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Overview

• What is MPC?

• How does it work?

• Example : aircraft control

• Motivation for parameterization

• Room for parameterization

• Planned work

• Conclusions
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Model Predictive Control

• MPC is a method for restricting/encouraging behavior

• A “fortune teller” controller

• Restricts input ranges, as well as encourages some 
inputs based on safety/stability concerns

• Very useful for nonlinear systems, due to the ability to 
get good optimizations with non-linear abstractions
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How does it work?

• Basic algorithm:
– Examine the mathematical abstraction of the system (PDE)

– Determine value along N time steps into the future

– Optimize this value, according to some a priori
specifications (to )J = 0

J = φ(b1N ..MN ) +
N−1X
k=0

L(x,u,b1..M ) = 0 (1)

φ(b1N ..MN ) = C
m=MX
m=1

bTmB0mbm (2)

L(xk,uk,bk1..M ) , C

Ã
xTkX0xk + u

T
kU0uk +

m=MX
m=1

bTmk
B0mbmk

!
(3)

(4)
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System Model

• In the form of,

• Obviously, very system-dependent

• Sometimes an abstraction of the actual system in 
order to speed up computation

• Accuracy of the prediction, directly tied to the 
abstraction

• Eventually, arrive at a snapshot N steps in the future

ẋ = f(x,u)

[x1,x2, . . . ,xN]
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Example: Aircraft Control
End

Begin

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)
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Example: Aircraft Control
End

Obstacle

Begin

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2

(3)
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Example: Aircraft Control

Begin

End

Obstacle

Boundary

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2 (2)

+ bTm3
B03bm3 (3)
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Example: Aircraft Control?

Enemy…

Begin

End

Obstacle

Boundary

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2 (2)

+ bTm3
B03bm3 (3)

+ bTm?
B0?bm?

(4)

(5)
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Example: Aircraft Control

• Now, what do you do?
– Hope that you don’t get caught?

– First, fight with you left hand, and then surprise you 
opponent by not being left-handed

– Encode “getting away” from your opponent into the cost-
function

“I admit it, you are better than I am”
“Then why are you smiling?”
“Because *I* am not left-handed”
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Pursuit/Evasion: DDeetvaiills
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              u is the control vector
                       y is the trajectory error
                       d is the pursuer/evader position difference
                       a is the angle off tail or other tactical functions
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UAV

F15

UAV

F15

UAV

F15

UAV

F15

UAV

F15

UAV

Targeting information:
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The Real Problem:

• Making it work is nice, but
– How in the devil did we come up with those 

• Equations

• Individual components

• Matrix values

– Is there a way to derive these from the application 
constraints?

• Additionally
– How hard was it to write a fast optimizer?

– Is there a way to make this interface easily usable?
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Toward a solution:
System-dependent, Behavior-dependent, Independent

System Model CostFunction

Input Constraints

Application Constraints

Safety Constraints

x ranges

u ranges

Behaviors

Optimizer
(J = 0)
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Toward a solution

• System-dependent
– Can be derived for a particular system’s mathematical 

definition
– In general, quite easy to obtain

• Independent
– Software engineering exercise
– Once defined, will be reused

• Behavior-dependent
– By far the hardest piece of the solution
– Not generally derivable, but there are tricks that should be 

available for all future implementers, that a parameterized 
approach can provide
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Behavior-dependent tricks

• Use the itemized pieces of the cost function to 
examine overall volatility under certain criteria

• Steer inputs to provide an “order of magnitude” cost 
function behavior

• Provide a mechanism to 
translate math definitions 
into computer code 
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Future plans

• Currently implementing a new NMPC problem using 
different models and designs

• Will be developing the NMPC interface to provide the 
behavior for this new application, using

– Ideas presented here

– Suggestions received here

• Evaluate the new MATLAB MPC toolbox, to see what 
benefits it offers
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Conclusions

• MPC can be used to provide interesting behaviors for 
linear and non-linear control systems, but not 
necessarily a fast development cycle

• We hope to reduce the development cycle by at least
– Providing a cost-function independent optimizer
– Inventing an intuitive interface to generate the cost 

function
– Developing a method/tool to tune the cost function for 

desired behaviors
– Experimenting with ways to reverse engineer values for the 

matrices, based on desired behaviors under stimuli
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Questions

“Well HAL, I’m damned if I can find anything wrong with it.”
“Yes.  It’s puzzling.  I don’t think I’ve ever seen anything quite like this before.”

-- 2001: A Space Odyssey
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