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Model Predictive Control ™"

MPC is a method for restricting/encouraging behavior
A “fortune teller” controller

Restricts input ranges, as well as encourages some
inputs based on safety/stability concerns

Very useful for nonlinear systems, due to the ability to
get good optimizations with non-linear abstractions
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How does it work?

Basic algorithm:
— Examine the mathematical abstraction of the system (PDE)
— Determine value along N time steps into the future

— Optimize this value, according to some a priori
specifications (to J =0 )

N—1
J = ¢(biy.my)+ Z L(x,u,b1. ) =0
k=0
m=M
¢(biy.amy) = C Y brBg b
m=1

m=M
L(Xk7uk77bk1..M) é C (XEXOX]{—FUEU()U]{;—F Z b,rTnkBombmk>

m=1
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System Model

In the form of,
X = f(X7 ll)
Obviously, very system-dependent

Sometimes an abstraction of the actual system in
order to speed up computation

Accuracy of the prediction, directly tied to the
abstraction

Eventually, arrive at a snapshot N steps in the future

X1,X2, ..., XN]|
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Example: Aircratt Control

End

78

Begin

L(-) £ x4 Xox; +u; Ugur, + by, Bo, by,

>7 August 2004 6 Jonathan Sprinkle, UC Berkeley



Berkele

uuuuuuuuuuuuuuuuuuuuuu

Example: Aircratt Control

Obstacle
ovr
Begin
L(-) £ x4 Xox; +u; Ugur, + by, Bo, by,

+ b, Bo,bm,
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Example: Aircratt Control

End

Obstacle
owr
Begin
Boundary
L(-) £ x4 Xox; +u; Ugur, + by, Bo, by,

+ b, Bo,bm,
T b;Fn3B03bm3
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Example: Aircratt Control?
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Obstacle
Enemy. ..
O ' ,
Begin
Boundary
A T T T
L() = X X()Xk + u. Uouk -+ bmlBolbml
T
+ b,,,Bo,bm,
T
+ b, Bosbm,
T
+ bm? BO? bm?
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Example: Aircratt Control

Now, what do you do?
— Hope that you don’t get caught?

— First, fight with you left hand, and then surprise you
opponent by not being left-handed

— Encode “getting away” from your opponent into the cost-
function

“Tadmitit, you are better than Iam”
“Thenwhy areyou smiling?”
“Because *I* am not left-handed”
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Pursuit/Evasion: Dye_t a.ils

N-1

J= ¢(yN )+ L(X,y, u,d,a) TraCJectory Dp‘?rence WXV@IL_J@é
k=0 R, ey e
where
o ovalior oo
¢(yN ) = E(yN R Vn )
and
~ Al 1 o T T 1 1
L(x,y,u,d,a):E Y Q¥ +X, SX, +u, Ru,+ T+ T
(d[Gdk)2 (alTak)4
X is the state vector Simulation time (s) - Look ahead (step§jmulation time (s)
u is the control vector

¥ is the trajectory error Proximity Difference
d is the pursuer/evader position difference T
a is the angle off tail or other tactical functions

Targeting information:

Simulation time (s) Look ahead (step§jmulation time (s) Look ahead (steps
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The Real Problem:

Making it work is nice, but

— How in the devil did we come up with those
- Equations
+ Individual components

- Matrixvalues

— Is there a way to derive these from the application
constraints?

Additionally

— How hard was it to write a fast optimizer?

— Is there a way to make this interface easily usable?
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Toward a solution:

System-dependent, Behavior-dependent, Independent

s N
[ System Model ] CostFunction Optimizer
: \ (J =0)
Input Constraints
Safety Constraints

Application Constraints

'd N\
X ranges
A\ J
'd N\
u ranges
A\ J
'd N\
Behaviors
A\ J
o J
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Toward a solution

System-dependent

— Can be derived for a particular system’s mathematical
definition

— In general, quite easy to obtain
Independent

— Software engineering exercise

— Oncedefined, will be reused
Behavior-dependent

— By far the hardest piece of the solution

— Not generally derivable, but there are tricks that should be
available for all future implementers, that a parameterized
approach can provide
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Behavior-dependent tricks

Use the itemized pieces of the cost function to
examine overall volatility under certain criteria

Steer inputs to provide an “order of magnitude” cost
function behavior

Provide a mechanism to
translate math definitions
into computer code
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Future plans

Currently implementing a new NMPC problem using
different models and designs

Will be developing the NMPC interface to provide the
behavior for this new application, using
— Ideas presented here

— Suggestions received here

Evaluate the new MATLAB MPC toolbox, to see what
benefits it offers
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Conclusions

MPC can be used to provide interesting behaviors for
linear and non-linear control systems, but not
necessarily a fast development cycle

We hope to reduce the development cycle by at least
— Providing a cost-function independent optimizer

— Inventing an intuitive interface to generate the cost
function

— Developing a method/tool to tune the cost function for
desired behaviors

— Experimenting with ways to reverse engineer values for the
matrices, based on desired behaviors under stimuli

>7 August 2004 17 Jonathan Sprinkle, UC Berkeley



Berkeley

University of California

Questions

“Well HAL, 1°m damned if 1 can find anything wrong with 1t.”
“Yes. It”’s puzzling. 1 don’t think I”’ve ever seen anything quite like this before.”
-- 2001: A Space Odyssey
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