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Overview

• Introduction

• Motivation

• Backgrounds
– Domain-Specific 

Modeling

– Hybrid Systems

• What has been done

• Looking forward

• Conclusions
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“Help”
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Writer’s Block

• What is more daunting than a blank page, and an 
unfamiliar task (language, topic, program, etc.)

• How can you assimilate bits of pieces of information 
(stored in your head, distributed throughout your 
design/idea, and informally stated at best) into a 
coherent concept understandable to your end 
audience?
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Mythbusters!

The myth that some people come away believing, 
when exposed to the notion of a formal language, is 
that a “formal language” is a formal-looking 
language; that any language that contains lots of 
Greek letters and mathematical symbols is formal.

— David Harel, Bernard Rumpe, “Syntax, Semantics, and all 
that Stuff”
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Why Model Domains?

• Domain modeling can be
– Formal

– Intuitive

– Useful

Do you know what the funny thing is about domain 
modeling? It’s the little differences.
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Example(s)

• PowerPoint
– Domain: Visual Presentation

• Excel
– Domain: Accounting/number crunching

• MATLAB
– Domain: Discrete systems

•
– Domain: Typesetting (sub: Academic papers, books, posters…)

• Problems:
– How long does it take to create one of these environments???
– What happens if you try to use one of these environments for something it was not 

intended???
– What about creating domains for non-traditional systems???

LATEX
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Modeling Environments (DSMEs)

• A working application for system design

• A customized modeling environment which is a 
restricted input layer that enforces some meaning

• An implementation reflecting a domain’s familiar and 
consistent 

– methodologies

– notation

– semantics

• An efficient user interface
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Hybrid Systems

• An emerging, complex, engineering discipline

• Systems that are described both by
– Discrete states of operation (e.g., modes)

– Continuous dynamics within each discrete state
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Example Hybrid System
Gears (0–6)

Speed [mph]

Automobile velocity
• Shifting gears allows higher 

speeds before damaging engine 
(a.k.a. “redlining”)

• However, not all gears 
function well at low RPM, 
requiring a certain speed 
before their use
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Constrained gearbox
• “Safe” zones for each gear

• Limited shifting, due to safe 
zones

• Requires a smart controller for 
automatic transmissions
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Transmission System

Gear 1
v = ωrpmm1

Gear5
v = ωrpmm5

Gear 6
v = ωrpmm6

Gear 4
v = ωrpmm4

Gear 3
v = ωrpmm3

Gear 2
v = ωrpmm2

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax ∧ v > ω3min
][ωrpm < ωmax ∧ v > ω4min

]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω6min
]

[ωrpm < ωmax ∧ v > ω3min
]

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax

[ωrpm < ωmax ∧ v > ω3min
]



Jonathan Sprinkle, UC Berkeley1224 October 2004

U n i v e r s i t y  o f  C a l i f o r n i a
BerkeleyMathematical Specification of 

Transmission System

Gear 1
v = ωrpmm1

Gear5
v = ωrpmm5

Gear 6
v = ωrpmm6

Gear 4
v = ωrpmm4

Gear 3
v = ωrpmm3

Gear 2
v = ωrpmm2

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax ∧ v > ω3min
][ωrpm < ωmax ∧ v > ω4min

]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω4min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω5min
]

[ωrpm < ωmax ∧ v > ω6min
]

[ωrpm < ωmax ∧ v > ω3min
]

[ωrpm < ωmax ∧ v > ω2min
]

[ωrpm < ωmax ]

[ωrpm < ωmax ∧ v > ω3min
]
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Hybrid Systems Tools

• Modeling
– Describe the system, it’s constraints, some portions of the controller

• Controller synthesis
– Generate switching criteria, guards, etc., based on constraints

• Verification/Validation
– Assert or contradict that the controller satisfies the constraints

• Code generation
– Actually implement the controller in an embedded system

• No one tool can do all of this?
– So, what about interchanging models between tools?
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HSIF

• The Hybrid Systems Interchange Format (HSIF) was 
designed to satisfy the first portion (system spec.)

Hybrid Systems Interchange Format (HSIF)

Simulink/SflowSimulink/Sflow

CHARONCHARON

SALSAL HyVisualHyVisual CheckmateCheckmate

GME/HSIFGME/HSIF TejaTeja

Export: Import:
Planned:
Partial:

Export: Import:Export: Import:
Planned:
Partial:
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HSIF Modeling Language

• As a graduate student, I created the HSIF Modeling 
Environment (HSIF-ME) 

– a domain-specific graphical modeling tool for the hybrid 
systems community

– specification very similar to mathematical definition (as 
proposed by Lygeros, Simic, et al.)

– generated several formats, for the tools that provided their 
syntax and semantics

– easier to use than the specialized verification/validation 
simulation tools (for the most part)

• A very lightweight tool (can exist without any other 
components) for system description
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HSIF Problems

• Design by committee
– Too many tool-specific syntax entries

– Unclear semantics for some syntaxes

• Many people wanted to be involved, few wanted to 
put up the work to match their rhetoric ☺

– Resulted in me doing all the work

– This is why so many routes are “planned”
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Looking forward…

• How to address these problems:
– Design by committee, unintuitive syntaxes, semantic 

interchange issues

• How to maintain these goals:
– Intuitive modeling interface, tool interoperability

• How to improve basic tasks
– Utilize state-of-the-art simulators, provide error bounds on 

event detection

• How to take advantage of emerging applications
– BioSPICE, pursuit/evasion games, reachability calculations, 

space vehicle control (NASA H&RT)
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Research Proposal

• A self contained facility, which can interchange 
components with more sophisticated tools

BASE Package

CORE

model
database

Extraction

Manipulation

Visualization Editor

SimulatorSimulator

Verification EngineVerification Engine

TransformerTransformer
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Scientific details

• How can we specify the semantics of the component 
interfaces?

– Can the approach of IDL be taken, but abstract equation 
solving techniques rather than language/OS impl?

• What does it mean to deploy a totally abstract system?
– Can we ship a version that will interchange with Matlab, as 

well as Mathematica, as well as a standalone C++ app, and 
dependably interact with the same models?

• How should we manage semantic interoperability?
– Can we accept some mismatch in execution styles, and if 

so, how much mismatch results in incorrect roundtripping
or incorrect execution strings?
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Technical Details

• What language should we choose for implementation?
– Python, Java, run on many platforms, not so fast (although 

with JNI maybe faster)

• Can we accept certain platform requirements for 
certain components (e.g., verifiers may work only in 
Linux for some components)
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Why is tool interoperation hard?

A == A

sem(B) == sem(ß)

sem(C) != sem(C)

Tool A    ||    Tool B• Hybrid systems tools share a common 
ontology

– Hybrid Automata

– Events and Transitions

– Equations

• Common semantics with similar 
ontology

– Flow vs. Differential equations

– Discrete States vs. Locations

• Discrepant semantics with 
similar/common ontology

– Global and local variable precedence

– Model of computation discrepancies
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What steps are underway?

• Weekly discussion with leading experts at Berkeley
– Shankar Sastry, Edward Lee, Tom Henzinger, and their 

students

• Interactions with previous participants
– Vanderbilt, Penn, agree with need for new revisions

• Collaboration with industry to determine 
goals/constraints

– Ford, GM, both require Matlab/Simulink interoperability 
for existing models
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Conclusions

• Current state of the art is lightweight tool-abstracted 
interface format

• Desired research tool is similarly lightweight, but 
abstracted more by semantic requirements than 
desired working tools

• Tools still drive the nature of execution and 
development, but the research topics (especially 
biological ones) promise to provide required funding 
for the tool development
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Questions?

“Well HAL, I’m damned if I can find anything wrong with it.”
“Yes.  It’s puzzling.  I don’t think I’ve ever seen anything quite like this before.”

-- 2001: A Space Odyssey
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