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Abstract— The paper proposes a complete real-time control 
algorithm for autonomous collision-free operations of the 
quadrotor UAV. As opposed to fixed wing vehicles the 
quadrotor is a small agile vehicle which might be more 
suitable for the variety of specific applications including 
search and rescue, surveillance and remote inspection. The 
developed control system incorporates both trajectory 
planning and path following. Using a differential flatness 
property the trajectory planning is posed as a constrained 
optimization problem in the output space (as opposed to the 
control space), which simplifies the problem. The trajectory 
and speed profile are parameterized to reduce the problem to 
a finite dimensional problem. To optimize the speed profile 
independently of the trajectory a virtual argument is used as 
opposed to time. A path following portion of the proposed 
algorithm uses a standard linear multi-variable control 
technique. The paper presents the results of simulations to 
demonstrate the suitability of the proposed control algorithm. 

Key Words: quadrotor, trajectory planning, differential flatness, 
direct method, path following, LQR controller. 

 

I. INTRODUCTION 

Recently unmanned air vehicles (UAV’s) have attracted 
considerable interest for a wide variety of different 
applications. While fixed wing vehicles have had extensive 
applications for military and meteorological purposes due 
to their range, speed and flight duration, rotorcraft vehicles 
are considered to be more preferable for surveillance, 
precise delivery and some other missions requiring agility 
and accuracy. 

The quadrotor is a small agile vehicle controlled by the 
rotational speed of the four rotors. It benefits from having 
very few constraints on motion and an ability to carry a 
high payload. Furthermore, with the use of ducted fans 
instead of prop rotors it is safe for internal flights. The low 
cost and simplicity mean the quadrotor provides an 
excellent testing ground for application of advanced control 
techniques on UAV’s. 
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In order to achieve full autonomy, a controller has to 
incorporate both trajectory planning and path following. 
Usually, these two problems are treated separately [1]. To 
date, several techniques based on the ideas of the direct 
method of calculus of variations have been developed for 
off-line optimization [2]-[19], [34]. However real-time 
applications require another approach [20]-[28]. 
Differential flatness is a dynamic property of some systems 
[29]. Exploiting the differential flatness of the vehicle 
dynamics provides a much more effective and robust way 
to obtain the quasi-optimal trajectories on board. The 
reason for that is that the differential flatness enables the 
optimization to occur within the output space as opposed to 
the control space. This technique has already been 
considered for space and air vehicles [30] and applied to a 
helicopter [31]. Differential flatness has also been 
considered with respect to the quadrotor to achieve a 
convergent tracking controller [32]. Path following is also a 
well-established problem. Once the reference trajectory 

refx  and the nominal control refu  are found, different 
approaches may be implemented to follow them [33], [35] 
and [41]. 

In this paper, the authors address the trajectory planning 
problem and apply a linear controller to achieve full 
autonomy of the prototype control system. First, Section II 
introduces the six degree of freedom (6DoF) model of the 
quadrotor. Section III discusses the general architecture of 
the autonomous control system prototype. The formulation 
of the optimization problem applied to the differentially flat 
systems is discussed in Section IV, followed by the detailed 
numerical optimization routine in Section V. The results of 
several simulations validating the developed controller are 
presented in Section VI. The paper ends with the 
conclusions. 

II. QUADROTOR’S DYNAMICS AND SIMPLIFIED MODEL 

By design, the quadrotor is only controlled by 
independently varying the speed of the four rotors (see 
Fig.1). 

Let iυ  and iτ  be the torque and thrust for i th rotor 
respectively ( 1,..., 4i = ) (these values are normalized with 
the moment of inertia and mass, correspondingly). 
Denoting the distance of the rotor from the center of mass 
by l , we now can introduce a set of four control inputs, iu , 
as functions of normalized individual thrusts and torques as 



follows [37]. 
The total thrust is given by 

1 1 2 3 4= ( )u τ τ τ τ+ + + ;                 (1) 
a roll moment is achieved by varying the left (#4) and right 
(#3) rotor speeds 

2 4 3= ( )u l τ τ− ;             (2) 
a pitch moment is produced by varying the ratio of the front 
(#1) and back (#2) rotor speeds 

3 1 2= ( )u l τ τ− ;             (3) 
and finally, a yaw moment is obtained from the torque 
resulting from the subtracting counterclockwise (front and 
back) from the clockwise (left and right) speeds 

4 3 4 1 2= ( )u υ υ υ υ+ − − .       (4) 

 
Figure 1. Quadrotor schematic. 

 
The control vector, u , is therefore defined as 

[ ]1 2 3 4= , , , T
u u u uu ,                         (5) 

where the last three control inputs govern the rotational 
dynamics directly: 
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(here p, q and r denote the body angular rates). 
Let us further introduce a twelve-state vector 

= , , , , , , , , , , ,
T

x y z x y z φ θ ψ φ θ ψ� �� �x � � �� � � ,            (7) 

where x , y  and z  are the translational positions (in the 
North-East-Down coordinate frame as shown on Fig.1), 
and φ , θ  and ψ  are the roll, pitch and yaw, respectively. 

Typically, the equations of motion are determined using 
the standard aeronautical rotational matrix xyzR  ( φθψR ) as 
discussed in [38]. However, in this particular application 
the rotational matrix zyxR  ( ψθφR ) is used as suggested in 
[36], [39], and [41]. This results in a decoupling of the 
equations of motion as will be shown shortly.  Using the 
matrix zyxR , the Euler attitude rates, φ� , θ�  and ψ� , are 
related to the body angular rates by 
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If u4 is used to keep the yaw angle, ψ , at zero and 
assuming that the pitch angle, θ , is small [39], then 
combining (6) and (8) yields 
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Now, the translational equations of motion are 

1= cos sinx u φ θ−�� ,                 (10) 

1= siny u φ�� ,                  (11) 
and 

1= cosz g u cosφ θ−�� .    (12) 
Therefore, we can write the complete set of equations for 
the state vector (7) as 
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In order to address the differential flatness of the 
quadrotor’s dynamics (to be discussed in Section IV.C) it is 
also necessary to define the four outputs (since we have 
four controls). These outputs are chosen to be the 
translational positions, x , y , z , and the yaw angle, ψ  
(because it can be dynamically decoupled from the other 
states in case the control input 4u  is used to set the yaw 
angle to zero). The output vector, y , is hence defined as 
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III. PATH FOLLOWING WITH THE LQR CONTROLLER 

Before we proceed any further let us develop a general 
architecture of the controller. It is suggested that the 
controller consist of two parts (Fig.2). 
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Figure 2. General architecture of the quadrotor’s controller. 

 
Based on the particular mission scenario, the trajectory 

generator produces an optimal/quasioptimal/feasible 
trajectory. In terms of mathematics it means that based on 
the boundary (initial and final) conditions, imposed onto 
the state x  and control u , as well as mission performance 
index Φ  to be optimized, and a set of some constraints Ω , 
it is desired to develop the best possible trajectory. Ideally, 
we of course would like to have an optimal trajectory, but if 
it takes too much time to produce it or if this trajectory 
cannot be found at all we would rather have an algorithm 
allowing to find an “almost” optimal (quasi-optimal) or 
even simply feasible trajectory, but in real-time. 

Real-time trajectory generation capability allows 
regeneration of the trajectory during the mission if for 
instance the objectives for the mission change or the 
discrepancy between the current state and the suggested 
path becomes too large (because of disturbances and an 
imperfection of the controller). If such an event occurs, the 
update switch (see Fig.2) forces the trajectory generator to 
calculate a new quasi-optimal trajectory passing through 
the current state to count it as the new vector of initial 
conditions. 

It is suggested that once the reasonable reference 
trajectory to fulfill the mission, ∗x , and the corresponding 
nominal control, ∗u , are found, we may use an LQR to 
track it in the presence of disturbances [41]. In this case the 
interpolator produces samples of the reference trajectory at 
the desired (high frequency) rate. 

A. Formulation of the LQR Problem 
For a linear state-space model of the plant dynamics 

( ) = ( ) ( )t t t+x Ax Bu�   (15) 
a control input 

( ) = ( )ct t−u K x                (16) 
is determined such that the closed loop system 

= [ ] ( )c t−x A BK x�      (17) 
is stable and a performance measure where 

( )
0

= T TJ dt
∞

+� x Qx u Ru                        (18) 

is minimized ( Q  and R  are the weighting matrices). 

Now, assuming a time-dependent reference trajectory 
( )ref tx , the LQR control can be applied as a trajectory 

follower to minimize small errors between the full 
measured state x  and the reference state refx , such that the 
applied control becomes 

( )( ) = ( ) ( ) ( )ref c reft t t t− −u u K x x .        (19) 

We will compute the gain matrix cK  using a linearized 
version of the quadrotor’s model (13) and use this control 
candidate later in simulations for a non-linear model. 

B. Stability Analysis 

The control gains cK  were designed with the plant 
linearized at hover with the weighting matrices 

5
12 12= 10−

×Q I  and 5 8 8 8= diag(10 ,10 ,10 ,10 )−R      (20) 
ensuring that the actuator constraints are maintained [43]. 

However, following a spatial trajectory obviously 
violates the hover conditions. A simplified analysis was 
performed within [41], to determine an envelope of stable 
operation. As shown in [41], to assure linearized time-
invariant stability, an extra constraint, which maintains 
angles φ  and θ  within the set stς , is added to the 
optimization, within the trajectory planner. 

{ }2 2 2= , :  ,  = 48st r rς θ φ θ φ+ ≤ °              (21) 

IV. TRAJECTORY OPTIMIZATION 

Now that we have agreed on the general control scheme 
and introduced a simple LQR controller, we may proceed 
with a matter of finding the reference trajectory ( )ref tx  and 

nominal control profile ( )ref tu . This section deals with two 
formulations of the optimization problem: for a general 
case and for the specific case when the system’s dynamics 
possess a differential flatness property. The next section 
takes advantage of a specific formulation and introduces 
the step-by-step optimization routine. 

A. Problem Formulation in the Control Space 
Typically, to determine the optimal (reference) trajectory, 

an optimization within the control space is performed 
subject to some constraints placed within the output space 
and the state space. These constraints include state 
constraints, actuator (control) constraints and obstacle 
avoidance constraints. For example, the problem can be 
posed as 
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where Φ  is the cost function, initial and final constraints 
are placed on the state in accordance with (13) and (14) at 



= 0t  and = ft t , respectfully, dynamic inequality 
constraints on the trajectory (for obstacle avoidance) and on 
the state and input (to avoid singularities and to provide 
constraints on the control signals) are expressed through the 
set of functions ( , )c x u . 

B. Cost Function 
The cost function, Φ , is a quantitative measure of the 

optimality of the trajectory and can be approximated by the 
sum of the running costs and the terminal cost. Assuming 
that the running costs (fuel consumption) are proportional 
to the average velocity, the objective function can be 
defined as: 

2 2 2 2
1 2 30

1
= (1 ) ( )ft

f
f

w P x P y P z dt w t T
t

Φ − + + + −� � � � ,  (23) 

where w, 1P , 2P , and 3P  are the weighting factors (for 
more flexibility, the last three of them are not necessarily 
equal to each other), and T is the predetermined time of 
arrival. Particularly, the case when w=1 and T=0 
corresponds to the minimum-time problem; and the case 
when w=0, 1 2 3P P P= =  corresponds to the minimum-fuel 
problem. Therefore mathematically, the mission 
reassessment situation mentioned in Section III might 
involve changing four weighting factors and time of arrival 
T. 

C. Differential Flatness 
By definition the differential flatness is the expression of 

the state and control vectors in terms of the output vector 
[29]. For a system to be differentially flat and therefore 
possess a flat output it requires a set of variables such that 
[42]: 
– the components of y  are not differentially related over 

ℜ ; 
– every system variable may be expressed as a function of 

the output y ; 
– conversely, every component of y  may be expressed as 

a function of the system variables and of a finite number 
of their time derivatives. 

The components of the control input, u , can be easily 
expressed in terms of the states and their derivatives from 
(10-12) and (9) 
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From (10)-(12) it also follows that the rotational part of 
the state vector can be expressed as a function of the output 
vector and it’s derivatives as 

= arctan
x

g z
θ −

−
��

��
                        (25) 

and 

2 2 2
= arcsin
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y

x y g z
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+ + −

��
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Singularities in (25) and (26) can only appear when 
=g z�� , in other words when the vehicle is in free fall. This 

can be avoided by constraining the input such that 1 > 0u  
and the pitch and roll such that < 90θ °  and < 90φ °  (see 
(12)). These angles are outside the set stς  already defined 
in (21). 

The derivatives of (25) and (26) yield 
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and 
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Equations (27) and (28) can be differentiated one more 
time to be substituted into (24). 

To summarize, the state vector x and the control vector u 
can be both expressed via (derivatives of) the output vector 
y, i.e. 

1( )=x h y , 2 ( )=u h y .                     (29) 
Therefore, the general optimization problem can now be 
reformulated. 

D. Problem Formulation in the Output Space 
Having the differentially flat equations, the problem can 

be reposed to allow optimization to occur within the output 
space as opposed to the control space. This is truly 
beneficial because the constraints arising for example from 
obstacle avoidance occur in the output space, hence the 
computation time for constraint handling is reduced 
drastically. As opposed to (22) the problem can now be 
posed as follows: 
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In this expression 1 2( ) ( , ) ( ( ), ( ))∗ = =g y Cg x u Cg h y h y  

and 1 2( ) ( , ) ( ( ), ( ))∗ = =c y c x u c h y h y  profit from the 
differential flatness (29). Using a suitable parameterization 
introduced in the next section this problem can be entered 
into MATLAB and solved using the optimization toolbox 
function fmincon. 

V. PARAMETERIZATION 

In order to reduce the dimension of the problem to a 
finite amount, it is suggested that the three translational 
outputs (x, y and z) be parameterized (the fourth output, the 
yaw angle ψ , is assumed to be zero). 

There are numerous alternatives for doing this [20], such 



as approximations using the simple monomials (elementary 
polynomials) [22], [23], [26]-[28], [43], Chebyshev 
polynomials [18], [44], Laguerre polynomials [45], etc. 
Every technique, however, can be expressed as a finite 
series involving a product of a free variable ka  and a basis 
function kΓ  

=0

( ) = ( )
M

k k
k

P t a tΓ� ,                        (31) 

where M is the order of parameterization (approximation). 
For example, the monomial basis function can be 

expressed as 

= k
k tΓ  or 

1
=

!
k

k t
k

Γ                       (32) 

(the last one arises from the Taylor series expansion), 
Chebyshev polynomials (orthogonal over the interval 
[ 1;1]− ) can be represented either geometrically as 

( ) = cos( arccos( ))k t k tΓ                     (33) 
or defined by a recurrence relationship [46] 
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and also orthogonal (over [ 1;1]− ) Laguerre polynomials 
can be derived by another recurrence relationship [46] 
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Obviously, the choice of a particular basis function 
depends on the properties of vehicle’s dynamics and 
specific application. This choice can also affect the 
numerical robustness. In our case the search space reduces 
to 3( 1)M +ℜ  (M+1 free variables ka , k=0,…,M per each 
Cartesian coordinate). 

A. Satisfying Boundary Conditions 
Let us show now how to choose the order of 

approximation M. Suppose we have to satisfy up to the 
second derivatives of output y at both ends of the 
trajectory, i.e. ( )

0;
n

fx , ( )
0;

n
fy , and ( )

0;
n

fz , n=1,…,2 are given. 
That means that for each coordinate we have six constraints 
and therefore the order of approximation should be at least 
M=5 (otherwise we will have less than six free variables 

ka , and not be able to satisfy all the constrains). 
If M=5 we can determine all coefficients ka  analytically 

and therefore satisfy all boundary conditions in (30) a 
priori. As an example let us consider the case of 
monomials. However we will not use any of the form (32)-
(35), but employ another form to simplify analytical 
formulas. We start from approximating the second 
derivative for each coordinate with a third-order 
polynomial of the first form of (32), e.g. 

5
2 3 2

2 3 4 5
2

( ) k
x x x x xk

k

x t a a t a t a t a t −

=
= + + + =���        (36) 

(in the same manner we define ( )y t��  and ( )z t�� ). 
Integrating (36) twice yields the following 4th- and 5th-

order polynomials for the first derivative and for the x 
coordinate itself: 
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Now, all six coefficients xka , 0,...,5k =  can be defined 
from the following linear matrix equation: 
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   (38) 

(again, in the same manner we determine yka  and zka ). 
In this particular case (M=5) the only varied parameter is 

ft  (since all coefficients are determined from the boundary 

conditions). Figure 3a demonstrates what happens when ft  

is varied. But what if in addition to ft  some other 
coefficients can be varied too? What if say the second 
derivative of y at the final point, fy�� , is not defined 
(meaning it becomes an additional varied parameter)? 
Figure 3b provides with an example of such enhanced 
flexibility of the reference functions. 

 

  
a)                                                   b) 

Figure 3. Varying “free” parameters of the reference 
functions: varft =  (a), var  &  varf ft y= =��  (b). 

 
To summarize, if an additional flexibility is needed – we 

can always increase the order of approximation (36) and 
use the higher-order (artificially introduced) derivatives at 
any (or both) end as additional varied parameters. In our 
particular case 7th-order polynomials (rather than 5th-order) 
have been used. The initial and terminal state, first and 
second derivatives were considered as constraints to be 
satisfied and the third derivatives at both ends of the 
trajectory became free variables along with the virtual arc 
length. 



B. Separating Trajectory from Speed Profile 
Having time, t, as an argument in (31) means that not 

only do we define the trajectory itself, but we also preset a 
single speed profile along the trajectory. This is because the 
speed is unambiguously related to the Cartesian coordinates 
via 

2 2 2( ) ( ) ( ) ( )V t x t y t z t= + +� � � .        (39) 
The only way to separate the trajectory from the speed 

profile is to use some abstract argument τ that relates to 
time via the variable speed factor ( ) /d dtλ τ τ=  [21]. In 
this case we obtain an authority to vary the speed profile 
along the predetermined trajectory via varying the speed 
factor ( )λ τ  

2 2 2( ) ( ) ( ) ( ) ( )V x y zτ λ τ τ τ τ′ ′ ′= + + .  (40) 
The speed profile ( )V τ  can now be also approximated 

with say the same-order polynomial 
5
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Vk
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a
V

k k
ττ

=

=
−�                     (41) 

(in this case we will have three variable parameters since 
the second derivatives of V are not defined by the boundary 
conditions). 

C. Resolving Inverse Dynamics 
The complete computational algorithm looks as follows. 

We start from dividing the virtual arc fτ  (varied 

parameter) into N–1 equal pieces 1( 1)f Nτ τ −∆ = −  so that 

we have N equidistant (along fτ ) nodes 1,...,j N= . All 

the states and controls at the first point 1j =  
(corresponding to 1 0 0τ τ≡ = ) are defined. 

Now, for each of the subsequent N–1 nodes 2,...,j N=  
we do the following. We compute the current value of three 
Cartesian coordinates and speed using the corresponding 
polynomials: ( )j x jx P τ= , ( )j y jy P τ= , ( )j z jz P τ= , and 

( )j V jV P τ= . Then, using the obvious relationship we 
compute the time passed since the last sample 

( ) ( ) ( )2 2 2

1 1 1

1
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2
j j j j j j

j
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x x y y z z
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V V
− − −

−
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− + − + −
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+
,   (42) 

(the current time then equals to 

1 1 1 0  ( =0)j j jt t t t t− −= + ∆ ≡ ), and therefore the current value 
of the speed factor 

1
j

jt
τλ
−

∆=
∆

.       (43) 

Next, we convert � (prime) derivatives obtained directly 
from analytically defined ( )xP τ , ( )yP τ , ( )zP τ , and ( )VP τ  
to time derivatives using obvious relations 

ξ λξ ′=� , ( )ξ λ λ ξ λξ′ ′ ′′= +�� , and so on     (44) 

(by the way, we use the inverse of these relations to convert 
the initial conditions of the states from time derivatives to 
virtual arc derivatives). 

Having those we use (24)-(28) to compute the controls 
and the remaining states. 

VI. SIMULATION WITH FULL MODEL 

To validate the control strategy a full simulation model 
of the quadrotor has been developed [36]. The full 
SIMULINK model incorporates experimental data and 
theoretical relations. This model is used to test the control 
algorithm to fly three missions discussed next. 

A. Missions and Constraints 
To test the control scheme, three missions have been 

created to test the ability and robustness of the controller. 
As discussed the cost function can be expressed as a 
function of total flight time (time optimal), the total 
distance traveled (fuel optimal) or a combination of the 
two. For all of the following missions the cost function is 
set up as an optimal time problem. All missions involve 
starting from hover at (0, 0, 0)m and moving to a certain 
destination within the preset time with a sampling rate of 
10Hz: 
– The first mission is reduced to a simple vertical flight 

of 7m finishing in a hover at the destination; 
– The second mission involves navigation around an 

obstacle to reach a destination at (6, 0, 0)m. The 
obstacle is modeled as a sphere of a 1m radius 
centered at (3, 0, 0)m; 

– The third mission assumes a horizontal flight to (10, 
0, 0)m followed by a decent down a mineshaft of a 
2m radius to its bottom (10, 0, -5)m. 

The dynamic constraints consist of input constraints 

10.5 5.4u≤ ≤ , 0.5 0.5iu− ≤ ≤ , i=2,3,4,        (45) 
obstacle avoidance constraints and stability constraint (21). 
These input constraints are reasonable approximations of 
the actuator outputs as it can be assumed ui for i=2,3,4, is 
small relative to u1. 

B. Modeling Disturbances 
To test the robustness of the controller, disturbances have 

been introduced to the full quadrotor model. The likely 
disturbances acting on the quadrotor are wind and noise. 
Wind can be modeled as a drift in the translational position, 
more precisely a velocity of 0.1m/s along the x  axis (this 
can further be improved with a gusting model of random 
noise in the same direction). To simulate inaccuracies 
within the rotor, a random noise was also added to the input 
signal. 

C. Results 
All aforementioned scenarios were tested using different 

weighting factors in (23). Below we only show one set of 
results per each scenario with w=1 and T=0 corresponding 
to the minimum-time problem. It should be noted that if the 
only type of the problems to consider be the time-minimum 



problems, then instead of defining the reference polynomial 
for speed (41) we would establish a bang-bang control 
profile for u1 and then integrate the speed equation (as it 
was done for other applications, for example in [23] and 
[26]). That means rather than having two varied 
coefficients in (41) we would have several varied switching 
points to play with. However, having (41) increases the 
class of the cost functions to be considered (we simply do 
not care whether the control enters the Hamiltonian of the 
system (13) linearly). Therefore, we are showing the 
minimum-time problem results to show that the developed 
algorithms work here too despite of the fact that we 
intentionally replaced an optimal bang-bang control with 
the quasi-optimal polynomial control that can match the 
bang-bang control to a certain extent only. 

 

a)  

b)  
Figure 4. The altitude (a) and thrust (b) profiles for the 

vertical flight. 
 
The solution to the first problem (minimum-time vertical 

climb) is well known [47]: the vehicle applies maximum 
thrust followed by minimum thrust to slow down. The 
analytical solution for this problem is the application of 
maximum thrust for approximately 1.44 seconds followed 
by zero thrust for 0.36 seconds (of course this solution was 
not obtained for the full model (13) under (30) but it at least 
gives some feelings of what final time to expect). Figure 4a 
shows the altitude against time until the destination is 
reached at the final time of 3.26 seconds. Figure 4b shows 
the first control input over this time. As seen the thrust is a 
polynomial approximation of the maximum constraint 
followed by a short reduction in thrust. It should be noted 
though that while time tf is 1.5 times greater than the 
optimal one (obtained for the simplified dynamics) all 
boundary conditions (including those imposed on the rotor 
fans’ dynamics) are satisfied, the reference trajectory and 
nominal control are feasible and (which is probably the 
most important) the solution can be obtained in the real-

time.  
The path following part of the algorithm works fairly 

well following the quasi-optimal trajectory with a high 
accuracy (Fig.4a). One of the main reasons for that is that 
all constraints are carefully taken into account and therefore 
the LQR controller does not need to “fight” inaccuracies in 
the model (which we would inevitably encounter if the 
results of the truly optimal solution, but for the simplified 
model, were employed). 

For the second mission (obstacle avoidance), as the 
optimal trajectory is measured by the flight time, it follows, 
that the optimal trajectory is the shortest path (and the 
thrust control looks pretty much the same as in the previous 
task). This can be seen by the trajectory passing along the 
surface of the trajectory (Fig.5). The flight time for this 
mission is 3.7 seconds. As seen the vehicle tracks the 
reference trajectory in this case fairly well too despite the 
presence of the wind and other disturbances. 
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Figure 5. Obstacle avoidance. 

 
The final mission is the mineshaft descent mission. The 

vehicle starts at hover and flies to the top of and down a 
mineshaft (Fig.6). The flight time for this mission is 8.6 
seconds. 
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Figure 6. Mineshaft mission. 

VII. CONCLUSIONS 

This paper presented a quasioptimal trajectory planner 
(benefiting from the differential flatness and the direct 
method) with a simple LQR path following controller. This 
scheme has been validated using a full dynamic model of 
the quadrotor. Simulations prove the feasibility of 
considered approach and show that the quadrotor’s model 



follows the optimal trajectories generated in real-time 
despite wind and other perturbations fairly well. Future 
work will look at extending the developed controller to 
make it more robust and capable of handling collision-free 
flight in presence of multiple vehicles. 
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