
Young Researchers Workshop
GPCE 2004

Jonathan Sprinkle, UC Berkeley124 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Generative Tools for
Hybrid Systems

Jonathan Sprinkle, Ph.D.

University of California, Berkeley

Jonathan Sprinkle, UC Berkeley224 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Overview

• Introduction

• Motivation

• Backgrounds
– Domain-Specific

Modeling

– Hybrid Systems

• What has been done

• Looking forward

• Conclusions

Jonathan Sprinkle, UC Berkeley324 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

“Help”

Jonathan Sprinkle, UC Berkeley424 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Writer’s Block

• What is more daunting than a blank page, and an
unfamiliar task (language, topic, program, etc.)

• How can you assimilate bits of pieces of information
(stored in your head, distributed throughout your
design/idea, and informally stated at best) into a
coherent concept understandable to your end
audience?

Jonathan Sprinkle, UC Berkeley524 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Mythbusters!

The myth that some people come away believing,
when exposed to the notion of a formal language, is
that a “formal language” is a formal-looking
language; that any language that contains lots of
Greek letters and mathematical symbols is formal.

— David Harel, Bernard Rumpe, “Syntax, Semantics, and all
that Stuff”

Jonathan Sprinkle, UC Berkeley624 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Why Model Domains?

• Domain modeling can be
– Formal

– Intuitive

– Useful

Do you know what the funny thing is about domain
modeling? It’s the little differences.

Jonathan Sprinkle, UC Berkeley724 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example(s)

• PowerPoint
– Domain: Visual Presentation

• Excel
– Domain: Accounting/number crunching

• MATLAB
– Domain: Discrete systems

•
– Domain: Typesetting (sub: Academic papers, books, posters…)

• Problems:
– How long does it take to create one of these environments???
– What happens if you try to use one of these environments for something it was not

intended???
– What about creating domains for non-traditional systems???

LATEX

Jonathan Sprinkle, UC Berkeley824 October 2004

U n i v e r s i t y o f C a l i f o r n i a
BerkeleyCreating Domain-Specific

Modeling Environments (DSMEs)

• A working application for system design

• A customized modeling environment which is a
restricted input layer that enforces some meaning

• An implementation reflecting a domain’s familiar and
consistent

– methodologies

– notation

– semantics

• An efficient user interface

Jonathan Sprinkle, UC Berkeley924 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Hybrid Systems

• An emerging, complex, engineering discipline

• Systems that are described both by
– Discrete states of operation (e.g., modes)

– Continuous dynamics within each discrete state

Jonathan Sprinkle, UC Berkeley1024 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example Hybrid System
Gears (0–6)

Speed [mph]

Automobile velocity
• Shifting gears allows higher

speeds before damaging engine
(a.k.a. “redlining”)

• However, not all gears
function well at low RPM,
requiring a certain speed
before their use

R
P

M
 [x

-1
00

0]

0 210

13 Speed [mph]

R
P

M
 [x

10
00

]

0 210

Constrained gearbox
• “Safe” zones for each gear

• Limited shifting, due to safe
zones

• Requires a smart controller for
automatic transmissions

13

ωmax

ωrl

ω3min

slope = mgear

Jonathan Sprinkle, UC Berkeley1124 October 2004

U n i v e r s i t y o f C a l i f o r n i a
BerkeleyMathematical Specification of

Transmission System

Gear 1
v = ωrpmm1

Gear5
v = ωrpmm5

Gear 6
v = ωrpmm6

Gear 4
v = ωrpmm4

Gear 3
v = ωrpmm3

Gear 2
v = ωrpmm2

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax ∧ v > ω3min
][ωrpm < ωmax ∧ v > ω4min

]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω6min
]

[ωrpm < ωmax ∧ v > ω3min
]

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax

[ωrpm < ωmax ∧ v > ω3min
]

Jonathan Sprinkle, UC Berkeley1224 October 2004

U n i v e r s i t y o f C a l i f o r n i a
BerkeleyMathematical Specification of

Transmission System

Gear 1
v = ωrpmm1

Gear5
v = ωrpmm5

Gear 6
v = ωrpmm6

Gear 4
v = ωrpmm4

Gear 3
v = ωrpmm3

Gear 2
v = ωrpmm2

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax ∧ v > ω3min
][ωrpm < ωmax ∧ v > ω4min

]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω6min
]

[ωrpm < ωmax ∧ v > ω3min
]

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax]

[ωrpm < ωmax ∧ v > ω3min
]

Jonathan Sprinkle, UC Berkeley1324 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Hybrid Systems Tools

• Modeling
– Describe the system, it’s constraints, some portions of the controller

• Controller synthesis
– Generate switching criteria, guards, etc., based on constraints

• Verification/Validation
– Assert or contradict that the controller satisfies the constraints

• Code generation
– Actually implement the controller in an embedded system

• No one tool can do all of this?
– So, what about interchanging models between tools?

Jonathan Sprinkle, UC Berkeley1424 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

HSIF

• The Hybrid Systems Interchange Format (HSIF) was
designed to satisfy the first portion (system spec.)

Hybrid Systems Interchange Format (HSIF)

Simulink/SflowSimulink/Sflow

CHARONCHARON

SALSAL HyVisualHyVisual CheckmateCheckmate

GME/HSIFGME/HSIF TejaTeja

Export: Import:
Planned:
Partial:

Export: Import:Export: Import:
Planned:
Partial:

Jonathan Sprinkle, UC Berkeley1524 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

HSIF Modeling Language

• As a graduate student, I created the HSIF Modeling
Environment (HSIF-ME)

– a domain-specific graphical modeling tool for the hybrid
systems community

– specification very similar to mathematical definition (as
proposed by Lygeros, Simic, et al.)

– generated several formats, for the tools that provided their
syntax and semantics

– easier to use than the specialized verification/validation
simulation tools (for the most part)

• A very lightweight tool (can exist without any other
components) for system description

Jonathan Sprinkle, UC Berkeley1624 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

HSIF Problems

• Design by committee
– Too many tool-specific syntax entries

– Unclear semantics for some syntaxes

• Many people wanted to be involved, few wanted to
put up the work to match their rhetoric ☺

– Resulted in me doing all the work

– This is why so many routes are “planned”

Jonathan Sprinkle, UC Berkeley1724 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Looking forward…

• How to address these problems:
– Design by committee, unintuitive syntaxes, semantic

interchange issues

• How to maintain these goals:
– Intuitive modeling interface, tool interoperability

• How to improve basic tasks
– Utilize state-of-the-art simulators, provide error bounds on

event detection

• How to take advantage of emerging applications
– BioSPICE, pursuit/evasion games, reachability calculations,

space vehicle control (NASA H&RT)

Jonathan Sprinkle, UC Berkeley1824 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Research Proposal

• A self contained facility, which can interchange
components with more sophisticated tools

BASE Package

CORE

model
database

Extraction

Manipulation

Visualization Editor

SimulatorSimulator

Verification EngineVerification Engine

TransformerTransformer

Jonathan Sprinkle, UC Berkeley1924 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Scientific details

• How can we specify the semantics of the component
interfaces?

– Can the approach of IDL be taken, but abstract equation
solving techniques rather than language/OS impl?

• What does it mean to deploy a totally abstract system?
– Can we ship a version that will interchange with Matlab, as

well as Mathematica, as well as a standalone C++ app, and
dependably interact with the same models?

• How should we manage semantic interoperability?
– Can we accept some mismatch in execution styles, and if

so, how much mismatch results in incorrect roundtripping
or incorrect execution strings?

Jonathan Sprinkle, UC Berkeley2024 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Technical Details

• What language should we choose for implementation?
– Python, Java, run on many platforms, not so fast (although

with JNI maybe faster)

• Can we accept certain platform requirements for
certain components (e.g., verifiers may work only in
Linux for some components)

Jonathan Sprinkle, UC Berkeley2124 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Why is tool interoperation hard?

A == A

sem(B) == sem(ß)

sem(C) != sem(C)

Tool A || Tool B• Hybrid systems tools share a common
ontology

– Hybrid Automata

– Events and Transitions

– Equations

• Common semantics with similar
ontology

– Flow vs. Differential equations

– Discrete States vs. Locations

• Discrepant semantics with
similar/common ontology

– Global and local variable precedence

– Model of computation discrepancies

Jonathan Sprinkle, UC Berkeley2224 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

What steps are underway?

• Weekly discussion with leading experts at Berkeley
– Shankar Sastry, Edward Lee, Tom Henzinger, and their

students

• Interactions with previous participants
– Vanderbilt, Penn, agree with need for new revisions

• Collaboration with industry to determine
goals/constraints

– Ford, GM, both require Matlab/Simulink interoperability
for existing models

Jonathan Sprinkle, UC Berkeley2324 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Conclusions

• Current state of the art is lightweight tool-abstracted
interface format

• Desired research tool is similarly lightweight, but
abstracted more by semantic requirements than
desired working tools

• Tools still drive the nature of execution and
development, but the research topics (especially
biological ones) promise to provide required funding
for the tool development

Jonathan Sprinkle, UC Berkeley2424 October 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Questions?

“Well HAL, I’m damned if I can find anything wrong with it.”
“Yes. It’s puzzling. I don’t think I’ve ever seen anything quite like this before.”

-- 2001: A Space Odyssey

	Generative Tools forHybrid Systems
	Overview
	“Help”
	Writer’s Block
	Mythbusters!
	Why Model Domains?
	Example(s)
	Creating Domain-Specific Modeling Environments (DSMEs)
	Hybrid Systems
	Example Hybrid System
	Mathematical Specification of Transmission System
	Hybrid Systems Tools
	HSIF
	HSIF Modeling Language
	HSIF Problems
	Looking forward…
	Research Proposal
	Scientific details
	Technical Details
	Why is tool interoperation hard?
	What steps are underway?
	Conclusions
	Questions?

