
ISDA 2004—Budapest
Model-Based Autonomy

Jonathan Sprinkle, UC Berkeley127 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Toward Design Parameterization
Support for

Model Predictive Control
Jonathan Sprinkle, J. Mikael Eklund, S. Shankar Sastry

University of California, Berkeley

Department of Electrical Engineering & Computer Sciences

Jonathan Sprinkle, UC Berkeley227 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Overview

• What is MPC?

• How does it work?

• Example : aircraft control

• Motivation for parameterization

• Room for parameterization

• Planned work

• Conclusions

Jonathan Sprinkle, UC Berkeley327 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Model Predictive Control

• MPC is a method for restricting/encouraging behavior

• A “fortune teller” controller

• Restricts input ranges, as well as encourages some
inputs based on safety/stability concerns

• Very useful for nonlinear systems, due to the ability to
get good optimizations with non-linear abstractions

Jonathan Sprinkle, UC Berkeley427 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

How does it work?

• Basic algorithm:
– Examine the mathematical abstraction of the system (PDE)

– Determine value along N time steps into the future

– Optimize this value, according to some a priori
specifications (to)J = 0

J = φ(b1N ..MN) +
N−1X
k=0

L(x,u,b1..M) = 0 (1)

φ(b1N ..MN) = C
m=MX
m=1

bTmB0mbm (2)

L(xk,uk,bk1..M) , C

Ã
xTkX0xk + u

T
kU0uk +

m=MX
m=1

bTmk
B0mbmk

!
(3)

(4)

Jonathan Sprinkle, UC Berkeley527 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

System Model

• In the form of,

• Obviously, very system-dependent

• Sometimes an abstraction of the actual system in
order to speed up computation

• Accuracy of the prediction, directly tied to the
abstraction

• Eventually, arrive at a snapshot N steps in the future

ẋ = f(x,u)

[x1,x2, . . . ,xN]

Jonathan Sprinkle, UC Berkeley627 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example: Aircraft Control
End

Begin

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

Jonathan Sprinkle, UC Berkeley727 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example: Aircraft Control
End

Obstacle

Begin

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2

(3)

Jonathan Sprinkle, UC Berkeley827 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example: Aircraft Control

Begin

End

Obstacle

Boundary

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2 (2)

+ bTm3
B03bm3 (3)

Jonathan Sprinkle, UC Berkeley927 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example: Aircraft Control?

Enemy…

Begin

End

Obstacle

Boundary

L(·) , xTkX0xk + u
T
kU0uk + bTm1

B01bm1
(1)

+ bTm2
B02bm2 (2)

+ bTm3
B03bm3 (3)

+ bTm?
B0?bm?

(4)

(5)

Jonathan Sprinkle, UC Berkeley1027 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Example: Aircraft Control

• Now, what do you do?
– Hope that you don’t get caught?

– First, fight with you left hand, and then surprise you
opponent by not being left-handed

– Encode “getting away” from your opponent into the cost-
function

“I admit it, you are better than I am”
“Then why are you smiling?”
“Because *I* am not left-handed”

Jonathan Sprinkle, UC Berkeley1127 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Pursuit/Evasion: DDeetvaiills

() ()

() ()

()
() ()

1

0

0

1 1
2 4

y x, y,u,d,a

 where
1 y y y
2

 and

1 1 1 x, y, u,d,a y y x x u u
2 d d a a

 x is the state vector

N

N
k

T
N N N

T T T
k k k k k k

T T
k k k k

J L

P

L Q S R
G T

φ

φ

−

=

= +

⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

 u is the control vector
 y is the trajectory error
 d is the pursuer/evader position difference
 a is the angle off tail or other tactical functions

F15

UAV

F15

UAV

F15

UAV

F15

UAV

F15

UAV

F15

UAV

Targeting information:

Jonathan Sprinkle, UC Berkeley1227 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

The Real Problem:

• Making it work is nice, but
– How in the devil did we come up with those

• Equations

• Individual components

• Matrix values

– Is there a way to derive these from the application
constraints?

• Additionally
– How hard was it to write a fast optimizer?

– Is there a way to make this interface easily usable?

Jonathan Sprinkle, UC Berkeley1327 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Toward a solution:
System-dependent, Behavior-dependent, Independent

System Model CostFunction

Input Constraints

Application Constraints

Safety Constraints

x ranges

u ranges

Behaviors

Optimizer
(J = 0)

Jonathan Sprinkle, UC Berkeley1427 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Toward a solution

• System-dependent
– Can be derived for a particular system’s mathematical

definition
– In general, quite easy to obtain

• Independent
– Software engineering exercise
– Once defined, will be reused

• Behavior-dependent
– By far the hardest piece of the solution
– Not generally derivable, but there are tricks that should be

available for all future implementers, that a parameterized
approach can provide

Jonathan Sprinkle, UC Berkeley1527 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Behavior-dependent tricks

• Use the itemized pieces of the cost function to
examine overall volatility under certain criteria

• Steer inputs to provide an “order of magnitude” cost
function behavior

• Provide a mechanism to
translate math definitions
into computer code

Jonathan Sprinkle, UC Berkeley1627 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Future plans

• Currently implementing a new NMPC problem using
different models and designs

• Will be developing the NMPC interface to provide the
behavior for this new application, using

– Ideas presented here

– Suggestions received here

• Evaluate the new MATLAB MPC toolbox, to see what
benefits it offers

Jonathan Sprinkle, UC Berkeley1727 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Conclusions

• MPC can be used to provide interesting behaviors for
linear and non-linear control systems, but not
necessarily a fast development cycle

• We hope to reduce the development cycle by at least
– Providing a cost-function independent optimizer
– Inventing an intuitive interface to generate the cost

function
– Developing a method/tool to tune the cost function for

desired behaviors
– Experimenting with ways to reverse engineer values for the

matrices, based on desired behaviors under stimuli

Jonathan Sprinkle, UC Berkeley1827 August 2004

U n i v e r s i t y o f C a l i f o r n i a
Berkeley

Questions

“Well HAL, I’m damned if I can find anything wrong with it.”
“Yes. It’s puzzling. I don’t think I’ve ever seen anything quite like this before.”

-- 2001: A Space Odyssey

	Toward Design Parameterization Support forModel Predictive Control
	Overview
	Model Predictive Control
	How does it work?
	System Model
	Example: Aircraft Control
	Example: Aircraft Control
	Example: Aircraft Control
	Example: Aircraft Control?
	Example: Aircraft Control
	Pursuit/Evasion: DDeetvaiills
	The Real Problem:
	Toward a solution:
	Toward a solution
	Behavior-dependent tricks
	Future plans
	Conclusions

