However, UAVs have thusfar been shown as a reliable
and effective only against adversaries on the ground
(e.g., avoiding small arms fire by flying at high alti-
tudes). In order to be successful against an airborne
adversary (either manned or unmanned) there are four
possible dimensions in which to obtain an advantage:
speed, maneuverability, munitions, and intelligence of
control. Increasing the capability of the UAV in any of
the first three categories will require either a redesign
of the aircraft to increase its payload, maneuverability,
engine size, or perhaps all three. Thus, the advantages
of a UAV over manned aircraft (size, cost, etc.) are not
as stark. However, by improving the intelligence of the
aircraft, current aircraft designs may be reused with
software changes.

Nonlinear model predictive control (NMPC) is
promising as a control technique that explicitly ad-
dresses nonlinear systems with constraints on operation
and performance. Aerial vehicles, with their nonlinear
dynamics and input/state constraints to guarantee ad-
herence to safe flight, are a proving ground for this

This research was supported under DARPA’s IXO SEC pro-
gram, under contract number DARPA SEC F33615-98-C-3614.

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley. Berkeley, CA 94720, USA
{sprinkle,eklund,jin,sastry}@eecs.berkeley.edu

Fig. 1. The Predator Medium Altitude Long Endurance UAV
(photo courtesy of US Department of Defense).

technology. In fact, in [2] the use of NMPC has been
shown to be effective for rotary-wing UAVs. However,
the use of these control methods that run in real-time on
fixed-wing UAVs has not yet been shown. The need for
‘fast’ control algorithms for many dynamic systems has
previously constricted the implementation of NMPC,
since the algorithms must operate in real time.

In this paper, following the approach of [3], a nu-
merically efficient nonlinear model predictive tracking
control (NMPTC) algorithm is used to encode the
pursuit/evasion game between two fixed-wing adver-
saries. The control problem is formulated as a cost
minimization problem in the presence of input and state
constraints. The minimization problem is solved with a
gradient-descent method, which is computationally light
and fast [3]. The NMPTC controller uses an interface to
an existing autopilot in order to influence the system be-
havior. By formulating the cost function to include the
state information of the other aircraft, input saturation,
and state constraints, we show the performance of the
NMPTC as a one-step solution for trajectory planning
and control of UAVs competing in a pursuit/evasion
game.

This paper details a NMPTC controller that is de-
signed to provide evasive maneuvers of a fixed-wing
UAV when confronted by an airborne adversary of a
priori type. Section II gives a brief description of the
details of the fixed-wing aircraft used for flight and

testing, and the expression of the UAV’s dynamic and
kinematic description. Section III describes the rules of
the pursuit/evasion game, along with strategies for suc-
cess by the pursuer/evader. Section IV gives a detailed
description of the encoding of the pursuit/evasion game
requirements into the controller, as well as implementa-
tion details for rapid simulation of the controller outside
the provided testbed. Section V gives the results of some
games using the controller, and Section VI presents our
conclusions and continuing work.

II. Vehicle Model

A. Aircraft details

Due to restrictions on classified data and availability
of aircraft, a Boeing T-33 two-place jet trainer will be
used in our actual flight testing in June 2004, and will
function as a UAV surrogate aircraft (called the UAV
throughout this paper, although human passengers will
be aboard for safety reasons). The route and trajectory
of the UAV is controlled by an application running on
a laptop PC that is interfaced to the avionics of the
aircraft. The controller sends the control commands to
the avionics pallet that transforms them into autopilot
maneuver commands. The state of the UAV, as well
as the state of the other aircraft (an F-15) is available
via this avionics interface. The details of the avionics
interface, the available state information, and the input
controls are given in the rest of this subsection.

1) UAV testbed: In order to facilitate reliable testing,
rapid integration, and a uniform interface independent
of operating system, a CORBA-based platform was
provided by Boeing to interface with the avionics of
the UAV. This interface provides state information of
the UAV, as well as the F-15, to an application that
uses it. In addition, a high-level interface to the UAV
autopilot is given that allows the interfacing application
to control the rate of change of heading, rate of change of
altitude, and (through interaction with the pilot) rate of
change of velocity. Velocity changes by a controller are
not available directly through the UAV auto-pilot, but
instead an indicator alerts the pilot to increase/decrease
thrust. As such, the timeliness of this input is not
dependable during simulation.

The complex dynamics of the UAV are not captured
in precise mathematical form, due to the imprecise
knowledge of the autopilot’s behavior with respect to
the effect of input on state. In order to provide inter-
facing applications with a realistic idea of the behavior
of the UAV with regard to certain inputs, Boeing also
provided a “black box” simulation interface—known
as DemoSim—that responds (in real-time) to autopilot
commands. Using this DemoSim interface, it is possible
for aircraft controllers to to test their behavior offline,
and still have confidence in the results of those tests.

2) State Vector: The overall system state vector, x,
is defined using the following equations.

x =
[
xK ,xD

] ∈ R
nx (1)

The vector x, which is the overall system dynamics, is
partitioned in (1) into the kinematics (denoted by the
superscript K) and system-specific dynamics (denoted
by the superscript D) matrices. The kinematics of the
system is given as the current state of the system in
3 dimensional space, and with respect to the 3-axis
posture of the body.

xK = [x, y, z, φ, θ, ψ] (2)

The kinematics is shown in (2), where (x, y, z) is the
position of the center of mass in 3 dimensions, φ is the
roll, θ is the pitch, and ψ is the yaw. The dynamics
of the system is given as the time rate of change of the
kinematic state variables, along with incidental changes,
which are represented in classical notation as

xD = [u, v, w, p, q, r] , (3)

where u = ẋ, v = ẏ, w = ż, p = φ̇, q = θ̇, r = ψ̇.
Two state variables, the angle of attack and the angle
of sideslip, are absent due to the lack of sensors available
on the aircraft, and the autopilot’s ability to guarantee
heading and attitude of the aircraft.

3) Input vector: The input state vector, u, which
is the space of possible inputs to the controller to
modify the system state, is determined by the autopilot
interface through which we have control of the system
(as previously described). We define the input state
vector as,

u =
[
uv̇, uψ̇, uż

]
∈ [−1, 1]3 ∈ R

nu (4)

where uv̇ is the desired rate of change of airspeed
velocity, uψ̇ is the desired rate of change of turn, and uż
is the desired rate of change altitude. The input space is
constrained by the [−1, 1]3 matrix. However, the actual
values sent to the input controller are linearly mapped
from the [−1, 1] range to the following ranges,

map(uv̇) =

⎧⎨
⎩

−50[f/s]
[−50, 50] [f/s]
50[f/s]

−∞ < uv̇ < −1
−1 � uv̇ � 1
1 < uv̇ <∞

map(uψ̇) =

⎧⎨
⎩

−π/50[s−1]
[−π/50, π/50] [s−1]
π/50[s−1]

−∞ < uψ̇ < −1
−1 � uψ̇ � 1
1 < uψ̇ <∞

map(uż) =

⎧⎨
⎩

−10[ft/s]
[−10, 10] [ft/s]
10[ft/s]

−∞ < uż < −1
−1 � uż � 1
1 < uż <∞

,

(5)
where each of the mapped values are in the indicated
units. The NMPTC controller will provide values in the
[−1, 1] range, allowing the bounds of the mapping to

Fig. 2. An example run of the pursuit/evasion game.

be modified throughout simulation and testing of the
controller to produce the desired results.

In addition, boundaries for the values of the state
vector, x, are integrated into the optimization cost
function to prevent flight out of the test range, and
to prevent violation of the minimum or maximum safe
values for speed and altitude.

III. The Pursuit/Evasion Game

In the basic pursuit/evasion game (where the UAV
plays the part of the evader, and the F-15 plays the
part of the pursuer), there are asymmetric objectives
for the pursuer and evader. The objective of the evader
will be to either,

• fly for a predetermined period of time, T, since the
start of the game; or

• exit the test range at an opposite corner without
being targeted by the pursuer.

The objective of the pursuer will be to,
• target the evader before the end of the game.
The reason for the time limit, T (20 minutes, for the

purposes of this paper), is to prevent a trivial solution
by the pursuer of haunting a position near the exit point
to target the evader on exit. In our game, the pursuer
can target the evader by aligning its heading with that
of the evader and locating itself within a spherical cone
(of predefined height, angle, and diameter) aligned with
the tail of the evader. This cone, and a similar one
for the pursuer, can be described by the angle off the
tail (AOT) and angle off the nose (AON). The AOT is
defined by

AOT = cos−1 A •B
|A| |B| (6)

where, A is the directional vector of the pursuer’s
motion, and B is the directional vector of the relative

position of the evader with respect to the pursuer. AON
is defined similarly with respect to the evader. AOT =
0 corresponds to the pursuer being directly behind the
evader, and AON = 0 corresponds to the evader being
directly in front of the pursuer (the direction of flight
of the former in each case is not considered).

The pursuit/evasion game [4], [5], [6] is an interest-
ing application of NMPTC. As discussed in [7] there
are four major types of strategies (or controls) for
the pursuit/evasion game—open loop, state feedback,
nonanticipative, and anticipative. An open loop strategy
requires that each player decide their input signals
without any knowledge of the other player’s input
vector. A state feedback strategy allows knowledge of
each player’s current input vector during the decision
process. Nonanticipative strategies allow a player to use
any input vector of the other player as long as the
input vector does not correspond to a timestep in the
future (with respect to the input being decided, not
necessarily the current timestep). Finally, anticipative
strategies place no restrictions on the current or future
values of the input vectors being analyzed. Of course,
it is important to note that the input vectors under
consideration are only predicted inputs, and that they
are subject to change if the other players use any of the
four types of strategies.

IV. Controller Design for the Evader

NMPC problems, in general, consist of the following
steps; 1.solve for the optimal control law starting from
the state x(k) at time k, 2.implement the optimal input
u(k), · · · ,u(k+τ−1) for 1 ≤ τ ≤ N , 3.repeat these two
steps at time k + τ .

The solution for the optimal control law can be found
by formulating a cost function and considering it when
performing the optimization. As described in [8], [2]
it is possible to compose this cost function by using
the specific details of the application, and the designers
best knowledge of optimal performance of the object
being tracked. Computational speed, and method, of
this technique is discussed in detail in [2]. For our design,
we chose the timestep τ = 0.333[s], and a lookahead
length of N = 30 steps.

For this paper, we have included the design only of
the evader, since our online controller will primarily be
playing this role. However, we have also created a similar
controller for the pursuer, for our own testing purposes.

In our application we choose to use an open-loop
strategy for the pursuit/evasion game, since we have
only state vector (and not input vector) knowledge of
the other aircraft. We therefore encode the controller
to use this strategy as a weighted member of its cost
function. Taking into account the rules of the pur-
suit/evasion game we were able to design the evader
controller by incorporating our desired outcome of the
game. The desired trajectory of the evader, the location

and orientation of the pursuer, the input constraints,
and the state constraints, are each a part of the cost
function. We set this cost function, J , to be

J = φ(ỹN) +
N−1∑
k=0

L(x, ỹ,u,d), (7)

where,

φ(ỹN) � 1
2

(
ỹT
NP0ỹN

)
, (8)

and,

L(xk, ỹk,uk,dk) �

1
2

⎛
⎝ỹT

kQỹk + xT
k Sxk + uT

kRuk +
1

(
dT
kGdk

) 1
4

⎞
⎠

(9)
In these equations, x is the state vector, and u is

the input vector. The vector ỹ is the encoding of the
error on the current trajectory, and is defined as ỹ �
yd − y, where y = Cx ∈ R

ny . The vector yd is the
desired trajectory of the aircraft at the given timestep.
The vector d is the proximity danger vector between
the evader and its adversary.

The Q, S, R, G, and P0 square matrices each serve
as a balancing factor in the cost function. By modifying
their relative values of each of these matrices, it is possi-
ble to give more “weight” to certain portions of the cost
function. We chose to give values to these matrices so
that in an equilibrium condition no single factor would
outweigh the others, and the aircraft would continue at
the same speed on its heading. For this controller ad hoc
methods are used to find these weighting factors, which
required the ability to perform simulations rapidly to
reduce the time of development.

In the definition of ỹ, C acts as a filter to remove
elements in x that are unimportant to the rules of
the game. The values for Q differ from those in S,
necessarily, as the S matrix is used to ensure that the
statically defined constraints on the state vector (e.g.,
maximum/minimum velocity) are not violated, while
the Q matrix is used to ensure that the state values
important to winning the game are properly weighted.

The d vector is the difference in position and heading
of the evader and the pursuer. It is used to calculate
the proximity of the adversary, and figures into the cost
function to outweigh the desired trajectory, should the
adversary invade the safe region surrounding the evader.
Note that d contains position information, as well as the
angle off tail measurement, which describes the relative
relationship of the position of the adversary (regardless
of its heading) to the evader’s tail. The G matrix, then,
is used to appropriately weight this component of the
cost function.

The solution to the cost-function optimization (using
the iterative technique described in [3], [9]) requires the
calculation of the derivatives of the vehicle dynamics
with respect to both the state and input vectors. Since
mathematical equations were not available for the ve-
hicle dynamics—only the DemoSim interface—we used
a simplified definition using the Eulerian equations of
motion to capture our “projected” values for the state
of the evader (and pursuer) in the predictive component
of the controller.

A. Simulating in accelerated time

The DemoSim environment—our authoritative model
of the aircraft dynamics—provides a state vector re-
sponse to inputs in real-time. This means that when
using DemoSim with our controller, our operations
occur at the same rate as they would on the actual
aircraft. When configuring the relative weights of the
cost-function elements, however, running simulations for
10 minutes at a time meant that we could make fewer
than 6 changes per hour to the weights. As such, it was
necessary to simulate in an accelerated timeframe to
allow for rapid feedback when manipulating the matrix
values to balance the cost function.

By using our simplified definition of the equations
of motion, it was possible for us to approximate the
behavior of the aircraft (first in two dimensions, and
then in three) using our predictive representation. This
allowed us to execute a simulation time of 10 minutes
in less than 10 “wall-clock” seconds, thus increasing our
changes per hour by a factor of 60.

B. Matching dynamics with DemoSim

It was important, however, to ensure that our simpli-
fied dynamics matched the DemoSim dynamics within
an acceptable margin of error. Confirmation that our
simplified dynamics were reasonably close would enable
us to make accurate decisions for matrix weighting
during rapid simulation/resimulation phase, and would
also show that our predictive model was reasonably
close to how the aircraft would actually behave. By
modifying the latency gains for the Eulerian equations,
we were able to get a reasonably accurate dynamics
model. Fig. 3 shows the aircraft behaviour predicted
by our model and used by the NMPTC controller at
various look-ahead ranges, versus the DemoSim model
behaviour, for a simulation of time 3 minutes.

V. Simulation Results

A. Implementation

The NMPTC algorithm and the pursuit/evasion
game were implemented in C++ and run in a Windows
environment. Two instances of the aircraft were simu-
lated, one as the pursuer and one as the evader. For
these examples, the performance characteristics of the
two aircraft being identical, as will be the case in all the

−10 0 10 20 30
−10

0

10

20

30
Look−ahead of 5 steps

East position (Kfeet)

N
or

th
 p

os
iti

on
 (

K
fe

et
)

−10 0 10 20 30
−10

0

10

20

30
Look−ahead of 10 steps

East position (Kfeet)

N
or

th
 p

os
iti

on
 (

K
fe

et
)

−10 0 10 20 30
−10

0

10

20

30
Look−ahead of 20 steps

East position (Kfeet)

N
or

th
 p

os
iti

on
 (

K
fe

et
)

−10 0 10 20 30
−10

0

10

20

30
Look−ahead of 30 steps

East position (Kfeet)

N
or

th
 p

os
iti

on
 (

K
fe

et
)

Fig. 3. Comparison between the predicted behaviour of the
aircraft used by the controller (dashed line), and the DemoSim
“actual” behaviour (solid line).

simulations leading up to the final test flight due to the
constraints of the DemoSim interface.

The evader aircraft’s NMPTC controller was tuned
to provide for a successful game outcome in terms of
exiting the playing area and avoiding the pursuer air-
craft. The former criterion was encoded in the algorithm
through the Q matrix of (9), the latter in the G matrix
along with the choice of states that were included in the
vector d, as described above.

The pursuer aircraft was tuned to close with the
evader using its Q matrix and the choice of yd as
a path toward the predicted position of the evader.
Both aircraft controllers used the S and R matrices to
constrain the states and inputs.

B. Results

A typical pursuit/evasion game result is shown in Fig.
4. In this case the evader has entered in the southwest
corner and it trying to exit from the northeast corner
of the playing area. The pursuer has entered in the
southeast corner and immediately begins to close with
evader. In this result, the evader has chosen to turn in
the pursuer’s direction to avoid allowing the pursuer
to take a shooting position on its tail. Turning and
climbing/descending maneuvers follow during which the
evader is still trying to proceed toward the egress (exit)
point to the northeast until the game time expires after
20 minutes. A 2-dimensional view is also provided in
Fig. 5 for better viewing of the aircraft flight paths.

In this game, the pursuer win condition was defined
by the pursuer being in the 10° AOT cone of the evader
(i.e. within 10° of directly behind the evader) while at
the same time having the evader within the 10° angle off
nose (AON) cone of itself (i.e. having the evader within

−80 −60 −40 −20 0 20 40 60 80−80

−60

−40

−20

0

20

40

−5

0

5

East (K feet)

North (K feet)

A
lti

tu
de

 (
K

 fe
et

)

Fig. 4. An example run of the pursuit/evasion game viewed in
three-dimensions. The evader path is solid, and the pursuer path
is dotted.

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

East (K feet)

N
or

th
 (

K
 fe

et
)

−80 −60 −40 −20 0 20 40 60 80

−5

0

5

East (K feet)

A
lti

tu
de

 (
K

 fe
et

)

Evader
Pursuer

Fig. 5. The same example viewed from above and from the side.

10° of directly in front). Fig. 6 shows that the evader
has successfully avoided losing the game to this point
by staying out of these 10° AOT/AON conditions.

The commands generated by the controller are shown
in Fig. 7. These commands are sent to the autopilot in
the DemoSim test platform, and will be sent to the T-33
autopilot in the actual test flight.

The behavior of the NMPTC algorithm can be un-
derstood by examining individual cost function compo-
nents that are produced in these maneuvers, and that
it is trying to minimize. Fig. 8 shows the trajectory
component of the cost function (ỹT

kQỹk, for N steps,
varying by the simulation time), in which the function
has a small value while it follows its path to the egress
point early in the game, then increases and varies as the
evader is forced off the trajectory by the pursuer. In this

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

A
O

T
 (

de
gr

ee
s)

Time (minutes)

AOT
AON

Fig. 6. Win conditions for the pursuit/evasion game (AOT and
AON must both be less than 10°).

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

T
ur

n
ra

te
 (

de
g/

se
c)

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

A
/S

 r
oc

 (
ft/

s2)

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

R
O

C
 (

ft/
se

c)

Time (minutes)

Fig. 7. Autopilot commands generated by the controller, con-
sisting of the turn rate, airspeed rate of change (roc) and rate of
climb (ROC).

and the following cost function plots, the predicted cost
function calculated at each time step can be seen as
slices cut across the “Simulation time” axis. These cost
functions use a 30 step look-ahead and the simulations
are run for 20 minutes simulation time.

Fig. 9 shows the cost function of the evader’s proxim-
ity to the pursuer and Fig. 10 shows the separate cost
of AOT, which is the cost function that the evader’s
controller uses to prevent the pursuer from taking a
shooting position on its tail.

The constraints on the states of the evader as shown
in the cost function in Fig. 11 in which the NMPTC is
accounting for limitations in altitude, speed, etc. in its
determination of the aircraft’s trajectory.

Comparing these figures also allows one to understand

0

5

10

15

20

25

30

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Look−Ahead range (seconds)
Simulation time (minutes)

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n
va

lu
e

(−
)

Fig. 8. Trajectory cost function for NMPTC

0

5

10

15

20

25

30

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Look−Ahead range (seconds)

Simulation time (minutes)

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n
va

lu
e

(−
)

Fig. 9. Evader/pursuer position difference cost function for
NMPTC

how the game developed. For example, the value of the
proximity penalty was large slightly before 10 minutes
(Fig. 9), and this produces large control commands (Fig.
7), which prevent the pursuer from getting behind it
(Fig. 6). This evasion causes the deviation from the
desired trajectory (Fig. 4 and Fig. 5), which increases
the trajectory penalty slightly after 10 minutes (Fig.
8). Also, note how that AOT cost function in Fig. 10
increases in the look-ahead around 14 minutes, and how
the maneuvers that result successfully prevent this cost
from approaching the simulation time axis (i.e. actually
happening).

VI. Conclusions and Future Works

A. Conclusions
In this paper we have shown the effectiveness of the

NMPC approach to the pursuit/evasion game for fixed-
wing aircraft in a time-critical application. Results from

0

5

10

15

20

25

30

10
12

14
16

18
20
0

0.2

0.4

0.6

0.8

1

Look−Ahead range (seconds)

Simulation time (minutes)

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n
va

lu
e

(−
)

Fig. 10. Angle off tail (AOT) cost function for NMPTC

0

5

10

15

20

25

30

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Look−Ahead range (seconds)

Simulation time (minutes)

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n
va

lu
e

(−
)

Fig. 11. State cost function for NMPTC

the actual vehicle demonstration will be included with
the final paper1.

By using the NMPC approach, rapid computations
can be performed, and (given accurate dynamics) the
true advantages of autonomy can be encoded using
the concepts of competitive games. By providing this
autonomous mode (e.g., evader) to a UAV operator, it
is possible for a remote operator to relinquish control
of the vehicle in time-critical situations, to allow the
intelligent controller to serve as a surrogate that incor-
porates the same theories and behaviors of the pilot.
Because the safety and functionality constraints of the
aircraft are encoded into the cost function, the UAV is
not endangering itself or its environment.

1The demonstration is slated to take place in June of 2004,
well after submission time, but before press-time, and will allow
ample time to provide feedback from the physical demonstration
to evaluate our rapid-simulation approach, as well as justify the
use of the DemoSim model, provided to us by the vehicle sponsors.

The simulation (and TBD demonstration) results
show that the encoding of the game into the cost func-
tion was successful. NMPC had not yet been demon-
strated on fixed-wing aircraft for the pursuit/evasion
problem, and this work shows that this method is appro-
priate when providing input to an autopilot interface.

B. Future Works

The application of NMPC will continue as we encode
the notion of a symmetric pursuit/evasion game into the
cost function. This will enable an aircraft to switch roles
in the game, thus switching its goals (and associated
costs) at runtime. The encoding of this decision to
switch roles as part of the cost-function is an exciting
possibility. Also, the use of other strategies (besides the
open-loop) will be employed for the live demo, to use
a variant of the anticipative strategy where a default
strategy of the pursuer is assumed by the evader, despite
the absence of the actual input vector values.

Currently the game can only be played with the high-
overhead avionics interface to the T-33 jet, provided
by Boeing. The execution of the code, however, is ex-
tremely fast, and future work will involve the hardware
implementation in avionics interface to low-cost fixed-
wing UAVs.

Proven tactics for evasion and pursuit of fighter air-
craft, as discussed in [10], would be useful if encoded into
the cost function to encourage these behaviors. Future
work into iteratively deriving the weights and values of
the cost function matrices could be employed to provide
this emergent behavior. Both works are slated for the
future, along with simulations that show such behavior
emerges from the controller definition.

Finally, the overhead associated with creating a new
NMPC controller is substantial and it would be useful
to have a high-level understanding of the controller, as
well as a way to generate the controller from this higher
level. Providing an abstraction for this level of detail is
a useful future research area.

VII. ACKNOWLEDGMENTS

This research funded with the support of the DARPA
Software Enabled Control (SEC) program, under con-
tract number DARPA SEC F33615-98-C-3614.

References

[1] AFMC Public Affairs, “Global Hawk UAV supports OEF
recon,” AFMC News Service Release 1217, December 2002.

[2] H. J. Kim, D. H. Shim, and S. Sastry, “Nonlinear model
predictive tracking control for rotorcraft-based unmanned
aerial vehicles,” in American Control Conference, May 2002.

[3] G. J. Sutton and R. R. Bitmead, Nonlinear Model Predictive
Control, ser. Progress in Systems and Control Theory. Basel-
Boston-Berlin: Birkhäuser Verlag, 2000, vol. 26, ch. Compu-
tational Implementation of Nonlinear Predictive Control on
a Submarine, pp. 461–471.

[4] T. Başar and G. J. Olsder, Dynamic Non-cooperative Game
Theory, 2nd ed. Academic Press, 1995.

[5] M. Bardi, T. Parthasarathy, and T. E. S. Raghavan, Eds.,
Stochastic and Differential Games: Theory and Numerical
Methods, ser. Annals of International Society of Dynamic
Games. Birkhäuser, 1999, vol. 4.

[6] R. Isaacs, Differential Games. John Wiley, 1967.
[7] I. Mitchell, “Application of level set methods to control and

reachability problems in continuous and hybrid systems,”
Ph.D. dissertation, Stanford University, Aug. 2002.

[8] F. Allgöwer and A. Zheng, Eds., Nonlinear Model Predictive
Control, ser. Progress in Systems and Control Theory. Basel-
Boston-Berlin: Birkhäuser Verlag, 2000, vol. 26.

[9] H. J. Kim, D. H. Shim, and S. Sastry, “Decentralized non-
linear model predictive control of multiple flying robots in
dynamic environments,” in IEEE Conference on Decision
and Control, Dec. 2003.

[10] R. L. Shaw, Fighter Combat: Tactics and Maneuvering.
Annapolis, Maryland: United States Naval Inst., 1985.

