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Numerical investigation of laminar–turbulent
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effect of free-stream turbulence
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The role of free-stream turbulence (FST) in the hydrodynamic instability mechanisms
and transition to turbulence in laminar separation bubbles (LSBs) was investigated
using direct numerical simulations (DNS). Towards this end, a set of highly resolved
DNS have been carried out, where isotropic FST fluctuations with intensities from
0.1 % to 3 % are introduced to investigate the relevant physical mechanisms governing
the interaction of separation and transition in LSBs. For disturbance-free simulations,
i.e. without FST, laminar–turbulent transition involves a Kelvin–Helmholtz (KH)
instability of the separated shear layer. For LSBs subjected to FST, vortical FST
fluctuations penetrate the approaching attached laminar boundary layer upstream
of the separation location and induce slowly growing low-frequency disturbances,
so-called Klebanoff (K) modes, which cause a spanwise modulation with a distinct
spanwise wavelength. Simultaneously, the FST enhances the initial levels of instability
waves with frequencies in the frequency range of the KH instability, but at much
smaller amplitude levels compared to the K-modes. Results from the calculations
based on the linearized Navier–Stokes equations and comparison with DNS results
reveal that the K-mode exhibits exponential growth in the separated shear layer until it
reaches a peak amplitude. At the same time, two-dimensional (2D) disturbance waves
are also exponentially amplified, in fact at larger growth rate compared to the K-mode,
due to the primary (convective) shear-layer instability mechanism until they saturate
downstream of the peak amplitude associated with the K-mode. Therefore, based
on detailed spectral analysis and modal decompositions for the separation bubbles
investigated, the transition process is the result of two different mechanisms: (i) strong
amplification of high-frequency (order of the shedding frequency), essentially 2D or
weakly oblique fluctuating disturbances and (ii) low-frequency, three-dimensional
K-modes caused by FST. Depending on the intensity of the FST, one of these
mechanisms would dominate the transition process, or both mechanisms act together
and contribute simultaneously. The net effect of these two events is an acceleration of
transition for an increased level of FST intensity, which in turn leads to a reduction
of the extent of the separation bubble in streamwise and wall-normal directions. The
‘roll-up’ into spanwise large-scale vortical structures resulting from the shear-layer
instability, and the eventual breakdown of these structures, strongly contribute to the
reattachment process. The spanwise coherence of these ‘rollers’ deteriorates due to
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the presence of large-amplitude K-modes, thus effectively weakening their strength
for high levels of FST intensities (Tu> 1 %).

Key words: boundary layer separation, instability, transition to turbulence

1. Introduction

When subjected to a strong enough adverse pressure gradient, a laminar boundary
layer detaches from the wall. For sufficiently large Reynolds numbers, the separated
shear layer will transition in the separated region and lead to turbulent reattachment,
thus creating a so-called laminar separation bubble (Horton 1968; Gaster 1969).
Laminar separation bubbles (LSBs) are encountered in many important aeronautical
applications, such as wings of unmanned aerial vehicles, multi-element airfoil
configurations, low-pressure turbine blades to name a few. Owing to the small
characteristic length scale of some of these components or the fact that they are
operated at large altitudes where the air density is low, the operating Reynolds
number can drop to low values (Re< 105). For such low Reynolds numbers, boundary
layers can remain laminar and therefore are highly susceptible to separation and the
generation of LSBs. Separation is associated with several undesirable effects. Large
separation bubbles can drastically reduce the aerodynamic efficiency by reducing the
usable lift and increasing drag. Another aspect is the increase in unsteadiness and
noise caused by the flow separation.

Depending on the governing parameters such as Reynolds number, pressure gradient
and external disturbances such as free-stream turbulence (FST), LSBs can be classified
as either ‘short’ or ‘long’. There are several parameters suggested by researchers to
classify whether a bubble is ‘short’ or ‘long’ – see, for example, Owen & Klanfer
(1953), Gaster (1969) and Diwan, Chetan & Ramesh (2006). An intuitive way to
define a bubble as either ‘short’ or ‘long’ is based on assessing their effect on the
pressure distribution. Towards this end, if the effect of a separation bubble on the
pressure distribution is local and limited, it is a ‘short’ bubble; while a ‘long’ bubble
has a strong upstream and downstream impact on the inviscid pressure field.

The separated shear layer in LSBs is highly unstable with respect to small
disturbances within the flow, thus allowing for rapid growth of vortical structures.
These structures will have an effect on the separation and reattachment behaviour
and therefore significantly affect the size and the shape of the separated region (or
separation bubble). Thus, the instabilities and the laminar–turbulent transition process
have a profound impact on the mean flow topology and the unsteady behaviour of
LSBs (Dovgal, Kozlov & Michalke 1994; Boiko et al. 2002). Therefore, an improved
understanding of the relevant physical mechanisms governing separation in general
and the transition process in particular is required. This may lead to useful separation
prediction tools that include the effects of the unsteady behaviour. This in turn could
enable the development of novel geometries with more favourable hydrodynamic or
aerodynamic properties. This understanding may also reveal possibilities for novel
active/passive flow control strategies that may help prevent (or at least mitigate) the
negative effects of separation.
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1.1. Basic characteristics of hydrodynamic instability in a laminar separation bubble
For a zero-pressure-gradient flat-plate boundary layer and a low-amplitude disturbance
environment, transition can be initiated by the exponential growth of so-called
Tollmien–Schlichting (TS) waves when the critical Reynolds number Recr is exceeded,
whereby the environmental disturbances enter the boundary layer via a so-called
‘receptivity’ mechanism (Morkovin 1969). An adverse pressure gradient (APG) has a
destabilizing effect, effectively decreasing the critical Reynolds number. If the APG
is strong enough, the flow separates: the resulting velocity profile in the separated
region becomes inviscidly unstable (Kelvin–Helmholtz (KH) instability), due to the
presence of an inflection point in the velocity profile. This leads to growth rates of
the instability waves that are much larger compared to the growth rates associated
with TS instabilities for an attached boundary layer. Generally, larger distances
between the shear layer and the wall lead to larger spatial amplification rates with
a small Reynolds-number dependence (see Rist & Maucher 2002). Separated shear
layers are unstable to a broad band of spanwise wavenumbers and frequencies and
usually high-frequency, two-dimensional (2D), or weakly oblique disturbances can
rapidly reach large (nonlinear) amplitudes within the separated region, leading to the
commonly observed periodic shedding of spanwise coherent vortical structures (Rist
2003). At this stage, secondary instabilities could take hold, which will subsequently
lead to a rapid breakdown to small-scale three-dimensional (3D) structures and
eventually to a fully turbulent flow. While the separated regions allow for a
rapid growth of vortical disturbance waves, at the same time the presence of the
large-amplitude waves (or vortices) facilitates an exchange of momentum, which limits
the extent and intensity of the separation. Consequently, separation and transition are
intricately linked.

A number of detailed investigations (experimental and numerical) have addressed
laminar–turbulent transition in LSBs in the framework of spatially growing perturba-
tions, i.e. a convective amplification of 2D or weakly oblique fluctuating disturbances.
In a direct numerical simulation (DNS) of a separation bubble conducted by Alam
& Sandham (2000), controlled periodic 3D disturbance waves with a fixed frequency
and wavenumber were introduced upstream of the separation, and the evolution
of the disturbances was then tracked all the way to the reattachment region. They
concluded that the separated shear layer undergoes transition via oblique modes
and staggered 3-vortices are observed in the flow prior to breakdown. A combined
experimental/numerical investigation was carried by Marxen et al. (2003) using
controlled disturbance input. They found that transition in the 2D LSB is driven by
a convective primary amplification of 2D disturbance waves, resulting into spanwise
rollers that are shed from the separation bubble. It is worth noting that, inside the LSB,
2D disturbance waves are the most amplified. However, weakly oblique disturbances
(3D modes with small wave angles) can also experience strong amplification rates
that are close to those of the 2D modes (Marxen et al. 2003; Marxen, Rist & Wagner
2004). Thus, the initial amplitudes resulting from the receptivity process will dictate
which disturbance modes prevail downstream of the separation location and thus
dominate the transition process.

Following the work of Gaster & Grant (1975), who were the first to use localized
(‘point’) pulse disturbances to generate wave packets in a zero-pressure-gradient flat-
plate boundary layer, Watmuff (1999) carried out a detailed experimental study of 2D
LSBs (using the pulse disturbance technique of Gaster & Grant 1975) in an effort to
understand the underlying instability mechanism in the separated flow. He concluded
that the primary instability is an inviscid inflectional mechanism typical of a KH
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instability. The localized (point) pulse disturbance method was subsequently used by
Diwan & Ramesh (2009), who carried out an experimental study of an LSB and the
associated linear stability mechanisms. In contrast to the traditional view that connects
the origin of the inviscid instability in a bubble to the separated shear layer outside
the bubble and its KH mechanism, Diwan & Ramesh (2009) provided evidence that
the origin of the inflectional instability can be traced back to the region upstream of
the separation bubble where TS waves are generated (by the receptivity) and amplified
due to a viscous instability in the attached APG region of the boundary layer.

Instead of spanwise-localized pulse disturbances as in Gaster & Grant (1975),
Michelis, Yarusevych & Kotsonis (2017) investigated the spatial and temporal
response of an LSB to 2D (spanwise-uniform) pulse disturbances by means of
time-resolved particle image velocimetry. The pulse disturbances develop into wave
packets that lead to a rapid shortening of the bubble due to later separation and
earlier reattachment compared to the unforced case. This process is followed by
a so-called ‘bubble bursting’, during which the bubble grows significantly in size,
while the shedding of spanwise vortical structures is halted. Using linear stability
analysis based on the phase-averaged flow field, they showed that amplification rates
are directly proportional to the shape factor throughout the recovery of the bubble
to its unforced state. This was important since it indicates that bursting and flapping
(intermittent shear-layer fluctuation) mechanisms are driven by the altered stability
characteristics due to the variation in incoming disturbances.

A weak concave streamline curvature occurs near the separation location of an
LSB which may give rise to a Görtler instability despite the absence of a curved
surface. This instability may be a candidate for explaining the appearance of steady
3D disturbances, as examined by Marxen et al. (2009). Based on a qualitatively good
correlation of the growth rate and an equivalent Görtler number (Geq), as well as on
the shape of the amplitude functions, they showed that the onset of the instability
is due to streamline curvature, i.e. due to a Görtler-type instability. The streamwise
disturbance development was explained by two different mechanisms: spatial transient
growth and a modal Görtler-type instability. In certain parts of the domain, the two
effects are blended and contribute simultaneously to the disturbance shape. In both
mechanisms, the lift-up effect feeds the growth of the streamwise velocity component.
It is important to note that a Görtler -type instability can only be expected in LSBs
in the part of the flow further away from the wall where Geq possesses appreciable
values. In the work by Marxen et al. (2009), Geq is approximately 5 near the
separation location.

Evidence for self-sustained transition to turbulence without external forcing is
presented by Spalart & Strelets (2000) and Jones, Sandberg & Sandham (2008).
The sustaining of turbulence without external disturbances cannot be explained by
the convective instability mechanics. Convective instability refers to the downstream
amplifications of small-amplitude disturbance waves, which were generated at some
location upstream. Without a constant disturbance input, the disturbance waves will
eventually decay completely and transition to turbulence will not occur. The onset of
unsteadiness in LSBs may be attributed to the absolute instability mechanism (Huerre
& Monkewitz 1990) where the disturbance waves propagate in both the downstream
and upstream directions while being amplified in time, independent of external
excitations and ultimately would result in transition. There are several numerical and
theoretical studies conducted addressing absolute instability in LSBs (Hammond &
Redekopp 1998; Hosseinverdi & Fasel 2013a; Rodríguez, Gennaro & Juniper 2013;
Embacher & Fasel 2014). For a separation bubble, two parameters play an important
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role in the context of absolute instability: (i) the height of the bubble and (ii) the
magnitude of the reverse flow. In general, a reverse flow of approximately 7 %–10 %
of the free-stream velocity in the bubble is required for the onset of an absolute
instability (Rodríguez & Theofilis 2010). The typical frequency of this instability is
very low, and the most amplified mode is stationary with a spanwise length scale of
the order of the streamwise extent of the vortex containing the trapped flow inside
the separation bubble. Rodríguez et al. (2013) demonstrated that the nature of such
an instability mode is a global centrifugal instability, which requires a reverse flow
with a magnitude of 7 %–8 % of the free-stream velocity.

1.2. The influence of free-stream turbulence
Almost all of the above transition investigations only address the so-called ‘controlled
transition scenarios’, which may be observed only in carefully controlled water/wind
tunnel experiments where the environmental disturbances, such as FST, noise and
vibration, have been reduced to a minimum. Therefore, the question arises whether
this path to turbulence is still prevalent in a ‘real’ environment such as encountered
in free flight, for example. Considering technical applications, it is reasonable to
assume that the most general disturbances inducing laminar–turbulent transition are
due to FST. As mentioned above, the behaviour of LSBs strongly depends on the
transition process within the shear layer, and for this reason one would expect that
the FST plays an important role governing the extent and unsteady characteristic
of the bubble. Thus, FST has to be considered when investigating laminar–turbulent
transition in LSBs for practical applications.

Numerous experimental, theoretical and numerical investigations have addressed the
role of FST on laminar–turbulent transition in a boundary layer. In the absence of
pressure-gradient effects, for attached boundary layers with imposed FST, transition
appears to be preceded by streamwise ‘streaks’ in the boundary layer. These streaks
are caused by ‘Klebanoff modes’ (K-modes), after P. S. Klebanoff who first identified
them (Klebanoff & Tidstrom 1959; Klebanoff 1971). His findings have been confirmed
in numerous experiments and numerical simulations by other researchers (Kendall
1985, 1990; Westin et al. 1994; Leib, Wundrow & Goldstein 1999; Jacobs & Durbin
2001; Fasel 2002; Brandt, Schlatter & Henningson 2004; Goldstein 2014). The
streamwise streaks caused by FST correspond to a thinning and thickening of the
boundary layer. The K-mode leads to a significant distortion in the form of the
u-velocity component in the spanwise and wall-normal directions. K-modes are
fundamentally different from TS waves. Characteristic features of the K-mode are its
low frequency, low growth rate and spanwise length scale of a few boundary-layer
thicknesses.

The growth of the disturbances, algebraic instead of exponential, was explained
by the lift-up mechanism (Landahl 1975). A physical explanation for this growth is
that streamwise perturbations can be generated by the lifting-up of fluid particles in
the presence of a mean shear layer. The strong response of the boundary layer to
the narrow band of the wavenumber–frequency spectrum is explained by the viscous
theory that the boundary layer acts as a low-pass filter, admitting long-wavelength,
low-frequency, free-stream disturbances. Low-frequency vortical disturbances caused
by FST are more unstable in the presence of an APG, resulting in stronger Klebanoff
distortions, and hence provoke early transition (Zaki & Durbin 2006). In boundary
layers with FST intensities of 1 % or more, transition occurs rapidly, bypassing the
natural transition scenario (Morkovin 1969; Kendall 1985; Jacobs & Durbin 2001).
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The effect of FST on the transition in LSBs has not been addressed as extensively/
detailed as for attached laminar boundary layers. Häggmark (2000) provided some
experimental results on the effects of FST on LSBs induced by an APG. FST with
an intensity of 1.5 % was generated by a grid upstream of the leading edge of
the plate. No strong evidence for the existence of 2D waves, which are typical for
separation bubbles in an undisturbed environment, could be produced. On other hand,
the existence of low-frequency streaky structures in the boundary layer upstream of
separation and in the separated boundary layer was revealed by smoke visualization
photographs and spectral analysis.

One of the first preliminary numerical investigations into the effects of FST on
transitional LSBs was DNS by Wissink & Rodi (2006) where a 2D LSB was
formed on a flat plate due to a strong APG imposed by a contoured wall mounted
at a distance above the flat plate. The free-stream disturbances with 5 % intensity
were obtained by a separate large-eddy simulation (LES) of isotropic turbulence
and added at the inflow boundary for the DNS. It is worth noting that the inflow
boundary was placed upstream of the leading edge of the flat plate. Because of the
strong downstream decay, the level of FST was much lower at the leading edge
(approximately 1.5 %). With oncoming FST fluctuations, the KH instability was
triggered much earlier and transition was enhanced, leading to a drastic reduction in
the size of the separation bubble. Using a simulation set-up similar to Wissink & Rodi
(2006), Lardeau, Leschziner & Zaki (2012) carried out LES of 2D LSBs subjected
to different levels of FST intensity, ranging from 0 to 2 % at the separation location.
Consistent with Wissink & Rodi (2006), elongated streamwise structures (K-modes)
prior to the separation location led to a faster breakdown of the KH vortices. They
concluded that the energy carried by the Klebanoff modes increases with the FST
intensity, and thus leads to a greater reduction in the mean separated region. It is
important to note that the investigation of Lardeau et al. (2012) indicated a significant
influence of the subgrid-scale modelling on the mean flow and turbulence statistics of
the LES results for the cases with FST. Another LES of pressure-induced separation
bubbles exposed to FST fluctuations was performed by Rao et al. (2013). However,
the inflow condition was generated by combining the incoming FST with wakes
superimposed onto the mean velocity profile. Confirming the previous numerical and
experimental investigations with respect to the role of FST, they showed that stronger
Klebanoff modes are formed in the presence of wakes when compared to the streaks
due to FST alone.

For ‘short’ LSBs, a numerical investigation by McAuliffe & Yaras (2010) showed
that the nature of the instability mechanisms changes from amplification due to the
KH instability to amplification of streamwise streaks for elevated levels of FST (FST
intensity of 1.45 % at separation location). These streaks extend into the region of the
laminar separated flow and initiate breakdown via the formation of turbulent spots.
Brinkerhoff & Yaras (2015) performed DNS of an attached boundary layer subjected
to streamwise pressure gradients and high FST intensity (5.3 % at the leading edge).
They found that a favourable pressure gradient stabilized longitudinal streamwise
streaks caused by FST in the laminar boundary layer until further downstream in
the APG region where transition to turbulence was triggered via the development
of a varicose secondary instability of individual low-speed streaks, which led to the
breakdown to turbulence. The laminar–turbulent transition process was also linked to
a rapid amplification of free-stream disturbances in the inflectional boundary layer
in the APG region that resulted in a largely homogeneous breakdown to turbulence
across the spanwise direction.
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In detailed numerical simulations of a separation bubble forming over a flat plate
subject to FST, Balzer & Fasel (2016) showed that even very small FST levels
caused a significant reduction of the size of the separation bubble, indicating a strong
effect of FST on transitional LSBs. Elevated FST levels led to the generation of
low-frequency disturbances with distinct spanwise spacing inside the boundary layer
(K-modes). Consistent with the previous numerical and experimental investigations,
increasing the FST levels led to accelerated transition and a reduction of the (average)
bubble size. Of particular interest was the observation that the inviscid shear-layer
instability was present even for high FST intensity of 2.5 % and was not ‘bypassed’.
Thus, they concluded that the transition to turbulence was a consequence of both the
primary shear-layer instability and the enhanced 3D disturbance level, in particular the
streamwise streaks caused by the FST. DNS of transitional flow in a linear compressor
passage at high levels of FST intensities (from 3.25 % up to 10 %) by Zaki et al.
(2010) revealed that high levels of FST can even prevent separation completely by
transitioning the flow upstream of the separation location.

The acceleration of transition and the shrinking of the separated region for elevated
levels of FST have also been reported in experimental studies by Burgmann &
Schröder (2008) and Olson et al. (2013) for the flow over a SD7003 airfoil, and
by Simoni et al. (2017) for LSBs forming on a flat plate. The work by Olson et al.
(2013) exhibited strong sensitivity of transitional LSBs to FST level, which makes
it very difficult to compare results obtained in different experimental facilities and
with the experimental and computational results as well. Furthermore, Simoni et al.
(2017) identified that the dependence of the mean characteristics of LSBs on the
level of FST is different for different Reynolds numbers. They conjectured that the
Reynolds-number variation mainly drives the length scale associated with the KH
vortices whereas increasing the intensity of FST level shifts the onset of the shedding
phenomenon upstream. An interesting observation from the work by Burgmann &
Schröder (2008) was that the shedding frequencies associated with KH vortices are
more or less unaffected by the turbulence intensity; they speculated that the earlier
transition does not seem to affect the vortex roll-up process itself, but rather only the
size of the vortices.

In the overview above of the numerical and experimental investigations of LSBs
with respect to the role of FST, emphasis has been mainly on first- and second-order
statistics (time average and turbulence statistics). Experimental measurements have
been carried out mainly in an x–y plane (suitable for investigating KH instability),
and thus missing the 3D nature of instability waves caused by FST. On the other
hand, 3D numerical simulations mostly focused on the existence of streamwise
streaks (K-modes) caused by FST, mainly using instantaneous flow visualizations
(e.g. u-velocity or Q-criterion). However, the streamwise evolution of such instability
modes and their interaction with other instability mechanisms acting on the LSB
(for example, KH) have not been investigated in detail and are therefore not fully
understood.

1.3. Objective of present work
The underlying flow physics associated with LSBs is very challenging as both
separation and transition occur simultaneously and are intricately linked. The situation
becomes even more complex in the presence of FST, where the different instability
mechanisms can compete with one another. The main objective of the present
numerical investigations is to gain an improved understanding of the relevant physical
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mechanisms governing LSBs in general and the transition process in particular, in
the presence of FST. As mentioned in the previous section, increasing the FST
levels causes stronger K-modes and thus leads to accelerated transition. However,
increasing the FST level alone could not explain how the K-modes become the
dominant instability mechanism when considering the fact that K-modes have a low
(algebraic) growth rate compared to the high amplification rate associated with the
KH instability. The present work is motivated by the need for additional insight into
the Klebanoff instability mechanism in the presence of the separated shear layer.
Therefore, in the present work, the streamwise evolution of unsteady K-modes from
the initial linear stage, in the approach (attached) boundary layer, up to the nonlinear
stage is investigated in detail. Towards this end extremely large computing times are
required due the low-frequency characteristics of the K-modes.

Transitional LSBs, specially when subjected to FST, consist of flow structures
with different dominant frequencies and wavelengths so that instantaneous flow
visualizations do not provide a complete understanding regarding the underlying
flow physics. Therefore, a detailed analysis of the simulation data using spectral
analysis and modal decompositions is employed in order to provide additional insight
into the underlying flow physics for various FST intensities. Furthermore, detailed
investigations are carried out to investigate if and how the FST energy spectrum used
in the FST model affects the transition process and the mean flow characteristics of
LSBs. The rest of the paper is organized as follows: the next section, § 2, describes the
computational set-up, governing equations, numerical methods and the FST generation
procedure. A detailed discussion of the results is provided in § 3. A summary of the
results and the contributions of the paper are given in § 4.

2. Direct numerical simulations
DNS of transition requires numerical methods for solving the Navier–Stokes

equations that have low numerical dispersion and dissipation. Therefore, a 3D
incompressible Navier–Stokes code using a combination of high-order-accurate
finite-difference approximations and a pseudo-spectral method was employed for
the DNS. This code was developed in our Computational Fluid Dynamics (CFD)
Laboratory and validated for numerous cases of boundary-layer transition (Meitz &
Fasel 2000), LSBs in 2D and 3D boundary layers (Hosseinverdi, Balzer & Fasel 2012;
Balzer & Fasel 2016; Hosseinverdi & Fasel 2016) and separation control (Postl, Balzer
& Fasel 2011; Hosseinverdi & Fasel 2013b, 2018). The following section provides a
description of the simulation set-up, the governing equations and the computational
approach used for solving the 3D, unsteady, incompressible Navier–Stokes equations.

2.1. Simulation set-up
The simulations set-up was guided by water-tunnel experiments that were carried out
in the Hydrodynamics Laboratory at the University of Arizona (Radi & Fasel 2010;
Chetan & Fasel 2012). In the experiments, the LSBs are generated on a flat plate
through the close proximity of an inverted wing with a modified NACA 643-618
airfoil (see figure 1). Suction is applied in the aft part of the airfoil to prevent flow
separation from the airfoil such that flow separation and reattachment occur only on
the flat plate.

For our simulations, we employ our high-order-accurate, spatial DNS code for
a model geometry (separation is generated on a flat plate as in the experiments).
This model geometry is defined such that it exhibits a flow with similar physical
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ymax

x0 xB xmax

√(x, y = ymax)

Laminar Transition region

Buffer
zone

Turbulent

Ádi√
∂99

FIGURE 1. (Colour online) Schematic side view of the computational set-up (drawing not
to scale). The domain extent in the streamwise direction is x0 = 1 6 x 6 xmax = 17.19,
and the domain height is ymax = 2. The buffer region starts at xB = 16. Indicated are
the typical wall-normal velocity distribution applied at the upper boundary (dashed red
line), the velocity profile at the inflow and the buffer zone near the outflow. Also shown
are instantaneous contours of spanwise-averaged ωz vorticity, the mean boundary-layer
thickness (solid green line) and the dividing streamline (blue dot-dash curve).

properties as the flow over an airfoil but at reduced geometric complexity. This
approach will enable higher grid resolution and the use of a considerably more
efficient incompressible DNS code that will allow us to capture the relevant physics
with greater confidence.

The governing equations are solved inside a rectangular integration domain as
shown schematically in figure 1. The integration domain does not include the
leading edge. The streamwise coordinate is x, the spanwise coordinate is z and
the wall-normal coordinate is y. Length scales were made dimensionless using
a reference length L∗

∞
= 0.1 m and velocities were made dimensionless with a

free-stream velocity U∗
∞
= 0.028 m s−1. The Reynolds number based on displacement

thickness and the local free-stream velocity at the inflow boundary and the separation
point are Reδ1 = 160 and Reδ1 = 297, respectively. The Reynolds number based on
the separation length (l), the distance between mean reattachment and separation
location, varies from Rel ≈ 1.05× 104 to Rel ≈ 1.91× 104 depending on the intensity
of incoming FST fluctuations.

The domain width in the spanwise direction is Lz= 3. The spanwise domain width
was selected based on the maximum bubble height (von Terzi 2004; Jones et al. 2008).
A domain width of at least four times the maximum bubble height is necessary to
resolve the largest spanwise structures. The ratio of domain width and the maximum
bubble height ranges from 7.6 to 12.5 for the lowest and the highest FST intensities
investigated here. Furthermore, the effect of the spanwise extent of the computational
domain was investigated in detail in our previous research (Hosseinverdi et al. 2012)
for the same simulation set-up. It was demonstrated that the current domain width
(Lz= 3) is large enough not to affect the main characteristics of the separation bubble,
such as the bubble length and the skin-friction distribution.

2.2. Governing equations
The governing equations are the incompressible, unsteady Navier–Stokes equations in
vorticity–velocity formulation. The transport equation for the vorticity vector ω is

∂ω

∂t
=∇× (u×ω)+

1
Re
∇

2ω. (2.1)
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Here the vorticity is defined as the negative curl of the velocity ω = −∇ × u.
Equation (2.1) consists of three transport equations for the vorticity components in
the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. In the
above equation, the global Reynolds number is defined as Re=U∗

∞
L∗
∞
/ν∗, where ν∗

is the kinematic viscosity. The asterisk is used to denote dimensional quantities.
Using the fact that both the vorticity and velocity vector fields are solenoidal, one

can obtain a vector Poisson equation for the velocity field,

∇
2u=∇×ω. (2.2)

2.3. Numerical methods
The governing equations are integrated in time using an explicit fourth-order-accurate
Runge–Kutta scheme. All derivatives in streamwise and wall-normal directions are
approximated with fourth-order compact differences. No explicit filtering is used in
the present investigations. Instead, stability is enhanced by appropriate treatment of the
first derivative of the nonlinear terms, which are discretized using fourth-order-accurate
(split) compact differences in the x-direction. At consecutive substeps of the four-stage
Runge–Kutta scheme, the numerical scheme alternates between upwind-biased
differences and downwind-biased differences. In the wall-normal direction, an
exponential grid stretching is used in order to cluster grid points near the wall.
Note that the finite-difference approximations for the derivatives with respect to y are
constructed for a non-equidistant grid instead of using a coordinate transformation.
While this approach is tedious, it can yield higher accuracy than the traditional
method of grid stretching by using a coordinate transformation.

The flow field is assumed to be periodic in the spanwise direction. Therefore, the
flow field is expanded in Fourier cosine and sine series. Each variable is represented
by a total of 2K + 1 Fourier modes: the 2D spanwise average (zeroth Fourier
mode), K symmetric Fourier cosine as well as K antisymmetric Fourier sine modes.
To avoid aliasing errors, the nonlinear terms in physical space are computed on
K ≈ 3K spanwise collocation points. Fast Fourier transforms (FFTs) are employed
to convert each variable from spectral space to physical space and vice versa. The
nonlinear terms are computed in physical space, while differentiation, integration and
imposition of boundary conditions take place in spectral space. For the calculation
of the nonlinear terms, the flow field is transformed from spectral to physical space
(and back) before each Runge–Kutta substep, which requires redistributing of the
entire 3D arrays among the processors. This extensive inter-processor communication
is realized using the message passing interface (MPI).

The velocity Poisson equation (2.2) is solved by a direct method using fourth-order
standard compact differences in the wall-normal direction and Fourier sine transforms
in the streamwise direction.

2.4. Boundary conditions
The flow enters the computational domain at the inflow boundary location, x0, and
leaves it through the outflow boundary at xmax. In the spanwise direction, the flow
is assumed to be periodic with the fundamental wavelength λz = Lz, where Lz is the
domain width in the spanwise direction.

At the inflow boundary at x= x0, all velocity and vorticity components are specified.
In particular, the velocity and vorticity components of a 2D steady-state basic
flow obtained from the Falkner–Skan equations, which closely matches that of the
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FIGURE 2. (Colour online) (a) Streamwise and (b) wall-normal velocity profiles at the
inflow boundary of the computational domain; (c) v-velocity versus x imposed at the free-
stream boundary (ymax).

experiments (see figure 2a,b), superimposed with velocity and vorticity fluctuations
from the FST model, are prescribed as Dirichlet boundary conditions. In addition,
for maintaining the fourth-order accuracy of the code near the inflow boundary, the
streamwise derivatives of all dependent variables are prescribed as well.

At the outflow boundary, x= xmax, all second derivatives in the streamwise direction
are set to zero. In addition, a buffer domain in the region xB 6 x6 xmax, as proposed by
Meitz & Fasel (2000), is employed in order to smoothly dampen out the fluctuations
generated inside the domain. Note that near the outflow boundary, the boundary layer
is turbulent and large errors would occur if a laminar boundary-layer solution were
enforced at the outflow boundary. Therefore, within the buffer region, the solution was
ramped down to turbulent mean flow profiles, which were obtained from precursor
simulations with a longer integration domain.

The no-slip and no-penetration conditions are enforced on the surface of the flat
plate. In addition, the wall-normal derivative of the v-velocity is set to zero to ensure
conservation of mass. At the free-stream boundary y= ymax, the wall-normal derivatives
of all vorticity components are set to zero, thus allowing the vorticity to relax to some
constant values (not necessarily zero). A wall-normal velocity distribution is applied
at the upper boundary as a Dirichlet boundary condition for generating the favourable
APGs that induce laminar separation on the flat plate. The v-velocity distribution is
chosen such that the resulting downstream pressure gradient closely matches that of
accompanying water-tunnel experiments as shown in figure 2(c). This method was also
used by Alam & Sandham (2000) and Spalart & Strelets (2000). Such an approach
can be viewed as the numerical equivalent to a displacement body or suction port in
an experiment.

2.5. Generation of free-stream turbulence in direct numerical simulations
The LSBs investigated here are subjected to the FST, which was modelled by
introducing a set of velocity and vorticity disturbances at the inflow boundary of the
domain. The methodology adopted for generating realistic FST velocity fluctuations
at the inflow boundary is similar to that proposed by Jacobs & Durbin (2001) and
Brandt et al. (2004). The method is based on a Fourier expansion of the disturbance
velocity with random amplitudes:

u′(x, t)=
∑

k

û(k, t)eik·x, (2.3)
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where the wavenumber vector is k=[kx, ky, kz]
T with k=|k|. Here kx, ky and kz are the

streamwise, wall-normal and spanwise wavenumbers, respectively. In the same manner,
the inflow disturbance vorticity field is calculated from the disturbance velocity field
as ω′ =−∇× u′.

The objective is to specify the Fourier coefficients of a disturbance velocity field
such that the inlet disturbance flow field satisfies continuity and generates isotropic
turbulence in the free stream and models a specified energy spectrum. By invoking
Taylor’s hypothesis and ignoring the streamwise decay, kxx can be replaced by −ωt,
where ω is the angular disturbance frequency. The implementation of the spanwise
Fourier modes, eikzz, is straightforward since the numerical model assumes periodicity
of the flow field in the z-direction. However, in the presence of an inhomogeneous
y-direction, specific basis functions are needed to account for the presence of the
wall. Instead of Fourier modes eikyy in the expansion of the disturbance quantities,
Jacobs & Durbin (2001) and Brandt et al. (2004) suggested to use eigenmodes from
the continuous spectrum of the Orr–Sommerfeld and Squire operators since they
are sinusoidal in the free stream, but naturally decay inside the boundary layer (see
Grosch & Salwen 1978). Therefore (2.3) can be reformulated as

u′(x0, y, z, t)=
∑
ω

∑
kz

∑
ky

A(k)Φ(y;ω, ky, kz)e−iωteikzz. (2.4)

Here, the coefficients A(k) determine the contribution of the eigenfunctions to the
total turbulent kinetic energy and Φ is a normalized weighted superposition of Orr–
Sommerfeld and Squire continuous eigenfunctions. The velocity fluctuations at the
inflow model the specified energy spectrum. Various analytic forms for the energy
spectrum exist. For most of the simulations presented in this work, the von Kármán
energy spectrum is employed for distributing the turbulent kinetic energy among the
various modes,

E(k)= Tu2
0L11

1.196(kL11)
4

0.558[1+ (kL11)2]17/6
. (2.5)

The turbulent integral length scale, L11, determines the wavenumber associated with
the maximum in the E(k) distribution. For large scales (small k) the spectrum is
asymptotically proportional to k4. For small scales (large k) the spectrum matches
Kolmogorov’s k−5/3 law.

In order to obtain isotropic turbulence, several wavenumbers k have to be selected
in the domain kmin 6 k 6 kmax, where the limiting wavenumbers are determined by the
chosen numerical resolution. For the present simulations, kmin= 2 and kmax= 100 were
used. The smallest and largest spanwise wavenumbers that are resolved by the DNS
are kz,min = 2.09 and kz,max = 131.95. For the present investigations, the wavenumber
space (k) was divided into 40 equidistant concentric shells over which energy was
distributed discretely using a limited number, Np, of disturbance modes. Modes on
a given shell have an identical wavenumber magnitude, k = (ω2

+ k2
y + k2

z )
0.5. The

coefficient of each term in (2.4) is given by A(k)=
√

2E(k)1k/Np, where 1k is the
difference in wavenumber between two shells. Finally, upon choosing the parameters
L11 and the FST intensity Tu0, the inflow velocity and vorticity disturbance fields can
be entirely determined. Detailed descriptions of the implementation and validation
results are provided in Hosseinverdi et al. (2012), Balzer & Fasel (2016) and
Hosseinverdi & Fasel (2018). It is worth noting that FST fluctuations are introduced
at the inflow boundary of the computational domain, which is downstream of the
leading edge. Thus, the effect of the leading edge on the receptivity process with
respect to free-stream disturbances as encountered in experiments is neglected in this
approach.
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FIGURE 3. (Colour online) Grid spacing in wall coordinates. Data from case with Tu0 =

3 %. The shaded area corresponds to the mean separation length.

2.6. Assessment of grid resolution
All the simulations presented in this work are carried out using the same computational
grid with a resolution of Nx × Ny × Nz = 1851× 240× 200≈ 89 million grid points.
The grid spacing is uniform in the streamwise direction and the grid points are
exponentially displaced from the wall in the wall-normal direction with an expansion
ratio below 1.015 to improve the resolution near the wall. In the spanwise direction,
127 Fourier modes (200 collocation points) were employed.

A useful analysis of grid resolution is to transform the grid spacing to wall units.
The wall units for the streamwise, spanwise and wall-normal (adjacent to the wall)
directions for the case with an inflow FST intensity of 3 % is provided in figure 3. The
grid resolution within the separation bubble and in the redeveloping turbulent boundary
layer downstream of the reattachment point is 1x+61.58, 1z+62.71 and 1y+w 60.32.
The grid resolutions in wall units are calculated according to (1)+ = (1)Re(cf /2)0.5.

A comparison of the grid resolution used by other authors is given in table 1. These
values are based on a skin-friction value of cf ≈ 8.36× 10−3. This value corresponds
to the maximum skin-friction coefficient in the redeveloping turbulent boundary layer.
The grid resolution in the presented simulations is finer compared to the resolutions
used in the available literature. To justify that this grid resolution is sufficient to
resolve all the relevant length scales in the interior of the flow, the grid line spacing
is compared to an estimate of the Kolmogorov length scale η, characterizing the
length scale of the dissipative motion (Pope 2001). The length scale is obtained from
the dissipation rate given by

η= (Re3ε)−1/4, (2.6)

where ε is the turbulent dissipation rate determined from

ε=
1

Re

(
∂u′i
∂xj

)(
∂u′i
∂xj
+
∂u′j
∂xi

)
. (2.7)

The overbar denotes the time average and the prime indicates fluctuation quantities
with respect to the mean. The ratio of the grid line spacing in the wall-normal
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Case 1x+ 1y+ at y+ = 9 1z+ N(y+ < 9)

Alam & Sandham (2000), case 3DF-B 14.26 0.87 6.3 17
Jones et al. (2008), case 3DF 3.36 >1 6.49 69
Marxen & Henningson (2011), case reso1 6.53 0.94 11.06 10
Balzer & Fasel (2016) 5.6 0.9 6.15 18
Present simulations with Tu0 = 3 % 1.58 0.44 2.71 25

TABLE 1. Comparison of grid resolution in wall units with other simulations.

1

0
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1

0
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1.0
0.8
0.6
0.5
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0.1
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1.1
0.9
0.6
0.4
0.1

(a)

(b)

FIGURE 4. (Colour online) Contours of ratio of grid spacing to the Kolmogorov length
scales for Tu0 = 3 %: (a) 1y/η, (b) 3

√
1x×1y×1z/η. Dashed lines are the time- and

spanwise-averaged boundary-layer thickness and solid line is the mean dividing streamline.

direction to the Kolmogorov length scale, 1y/η, is plotted in figure 4(a). As can be
seen, the grid line spacing in the wall-normal direction is smaller than η in the entire
domain. The ratio of ∆/η, where ∆ = 3

√
1x×1y×1z, is presented in figure 4(b).

The ratio increases to 1.3 in the aft portion of the separation bubble. This is due to
the fact that 1x and 1z are slightly larger than 1y. Typically, the smallest length
scale that needs to be resolved is of O(η) and not exactly equal to η; Moser & Moin
(1987), for example, showed that most of the dissipation in the curved channel occurs
at scales greater than 15η. Consequently, these observations warrant that the present
simulations are exceptionally well resolved.

3. Results
In this section, results obtained from DNS of LSBs for various levels of FST

intensity are discussed in detail. For the present investigations, FST intensities were
Tu0= 0, 0.1 %, 0.5 %, 1 %, 2 % and 3 %, where Tu0 is the FST intensity at the inflow
boundary defined as Tu0 = (

1
3 [u
′u′ + v′v′ + w′w′])0.5, where the overbar denotes the

time average. Here, Tu0= 0 corresponds to the zero FST simulation where no external
disturbances were introduced into the flow. A detailed analysis of the simulation data
based on the instantaneous flow structures, spectral analysis and modal depositions
is carried out to explore if and how the FST affects the fundamental flow physics
compared to the LSB without FST.

3.1. Instantaneous flow structures
Owing to the large growth rates associated with the separated shear layer, the
disturbances can be amplified by several orders of magnitude, which leads to
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FIGURE 5. (Colour online) Instantaneous flow visualizations for the case without FST.
Plotted are isosurfaces of λ2=−0.75 coloured by u-velocity in perspective and top-down
views. The separation line is indicated by ωz = 0 at the wall and xR shows the mean
reattachment location. Plotted in the x–y plane are the contours of spanwise vorticity
(averaged in spanwise direction).

the development of large unsteady vortical structures that can persist even in the
turbulent flow region downstream of the reattachment location (coherent structures).
Furthermore, FST can induce additional disturbance waves inside the boundary layer,
which contribute to the laminar–turbulent transition process.

To gain insight into the nature of the vortical structures and their evolution, the
instantaneous isosurfaces are visualized in figure 5 using the λ2-criterion by Jeong &
Hussain (1995) coloured by u-velocity together with the contours of spanwise vorticity
(averaged in spanwise direction) for a zero FST. The separation line, ωz = 0, is also
indicated at the wall by the solid line. Starting from the left in figure 5, the boundary
layer separates at xs = 4.26, followed by a very smooth separated shear layer, which
has no noticeable dependence in the spanwise direction. The thickness of the separated
shear layer increases downstream of the separation location. Through the contours of
spanwise vorticity, it is found that the separated shear layer rolls up and grows in
intensity due to the KH instability as it is convected downstream. This is followed by
shedding of strong coherent (clockwise-rotating) vortices (often referred to as ‘rollers’),
and finally leading to turbulent reattachment. It should be noted that in our previous
research (see Hosseinverdi & Fasel 2013a) for the same simulation set-up, we found
that transition to turbulence appeared to be self-sustained for zero FST, i.e. in contrast
to zero-pressure-gradient boundary layers, no external forcing was required to initiate
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or sustain the transition process. It was demonstrated that the development of 3D
disturbances is due to an absolute secondary instability.

The λ2-criterion indicates large spanwise-oriented structures near x= 9.4, labelled 1
in figure 5. It corresponds to the spanwise rollers or KH vortices. Previous research
(Marxen et al. 2003; Rist 2003; Postl et al. 2011; Hosseinverdi et al. 2012) suggests
that these structures result from the large-amplitude 2D disturbances associated with
the primary (KH) instability of the streamwise mean flow profile. Large-scale vortices
facilitate the transfer of high-momentum fluid from the free stream towards the wall
and of low-momentum fluid away from the wall, and, as a consequence, accelerate
reattachment. In figure 5, the structure labelled 2 is a spanwise dominant vortex
that has recently been shed from the separated shear layer. Further downstream, the
flow breaks down into smaller structures. It can be seen that the small scales are
still organized in a spanwise coherent structure, labelled 3. These coherent structures
persist even downstream of reattachment.

The picture changes when isotropic FST is introduced at the inflow boundary.
Hydrodynamic instability of laminar separated shear layers makes the LSB highly
susceptive to FST. Therefore, the onset of transition is moved upstream compared to
the zero FST when the FST level is increased to Tu0 = 0.5 % (see figure 6), which
in turn leads to a reduction of the separated flow region. Instantaneous isosurfaces
of the λ2-criterion are presented in figure 6 together with the contours of streamwise
and spanwise vorticity at several selected planes. One KH roller is visible before the
flow breaks down to smaller scales. For this case, the reattaching flow is organized
by the vortices coherent in the spanwise direction. Predominantly spanwise structures
are indicative of the dominant 2D waves in the transition region and highlight their
role as a viable path to turbulence.

Judging from figures 5 and 6, KH vortices are more 2D for case with Tu0 = 0.5 %
than for zero FST simulation. As mentioned earlier, transition to turbulence is due
to an absolute secondary instability for the natural LSB (zero FST), implying that
the disturbances (due to numerical and round-off errors) propagate in both the
downstream and upstream directions while being amplified in time and ultimately
result in vortex shedding leading to transition. A similar observation was reported
in Jones et al. (2008), where ‘rollers’ are not purely 2D for uncontrolled LSB. The
onset of unsteadiness was also due to an absolute secondary instability in their work.
In contrast to the disturbance-free simulation (zero FST), the amplitude level of
the incoming 2D disturbance waves is elevated in the presence of FST (orders of
magnitude higher than in the zero FST case). Considering that 2D modes are the
most amplified instability waves in low-disturbance environments (Marxen et al. 2003,
2004), the primary convective instability strongly (by orders of magnitudes) amplifies
the disturbance waves within the KH frequency range of the separated shear layer
leading to the organized spanwise structures for Tu0 = 0.5 %.

From experiments and numerical simulations (Klebanoff & Tidstrom 1959;
Klebanoff 1971; Jacobs & Durbin 2001; Fasel 2002; Goldstein 2014), it is known that
the FST can cause the formation of streamwise-elongated streaks inside the boundary
layer that are caused by the so-called Klebanoff modes (K-modes). For this case, the
Klebanoff modes have very small amplitudes and can be visualized by looking at
the streamwise vorticity component as shown in the top-left plot in figure 6 at two
different x locations and on the wall. The contours of streamwise vorticity at x = 3
show that the vortical disturbances are present in the free stream. The free-stream
vortical disturbances permeate into the boundary layer and manifest themselves as
the counter-rotating longitudinal vortices as illustrated by the streamwise vorticity at
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FIGURE 6. (Colour online) Isosurfaces of λ2=−0.75 coloured by u-velocity in perspective
and top-down views for the case with Tu0 = 0.5 %. Plotted in the x–y plane are the
contours of spanwise vorticity (averaged in the spanwise direction). Top-left: contours of
streamwise vorticity at x = 3 and 7 and wall streamwise vorticity (dashed contour lines
indicate ωx < 0). Contour line of ωz = 0 corresponds to the instantaneous separation line
and xR shows the mean reattachment location.

the wall with a preferred spanwise wavelength of λz,K ≈ Lz/5, which can be clearly
observed for example at slice x = 7. These counter-rotating vortices facilitate the
exchange of momentum by transporting the low-momentum fluid away from the wall
and pushing the high-momentum fluid towards the wall. Furthermore, the spanwise
spacing of Klebanoff modes based on the local boundary-layer thickness, δ, is of the
order of λz,K ≈ O(2.65δ–4δ) for 3 6 x 6 xs, which is consistent with the findings of
λz,K ≈ O(2δ–4δ) for attached flat-plate boundary layers (Kendall 1985, 1990; Westin
et al. 1994). Contrary to the case with zero FST, the boundary-layer fluctuations
associated with the K-mode have a local effect on the instantaneous separation line
as it is now modulated in the spanwise direction.

From instantaneous flow visualization for the highest FST intensity investigated
(Tu0 = 3 %) shown in figure 7, it appears that the separated shear layer loses
its predominantly 2D character and exhibits oblique spanwise-oriented structures
that deteriorate due to the large-amplitude streamwise streaks. This gives room to
speculate that high FST intensities enhance the level of 3D disturbances and that these
eventually dominate the 2D waves. The traces of K-modes could also be identified
in the λ2 structures as the K-modes become stronger for elevated FST levels.
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FIGURE 7. (Colour online) Isosurfaces of λ2=−0.75 coloured by u-velocity in top-down
view for the case with Tu0=3 %. The mean reattachment location is depicted by the arrow.
The instantaneous separation line is indicated by ωz = 0 at the wall.
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FIGURE 8. (Colour online) Time- and spanwise-averaged (a) wall-skin friction and
(b) pressure coefficients for various levels of FST intensity.

3.2. Time- and spanwise-averaged flow field
In this section, the mean flow results for different FST intensities are compared and
discussed. Towards this end, the DNS data were averaged in the spanwise direction as
well as in time. Boundary-layer quantities from DNS, such as displacement thickness
and momentum thickness, are computed based on a ‘pseudo’-free-stream velocity. The
pseudo-free-stream velocity was obtained from a wall-normal integral of the spanwise
vorticity, ωz, as suggested by Spalart & Strelets (2000).

Distributions of time- and spanwise-averaged wall skin-friction coefficients, cf ,
and wall-pressure coefficients, cp, are plotted in figure 8 for DNS with various FST
intensities. With increasing FST levels, the mean reattachment point, at which cf
changes from negative to positive, moves upstream. The separation location, where
cf changes from positive to negative, remains almost constant, although a general
trend can be observed that separation is slightly delayed for increased FST levels
(see inset in figure 8a). The wall-pressure coefficient versus x shows a boundary-layer
acceleration up to x = 3.3, which is the location of the minimum pressure. There
is a plateau downstream of x = 5, which is an indication of the ‘dead-air’ region
in the separation bubble (corresponding to the low velocities within the bubble).
Included in figure 8(b) is the inviscid cp distribution. It is difficult to classify the
LSB investigated here as either ‘short’ or ‘long’ according to the Gaster criterion
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FIGURE 9. (Colour online) Comparison of boundary-layer parameters (time- and spanwise-
averaged) for different FST intensities: (a) displacement thickness; and (b) momentum
thickness.

(Gaster 1969), since the momentum thickness Reynolds number at the separation
location, Reθ,s ≈ 83, is below the minimum Reθ,s used in his investigations. However,
from figure 8(b), it is clear that the LSB alters the inviscid pressure distribution
significantly. It can therefore be concluded that the LSBs, for all levels of FST
examined, can be classified as ‘long’.

The development of the boundary layer for different flow scenarios is compared
in figure 9 by plotting the streamwise variation of the displacement thickness, δ∗,
and the momentum thickness, θ . Downstream of x = 4, the rapid growth of the
displacement thickness corresponds to the onset of the boundary-layer separation.
From the displacement thickness distribution, it is found that, in addition to the
reduction in separation bubble length, the height of the separation bubble also
decreases with increasing FST intensity. While for the zero and low FST levels, the
momentum thickness varies only slowly downstream of separation and across the
stagnant flow region of the bubble, for the cases with higher FST levels, there is a
rise in θ right downstream of the separation location. This change in the momentum
thickness could be attributed to the spanwise redistribution of momentum within
the boundary layer due to the FST. Another observation is the rapid rise in θ
corresponding to the ‘reverse-flow vortex’ region which represents the process of
shear-layer roll-up and shedding of vortices (in a time-averaged sense).

The time- and spanwise-averages of the streamwise velocity, u, at y= 1 and selected
streamwise locations are compared with the experimental measurements in figure 10.
For the comparison, the velocity profiles for cases without FST and FST intensities
of 0.1 % and 0.5 % are considered here. It should be noted that the reported level of
FST intensity in the experiment is O(0.1 %–0.35 %). Despite the good agreement for
the velocity profiles prior to the separation and the front part of the bubble (x 6 7.6),
the DNS data for the zero FST simulation indicate that reattachment occurred very
far downstream compared to the experiments. Downstream of x= 7.6, the computed
velocity profiles exhibit a larger distance of the separated shear layer from the wall.
The discrepancy between the simulation and the experiments is likely due to an earlier
onset of transition in the experiments, which could be attributed to the presence of
FST disturbances in the experiments, imperfections of the surface and the like. These
disturbances will of course accelerate transition, and, as a consequence, reduce the
size of the separation bubble. Moreover, the circulation around the displacement
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FIGURE 10. (Colour online) Time- and spanwise-averaged u-velocity compared to the
experimental data (Radi & Fasel 2010; Chetan & Fasel 2012) at y = 1 (a) and several
x locations (b).

body in the experiments, which could affect LSBs, is not present in the DNS. Such
disturbances are not present in the DNS, except for a low level of background
disturbances (‘numerical noise’), which can be kept extremely small if, as in our
case, high-order-accurate methods are used for solving the Navier–Stokes equations.

For the lowest FST level, Tu0 = 0.1 %, the separation length and the thickness of
the separation bubble are already reduced compared to the zero FST case; however,
the best match is found for the case with Tu0= 0.5 % for the profiles at the separation
point, in the reverse-flow region and at the reattachment location. It is also worth
noting that the discrepancy between the experimental and DNS results could partially
be caused by differences in the spectral content of FST fluctuations used in DNS (2.5),
as such an FST energy spectrum from the experiments was not available. To reproduce
‘realistic’ separation bubbles as observed in the experiments, it is therefore necessary
to increase the background disturbance levels in the DNS to levels that are typical
for experiments. As an alternative to introducing specified or random disturbances
upstream of the separation, as done, for instance, by Marxen & Henningson (2011),
we found it is more physical to introduce a realistic isotropic grid turbulence in the
DNS.

The boundary layer downstream of the reattachment location is turbulent. However,
it is very different from an equilibrium turbulent boundary layer as observed
in the zero-pressure-gradient case. A more revealing look at the redeveloping
turbulent boundary layer is provided in figure 11 for cases with Tu0 = 0.5 % and
Tu0 = 3 %. Plotted are the time- and spanwise-averaged flow quantities for several
downstream locations using the near-wall scaling for turbulent boundary layers. Close
to reattachment, the velocity profiles are very different from those of an equilibrium
turbulent boundary layer. A slow relaxation of the velocity profiles towards the
logarithmic law of the wall (given by the equation u+ = 2.44 log(y+) + 0.5) is
observed. It is not until the furthest downstream location that the profiles approach
equilibrium. A similar behaviour in the recovery region was reported by Na & Moin
(1998) and Alam & Sandham (2000). The persistence of the dip below the log law can
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FIGURE 11. (Colour online) Streamwise velocity of the turbulent relaxing boundary layer
in wall coordinates at various x̃ locations defined as x̃= (x− xR)/δ

∗

R where xR and δ∗R are
the mean reattachment location and displacement thickness at xR, respectively: (a) Tu0 =

0.5 %; (b) Tu0=3 %. Plots are time- and spanwise-averaged results. Dashed lines represent
u+ = y+ and dash-dotted line corresponds to u+ = 2.44 log(y+)+ 0.5.

be linked to the large coherent structures observed downstream of the reattachment
location (see figure 6). These structures are embedded in the boundary layer and
survive far downstream before breaking up into smaller dissipative eddies. In Alam
& Sandham (2000) the turbulent boundary layer reached the log law of the wall at
x̃= 24.43, while in the present simulations for the case with Tu0= 3 %, at x̃= 28, the
velocity profile is still not in equilibrium. It should be noted that in the investigation
of Alam & Sandham (2000) the relaxation process took approximately six bubble
lengths while in the present simulations for the highest FST level, Tu0= 3 % (shortest
bubble length), the domain downstream of reattachment only extends two-and-a-half
times the mean bubble length.

The results for mean flow presented in figures 8 and 9 indicated a reduction in
separation length for increased levels of the incoming FST. However, the rate at which
the separation region decreases as FST intensity increases is different for low and
high FST intensities as shown in figure 12. It displays the mean separation length
normalized by the momentum thickness at the separation location (θs) versus the
turbulence intensity at the free stream at the separation location (Tus). For the cases
with elevated FST, 1 %< Tu0 6 3 %, the mean separation length decreases at a lower
rate compared to the cases with low to moderate FST intensities, 0.1 % 6 Tu0 6 1 %.
Also, included in figure 12 is the variation of the maximum mean bubble height
normalized with θs as a function of Tus, which shows a similar behaviour as the
mean bubble length versus Tus.

From the instantaneous flow visualizations in figures 5–7, it appears that two
mechanisms contribute to the exchange of momentum, which therefore play an
important role in the reattachment process: (i) large-scale vortices that are being
shed from the bubble as a result of the shear-layer roll-up and (ii) small vortical
structures that are generated near the wall due to the breakdown of these large-scale
structures. The shear-layer roll-up produces large mean tangential momentum (ūv̄)
while the breakdown of these large-scale vortical structures (spanwise ‘rollers’),
which contributes to the transition/reattachment processes, induces Reynolds shear
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FIGURE 12. (Colour online) Variation of mean separation length, l, and the maximum
bubble height, h, as a function of turbulence intensity in the free stream at the separation
location, Tus. Both l and h are normalized by the momentum thickness at the separation
location.

stress (u′v′). According to Satta et al. (2007) and Simoni, Ubaldi & Zunino (2014),
the negative values of the wall-normal derivatives of these components will accelerate
the flow in the x-direction and therefore facilitate the reattachment process.

Figure 13 displays the contours of −∂(ūv̄)/∂y and −∂(u′v′)/∂y together with
the time- and spanwise-averaged streamlines for different FST levels. It should be
noted that contour levels are 0 6 −∂(ūv̄)/∂y 6 0.4 and 0 6 −∂(u′v′)/∂y 6 0.15
in figure 13. The wall-normal derivative of ūv̄ acts mainly outside the separation
bubble and reaches a maximum in the aft part of the bubble, the location where
the separated shear layer sheds spanwise vortices (see figure 6). In contrast, an
appreciable magnitude of the wall-normal derivative of the Reynolds shear stress is
present inside the separated region and attains the maximum value further downstream,
near the reattachment location, and is mainly confined close to the wall. Included in
figure 13(a) are the loci of the (mean) inflection points. Of particular interest is the
observation that the maxima of −∂(ūv̄)/∂y occur very close to the mean inflection
points, thus supporting the conjecture that the main contribution to this term is the
inviscid shear-layer instability that produces the boundary-layer roll-up. Besides the
spanwise ‘rollers’, it is important to point out that the term −∂(ūv̄)/∂y contains
(small) contributions from the fluctuations in the form of the Reynolds stresses as
well. While the maximum of −∂(u′v′)/∂y remains almost unchanged, the maximum
of −∂(ūv̄)/∂y is significantly reduced for cases with Tu0 > 1 %. This reduction
can be attributed to: (i) a stabilization of the convective instability of the separated
boundary layer associated with the smaller mean LSB (due to the faster transition),
and (ii) weakening of the spanwise-oriented structures by large-amplitude K-modes
as was observed in figure 7, for example.

3.3. Spectral analysis
To analyse the unsteady fluid dynamics and understand the dominant laminar–turbulent
transition mechanisms for different FST levels, the Fourier spectra of the time-
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FIGURE 13. (Colour online) Contours of −∂(ūv̄)/∂y (a) and −∂(u′v′)/∂y (b) together
with time- and spanwise-averaged streamlines. From top to bottom: Tu0= 0, 0.1 %, 0.5 %,
1 %, 2 % and 3 %. The symbols in (a) indicate the loci of mean inflection points and the
dashed red lines in (b) correspond to the mean displacement thickness.

dependent velocity field in time and spanwise directions are evaluated. Note that the
results obtained from the simulations are already in Fourier space in the z-direction.
Hence, no transform in the spanwise direction has to be performed.

For zero FST simulation, typical time traces and the respective frequency spectra of
the wall-normal disturbance velocity (averaged in spanwise direction) are presented in
figure 14 for several streamwise locations within the bubble and downstream of the
reattachment location. The data are extracted along the local displacement thickness,
which is very close to the inflection point of the streamwise velocity component. Here,
the dimensional frequency is non-dimensionalized as follows:

F=
2π f ∗ν∗

U∗
∞

2 × 106. (3.1)

Downstream of the separation point at x = 8.5, the time signals are reminiscent
of ‘modulated wave-trains’ qualitatively similar to those observed by Schubauer &
Skramstad (1948) in their ‘natural’ transition experiments of a flat plate boundary
layer. The corresponding frequency spectra (figure 14b) exhibit a dominant frequency
peak, which is caused by the growth of instability waves in the separated region.
These instabilities lead to the ‘periodic’ shedding of the separation bubble with
fundamental frequency of F ≈ 954. Strong higher harmonics that are generated
nonlinearly can be observed for x 6 10.

Contours of the Fourier amplitude of the wall-normal disturbance velocity in the
frequency F–x plane are shown in figure 15(a) for the case with FST intensity
of 0.5 %. The Fourier amplitudes are averaged in the spanwise direction and the
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FIGURE 14. (Colour online) Temporal evolution (a) and the corresponding frequency
spectra (b) of the wall-normal disturbance velocity (averaged in the spanwise direction)
at various streamwise locations along the displacement thickness for zero FST simulation.
Curves from left to right (bottom to top): x= 8.5, 9, 9.5, 10, 10.5, 11, 12 and 13.
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FIGURE 15. (Colour online) Spectral analysis for Tu0 = 0.5 %. (a) Fourier spectra of
the wall-normal disturbance velocity versus downstream direction along the displacement
thickness. (b) Wall-normal maxima of Fourier amplitude of the streamwise disturbance
velocity inside the boundary layer versus downstream direction.

amplitudes are extracted at y = δ∗(x). The dominant frequency, when the FST is
included, remained close to the natural shedding frequency of the zero FST simulation,
i.e. F≈ 915. However, as the level of FST increases, the frequency spectrum becomes
broader and the ‘dominant’ frequency peak, although still identifiable in the spectra,
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is less pronounced. This observation is consistent with the earlier experimental
investigation of Burgmann & Schröder (2008), who found that the dominant shedding
frequency of LSBs associated with the KH vortices are almost unaffected by the FST
intensity (up to 1.5 %).

It is important to note that the results from the spectral analysis for the LSBs
support the findings of Diwan & Ramesh (2009) that the non-dimensional dominant
shedding frequency, F, scales linearly with the modified Reynolds number, R, in the
linear regime. Here, F = Re fsh(y2

in + δ
2
ω) and R = Re Uinyin

√
yin/δω, where fsh is the

most amplified frequency (shedding frequency), yin is the wall-normal position of the
inflection point, Uin is the mean streamwise velocity at the inflection point and δω
is the vorticity thickness (see Diwan & Ramesh 2009). In particular, for the LSBs
without and with FST, F≈ 0.2R. It is worth noting that this scaling holds also in the
APG region prior to the separation location, which further corroborates the conjecture
by Diwan & Ramesh (2009) that the origin of the primary instability mechanism can
be traced back to upstream of the separation location.

Note that the spectra shown in figure 15(a) were based on the wall-normal
disturbance at the local displacement thickness away from the wall. As discussed
in § 1.2, FST should give rise to so-called Klebanoff modes with their characteristic
very low frequencies that should already be present in the approach boundary layer
upstream of the separation. In figure 15(a) no such low-frequency peaks were
observed. Thus, the question arises if the Klebanoff modes are suppressed in the
presence of separation or if they were missed by using the wall-normal disturbance
velocity at the (local) displacement thickness. To answer this question, the maximum
amplitude of the disturbance u-velocity is now used instead. This is motivated by the
fact that the primary mechanism of Klebanoff modes is a spanwise (low-frequency)
modulation of the streamwise velocity component. Consequently, in figure 15(b) the
(wall-normal) maximum amplitude of the u′-velocity is plotted in the F–x plane for
the case with Tu0 = 0.5 %. Now in addition to the dominant shedding frequency,
F≈ 915, that was already found before, a much stronger peak appears near F≈ 26.

The frequency spectra now clearly indicate the generation of low-frequency
disturbances, due to the presence of Klebanoff modes, which are strongly amplified
downstream of the separation location. These low-frequency modes were analysed in
the m–x plane spectra as shown in figure 16, where m is the spanwise mode number
(e.g. m = 1 indicates that the spanwise width of the disturbances is λz = Lz and for
m = 2, λz = Lz/2, and so on). There is a dominant spanwise mode number m = 5
(λz=Lz/5) for which the disturbances have the maximum amplitude. This agrees very
well with the instantaneous flow visualization (see figure 6). Another observation is
that increasing FST levels caused higher K-mode amplitudes inside the boundary
layer.

Corresponding to the results presented in figures 15 and 16, the spatial development
of instability waves associated with the high-frequency 2D mode and low-frequency
3D mode are presented in figure 17 for Tu0= 0.5 %. Plotted are the Fourier amplitude
of the u′-velocity together with the mean dividing streamline (dashed lines) and
displacement thickness (solid line). Two important observations can be made from
figure 17. The low-frequency 3D (K) mode is strongly amplified once embedded in the
separated shear layer and exhibits a strong peak away from the wall. The maximum
of the disturbance aligns with the displacement thickness and the maximum amplitude
is reached in the front part of the bubble. On the other hand, the amplitude profile
of the u′-velocity for 2D disturbances with the shedding frequency is composed
of an inviscid shear layer instability and wall-mode instability where they can be
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FIGURE 16. (Colour online) Contours of the maximum amplitude inside the boundary
layer (y < δ) of disturbance streamwise velocity in the spanwise mode number m–x
spectrum for the frequency F ≈ 25: (a) Tu0 = 0.5 %, (b) Tu0 = 3 %. The mean separation
and reattachment locations are marked by down arrows.
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FIGURE 17. (Colour online) Contours of Fourier amplitude of streamwise velocity
disturbance for Tu0 = 0.5 %: (a) plotted at F= 915 and m= 0; (b) plotted at F= 26 and
m= 5. Dashed line and solid line are time- and spanwise-averaged dividing streamline and
displacement thickness, respectively.

distinguished by the streamwise position and the relative wall normal location of the
maxima. While the former reaches the maximum at the maximum bubble height, the
latter is confined to the wall in the region so-called reverse-flow vortex. This can be
interpreted as being caused by the increasing wall shear in this region.

Thus, based on these observations, in the presence of FST two different instability
modes can be identified in the laminar–turbulent transition process: (i) the strongly
amplified 2D modes with a shedding frequency that is directly related to the KH
instability, and (ii) the 3D low-frequency Klebanoff modes caused by the FST. To
have a complete picture and assess the contributions of both identified instability
mechanisms for different FST intensities, the evolution of the spectral disturbance
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FIGURE 18. Comparison of the downstream development of spectral disturbance kinetic
energy between the 2D modes at the fundamental frequency, (915, 0) (u), and the 3D
low-frequency disturbances, (26, 5) (E): Tu0= 0 (a), 0.1 % (b), 0.5 % (c), 1 % (d), 2 % (e),
and 3 % ( f ). The shaded area corresponds to the mean separation bubble and the onset
of the APG is represented by dashed lines.

kinetic energy (SDKE) for each mode was tracked in the downstream direction in
figure 18. The SDKE is computed from the wall-normal integral of the Fourier
amplitude of the velocity components according to

E(F,m)(x)=
1
2

∫ δ(x)

0
[u(F,m)A (x, y)2 + v(F,m)A (x, y)2 +w(F,m)

A (x, y)2] dy, (3.2)

where δ(x) is the local boundary-layer thickness. The notation (F,m) is used for a pair
of mode numbers where F is the non-dimensional frequency (see (3.1)) and 2πm/Lz is
the spanwise wavenumber of a structure. Therefore, mode (26, 5) corresponds to the
Klebanoff modes and (915, 0) represents the 2D disturbances with the fundamental
(shedding) frequency. In each of the six panels in figure 18, the mean separation
region is indicated by the shaded area and the onset of the APG is denoted by dashed
lines.

As the level of FST increases, the 2D and 3D disturbances in the attached laminar
boundary layer exhibit higher amplitude levels where the K-mode has initially a much
larger amplitude than the 2D mode. Immediately downstream of the inflow location,
the K-mode experiences streamwise growth for x < 1.8, which is most likely the
consequence of transient growth and lift-up mechanisms described in § 1.2. The initial
transient growth of the K-mode is alleviated in the region of a strong favourable
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pressure gradient 1.8 < x < 3.4. Downstream of the APG, the K-mode experiences
strong exponential growth until it saturates at a finite nonlinear amplitude. Based on
this observation and the contours of the Klebanoff disturbances presented in figure 17,
it can be conjectured that, once the K-mode is embedded within the separated region,
it exhibits exponential growth instead of algebraic.

Just downstream of the inflow location the 2D mode also undergoes growth,
but at a smaller rate compared to the K-mode. The growth could be attributed to
the initial adjustment of the artificial inlet turbulence. After this initial phase, the
2D mode remains almost constant without experiencing significant downstream
growth. Based on the linear stability analysis from our previous research (see
Hosseinverdi et al. 2012), the location corresponding to Recr is between the onset
of the APG and the separation location; however, exponential amplification of the
2D mode is initiated further downstream inside the separated region. It appears
that the vortical fluctuations due to FST are not as effective in generating TS
waves as in inducing the streamwise streaks. This observation can be explained by
the so-called ‘shear sheltering’ phenomenon (Hunt et al. 1996; Jacobs & Durbin
1998), which describes the effect that the boundary layer acts as a low-pass filter,
admitting predominantly low-frequency modes to penetrate into the boundary layer
and sheltering the high-frequency range disturbances (like oscillations within the KH
frequency range).

The maximum amplitude of the 2D mode slightly increases when the intensity of
the FST is increased to Tu0 = 0.5 %. When the FST level is increased further, the
maximum amplitude of the 2D mode starts to decrease. On the other hand, higher
FST intensity promotes stronger Klebanoff modes. In addition to the disturbance
kinetic energy level, 2D KH modes can be distinguished from the K-mode by their
exponential growth rate, i.e. larger growth rate for 2D mode. One would expect that,
with increasing FST, the dominant structures would lose their spanwise coherence
as observed in figure 7 for example. In conclusion, for the lowest level of FST,
Tu0 = 0.1 %, the region upstream of the reattachment location, which is at the end of
the transition region, is dominated by 2D modes, while for the high levels of FST,
Tu0 = 2 % and Tu0 = 3 %, the Klebanoff modes are dominant in the entire transition
region. For the FST levels in between 0.1 % and 2 %, the two modes are blended
together and contribute to the transition process simultaneously. Downstream of the
mean reattachment location, the K-modes are decaying much faster than the 2D
modes and thus 2D waves exhibit larger amplitudes.

3.4. Modal decomposition
The detection of dominant vortical flow structures is important since the topology of
the fluid motion is closely related to the dynamics of these structures. A transitional
flow often consists of a superposition of flow structures with different dominant
frequencies and wavelengths. However, the instantaneous flow structures, as shown
in figure 6 for example, do not provide a complete understanding regarding the
underlying flow physics. Therefore, a detailed analysis of the simulation data
using modal decomposition is carried out to provide additional insight into the
underlying flow physics for various FST intensities. In particular, proper orthogonal
decomposition and dynamic mode decomposition have been carried out to identify
dominant structures and dynamics of the evolving flow within the transition region
as a consequence of hydrodynamic instabilities.

Proper orthogonal decomposition (POD), first proposed by Lumley (1967) in
the field of fluid mechanics, is a method for identifying large-scale energetic flow

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f A

ri
zo

na
, o

n 
12

 N
ov

 2
01

8 
at

 2
1:

15
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.809


742 S. Hosseinverdi and H. F. Fasel

structures in transitional and turbulent flows. For the present results, the snapshot
method that was proposed by Sirovich (1987) is employed. In the POD method, for
a given set of time- (t) and space-dependent (x) flow data, the flow field can be
represented by

u(x, tn)=

N−1∑
i=0

ai(tn)φi(x), (3.3)

where the φi are the POD spatial eigenfunctions and the ai are the POD time
coefficients. The POD modes are orthogonal and optimized with respect to their
energy content, i.e. the largest fraction of the total kinetic energy of the flow field
is captured with the smallest number of modes. Therefore, assuming that large-scale
coherent structures possess a significant amount of energy, POD can provide valuable
information regarding the most relevant flow structures.

The dynamic mode decomposition (DMD), proposed by Schmid (2010), is a data-
driven technique capable of extracting dynamical information from data sequences
obtained from DNS or experiments. The DMD decomposition allows for an expansion
of the velocity data in the form

u(x, tn)=

N−1∑
j=0

µn
jψj(x), (3.4)

where the ψj are the complex-valued spatial DMD modes and the µj are called the
Ritz eigenvalues associated with the respective DMD mode. It should be noted that
the µj are complex-valued, giving each mode a corresponding growth rate σj and
oscillatory angular frequency ωj as follows:

µn
j = e(σj+iωj)t/1t, σj =

1
1t

log |µj|, ωj =
1
1t

a tan
(
I(µj)

R(µj)

)
, (3.5a−c)

where 1t is the time interval between two consecutive snapshots. In contrast to POD,
where a spatial orthogonality of the eigenfunctions could lead to a broad range of
frequencies for each individual POD mode, DMD extracts coherent structures with a
single frequency. For details of DMD, see Schmid (2010).

For the present modal decomposition analysis, 720 snapshots of the velocity field
(u, v, w)T equidistantly distributed over 18 fundamental (shedding) periods are used.
The focus here is on identifying and extracting the dominant and coherent structures
in the transitional region from the initial linear stage up to the nonlinear development
of the instability waves. Therefore, the spatial extent of the snapshots was chosen from
x= 3 (upstream of the separation location) up to the mean reattachment location for
each case. The POD energy spectrum for the zero FST case and the cases with 0.5 %,
1 % and 3 % of FST intensity are shown in figure 19. The left vertical axis represents
the fraction of energy, Ei, and the right vertical axis indicates the cumulative energy
sum, Sp, which are defined as

Ei =

(
λi

/ N−1∑
j=1

λj

)
× 100, Sp =

(
p∑

i=1

λi

/ N−1∑
j=1

λj

)
× 100. (3.6a,b)

In the above equations, λi is the magnitude of the eigenvalue of the POD mode,
which corresponds to twice the kinetic energy content of the respective POD mode,
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FIGURE 19. (Colour online) Relative (left axis) and cumulative (right axis) POD
eigenvalues (energy) spectrum distribution: (a) Tu0 = 0; (b) Tu0 = 0.5 %; (c) Tu0 = 1 %;
and (d) Tu0 = 3 %.

and N is the total number of POD modes. Since the mean flow was not subtracted
from the flow field prior to the decomposition, the zeroth POD mode, which represents
the mean flow and therefore contains most of the kinetic energy, is not considered
here. Thus, the presented Ei and Sp correspond to the unsteady POD modes.

The POD eigenvalue spectra, shown in figure 19, reveal that, for all cases, most
of the energy is contained in the lower mode numbers, although the distribution of
energy among the modes is different for the investigated cases. In particular, for the
zero FST simulation and the case with Tu0= 0.5 %, the most energetic modes (modes
1 and 2) have almost identical magnitudes. For the other cases (Tu0 = 1 %–3 %),
however, the energy drops among the dominant modes. The drop-off rate in the
magnitude of the eigenvalues with respect to the higher mode numbers is similar for
all cases. Furthermore, figure 19 indicates that approximately 4.2 % of the unsteady
modes (30 modes) only are needed to reproduce 70 % of the unsteady kinetic
energy. In the following, the eigenfunctions of the ‘most energetic’ POD modes, their
respective time coefficients and the associated Fourier spectra of the time coefficients,
and the most coherent dynamic modes and their corresponding growth rates and
frequencies are inspected in detail for different levels of FST. The POD and DMD
modes are visualized by isosurfaces of the u/v velocity component. Here, time is
non-dimensionalized by the shedding period, tnd = t/tsh, and similarly the frequency
is non-dimensionalized by the shedding frequency, fnd = f /fsh.

Figure 20 demonstrates that the dominant POD modes exhibit large spanwise-
oriented structures for the case without FST. The phase shift in modes 1 and 2
indicates that these modes form pairs, which physically represent structures that
are travelling in the streamwise direction (‘travelling waves’). It can therefore be
concluded that the spatially evolving coherent structures, γ (x, t), are represented
by pairs of eigenfunctions according to γ (x, t) = a1(t)φ1(x) + a2(t)φ2(x). Detailed
inspection of modes 1 and 2 also reveals that these modes are composed of 2D and
oblique structures. This observation led to the conjecture that the amplification of
weakly oblique 3D disturbances due to the inviscid shear-layer instability mechanism
may lead to the formation of oblique coherent structures. The time signals of modes
1 and 2 exhibit nearly sinusoidal behaviour with a dominant frequency matching the
shedding frequency, fnd = 1, as shown in figure 21. It is worth noting that there is a
narrow band around the dominant frequency which could be related to the composite
structures of modes 1 and 2. POD mode 3 is oriented in the streamwise direction
with the preferred spanwise wavelength λz ≈ Lz/3. The corresponding time signal
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FIGURE 20. (Colour online) Dominant POD eigenfunctions for the zero FST case. Shown
are positive (light grey) and negative (blue) isosurfaces of |v| = 0.1.
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FIGURE 21. (Colour online) (a) POD time coefficients and (b) associated frequency
spectra for the zero FST case.

of this mode has a very long period (low-frequency content). The 3D structures
with spanwise wavelength λz = Lz are identified by modes 4–6. The frequency
spectra associated with these modes show two dominant frequency bands close to the
shedding frequency, fnd = 0.9 and 1.06.

To gain further insight into the coherent structure dynamics, the four least damped
DMD modes are illustrated in figure 22. DMD modes 1 and 2 capture purely oblique
and 2D structures, respectively. The composite structures (2D and oblique structures)
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FIGURE 22. (Colour online) DMD eigenfunctions for the case with zero FST. Here σj and
fj are the corresponding growth rate and frequency, respectively. Shown are isosurfaces of
|v| = 0.01.
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FIGURE 23. (Colour online) POD eigenfunctions for the case Tu0 = 0.5 %. Shown are
positive (light grey) and negative (blue) isosurfaces of |u| = 0.08. Dashed lines indicate
the mean separation location.

are identified by modes 3 and 4. Another interesting observation is that the oblique
structures (mode 1) are more unstable than 2D disturbances (mode 2).

From the 3D visualizations of POD modes 1, 2 and 3 for Tu0 = 0.5 % shown
in figure 23, two different flow structures can be identified: (i) spanwise structures
(2D) as the result of the KH instability mechanism and (ii) ‘streaky’ structures
which correspond to the Klebanoff modes caused by FST. In particular, the dominant
structures (modes 1, 2 and 3) have initially a streaky pattern, with alternating positive
and negative streamwise velocity fluctuations, that later turns into a 2D structure.
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FIGURE 24. (Colour online) (a) POD time coefficients and (b) respective frequency
spectra for the case Tu0 = 0.5 %.

The spanwise wavelength of the Klebanoff modes is in agreement with the results
from instantaneous visualizations and spectral analysis (λz,K ≈ Lz/5). Accordingly,
the frequency spectra associated with these modes provided in figure 24 show two
dominant frequency bands: the high-frequency spectral peak is related to the spanwise
structures while the low-frequency peak corresponds to Klebanoff modes. Although
the shedding frequency amplitude (high-frequency peak) for modes 1 and 2 is larger
than the low-frequency peak amplitude (Klebanoff mode), the opposite is true for
mode 3. POD modes 4 and 5 display purely low-frequency streamwise-oriented
‘streaky’ structures. However, the frequency and spanwise spacing are different from
those captured by modes 1–3. The structures with chequerboard pattern with λz = Lz
in mode 6 in figure 23 have almost the same dominant frequency as POD modes
4–6 for the zero FST case.

The DMD method is able to capture the dominant modes related to the KH and
Klebanoff modes separately as illustrated in figure 25. Unsteady ‘streaky’ and steady
structures are identified by DMD modes 3 and 4 in figure 25, which shows that
the steady mode is highly damped. In contrast to the zero FST simulation, the 2D
structure with the shedding frequency is the most unstable mode among the high-
frequency disturbances. POD and DMD investigations for Tu0 = 0.5 % support the
fact that 2D disturbances within the flow with frequency close to the KH frequency
range are the most amplified instability waves in the presence of a finite low-amplitude
disturbance environment.

Figure 26 demonstrates that the transition region is dominated by the K-mode for
the case with Tu0 = 1 % as captured by the dominant POD mode (cf. mode 1). A
similar shape is observed in mode 2; however, the appearance of spanwise structures
occurs further downstream. The drop in the magnitude of the eigenvalues between
modes 1 and 2 as observed in figure 19(c) could be explained by the fact that modes
1 and 2 do not represent travelling pairs, and therefore they do not occupy the same
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FIGURE 25. (Colour online) DMD eigenfunctions for the case Tu0 = 0.5 %. Here σj and
fj are the corresponding growth rate and frequency, respectively. Dashed lines indicate the
mean separation location.
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FIGURE 26. (Colour online) POD eigenfunctions for the case Tu0 = 1 %. Shown are
positive (light grey) and negative (blue) isosurfaces of |u| = 0.08. Dashed lines indicate
the mean separation location.

energy level as was the case for zero FST and Tu0 = 0.5 %. Fully developed KH
structures are present in the higher modes 3–5 and the chequerboard pattern can be
observed in mode 6.

This detailed analysis based on modal decomposition supports the results obtained
from the spectral analysis that the low-frequency 3D Klebanoff modes and high-
frequency 2D disturbances are blended together and contribute to the transition
process for cases with the FST intensities of Tu0 = 0.5 % and Tu0 = 1 %. Whereas
the large contribution comes from the KH instability mechanism for the Tu0 = 0.5 %
case, the Klebanoff modes play a more dominant role in the Tu0 = 1 % case.
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FIGURE 27. (Colour online) POD eigenfunctions for the case Tu0 = 3 %. Shown are
positive (light grey) and negative (blue) isosurfaces of |u| = 0.2. Dashed lines indicate
the mean separation location.
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FIGURE 28. (Colour online) DMD eigenfunctions for the 2D mode: (a) Tu0 = 1 % and
(b) Tu0 = 3 %.

The perspective views for the streamwise velocity component in figure 27, for the
highest level of FST intensity investigated here (Tu0 = 3 %), demonstrate that the
most energetic structures are streamwise streaks with a distinct spanwise wavelength.
Evidence of spanwise structures is only visible in modes 5 and 6, although they are
not fully developed. Finally, figure 28 compares the 2D structures with the shedding
frequency obtained from DMD for Tu0 = 1 % and Tu0 = 3 %.

3.5. Linear inviscid instability: linearized Navier–Stokes equations
The results presented thus far indicate that the K-modes dominate the transition region
for Tu0 > 1 %. Of particular importance is the observation that the slow streamwise
growth of the K-mode was overtaken by much stronger amplification rate downstream
of the onset of the APG as the K-mode exhibits exponential growth in the strong APG
region. To further corroborate this observation, a linear instability investigation with
respect to the low-frequency 3D disturbances was carried out.

To predict the evolution of instabilities in the linear regime, we developed an
approach that directly solves the linearized Navier–Stokes equations (LNSE) without
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FIGURE 29. (Colour online) (a) Streamwise development of K-mode, mode (26, 5),
computed with LNSE and DNS with Tu0 = 0.5 %. (b) Wall-normal distributions of the
u′-velocity Fourier amplitudes at several x-locations obtained from LNSE and DNS with
Tu0 = 0.5 % for mode (26, 5). Disturbance amplitudes are scaled by their respective
maxima and dash-dotted lines represent the corresponding time-averaged u-velocity profile
(uB). Wall-normal coordinates are normalized by the local mean displacement thickness.
(c) Comparison of local spatial growth rates obtained from LNSE and DNS with Tu0 =

0.1 % (– – –), 0.5 % (——), 1 % (–·–·), 2 % (– – –) and 3 % (–··–··).

using any additional assumptions as required by linear stability theory (LST),
i.e. assuming that basic flow is parallel (parallel flow assumption). Thus, all locally
non-parallel effects of the basic flow are included in the LNSE approach, which is
important as separated flows are considered here. For the linear instability analysis
employed here based on LNSE, the total flow field is decomposed into the base
flow (or basic flow) uB(x, y) and ωB(x, y) and disturbances u′(x, t) and ω′(x, t).
Substituting these decompositions into the Navier–Stokes equations (2.1) yields the
governing equations for the total flow field, which after linearization (by neglecting
products of the disturbance quantities) is a linear superposition of the base flow
and the disturbance flow. Thus, the governing equations for the base flow can be
subtracted from the equations for the total flow in order to obtain the LNSE. For
numerically solving the LNSE, the same time integration and spatial discretization
schemes are employed as for the nonlinear equations used in the DNS.

For generating streamwise vortices outside the boundary layer in the LNSE solver in
order to excite Klebanoff modes inside the boundary layer (for example mode (26, 5),
which is associated with the K-mode), an unsteady volume force is used as a source
term on the right-hand side of the LNSE. For more details regarding this approach,
see Fasel (2002) and Hosseinverdi & Fasel (2018). In figure 29, the downstream
development of the wall-normal maximum of the u′-velocity Fourier amplitude (Au)
and the u′-velocity Fourier amplitude profile (uA) of the 3D disturbance wave with
the spanwise mode number m = 5 (which corresponds to the lateral wavelength of
the K-mode) are plotted as obtained from the LNSE and are compared with the DNS
results of an LSB with Tu0= 0.5 %. For the base flow used in the LNSE investigation,
the time- and spanwise-averaged results obtained for Tu0 = 0.5 % are employed.
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FIGURE 30. (Colour online) Comparison of wall-normal distribution of u′-velocity Fourier
amplitudes obtained from LNSE (——) and DNS (E) for 2D disturbances with shedding
frequency: (a) Tu0 = 0, (b) Tu0 = 0.1 %, (c) Tu0 = 0.5 %, (d) Tu0 = 1 %, (e) Tu0 = 2 %,
( f ) Tu0 = 3 %. Disturbance amplitudes are scaled by their respective maximum value.

In figure 29(b), the Fourier amplitudes are scaled by their respective maximum
amplitudes and uB is the corresponding time-averaged u-velocity profile. The
streamwise evolution of the K-modes obtained from the LNSE compares very well
with those from the DNS as shown figure 29(a). Of particular interest in figure 29(a)
is that the K-mode indeed grows exponentially in the APG region (Au ∼ e1.284x).
The comparison of the wall-normal distributions of the disturbance amplitude in
figure 29(b) further confirms the proper implementation and accuracy of the LNSE
method. The spatial growth rates associated with the K-mode as obtained from the
LNSE (with the base flow corresponding to Tu0 = 0.5 %) and DNS with various FST
intensities are presented in figure 29(c). The local growth rate is computed based on
the wall-normal maxima of uA according to σ(x)= ∂ log(uA,max)/∂x.

It is well known that, for attached boundary layers, the linear stages of the transition
process are bypassed when FST intensity exceeds 1 % (Morkovin 1969; Jacobs &
Durbin 2001; Matsubara & Alfredsson 2001). The critical FST intensity beyond
which ‘bypass’ transition occurs depends of course on the pressure gradient, on the
background spectrum of the perturbations and on the receptivity (Abu-Ghannam &
Shaw 1980). Previous research (Greenblatt & Wygnanski 2000; Yarusevych, Kawall
& Sullivan 2006; Marxen & Henningson 2011; Postl et al. 2011) has shown that
an effective and efficient laminar separation control is achieved when a linear
inviscid shear-layer instability is exploited. Therefore, it is necessary to examine
the existence of a linear inviscid instability mechanism for different levels of FST.
Next, the hydrodynamic instability with respect to 2D disturbances with the dominant
frequency (shedding frequency) found in the spectral analysis as discussed in § 3.3 is
investigated for different FST intensities. For each FST intensity, the corresponding
time- and spanwise-averaged results obtained from the DNS is used as the base flow.
Figure 30 compares the wall-normal Fourier amplitude distributions of the u′-velocity
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between the DNS and the LNSE results for all cases. The amplitude distributions
from both LNSE and DNS are normalized by their respective maximum value within
the boundary layer. These profiles were extracted from the region of exponential
growth up to the saturation location. The amplitude distribution from the DNS data
agrees remarkably well with that obtained from LNSE for zero FST simulation
and cases with Tu0 6 2 % even at the location where the disturbances saturate. For
the highest level of FST, Tu0 = 3 %, despite the good agreement at the beginning
(x = 6.3), there are differences in the wall-normal location of the disturbance peaks
and the amplitudes near the wall for profiles x > 6.3. The good agreement for the
cases with Tu0 6 2 % confirms that 2D disturbances grow due to the linear, inviscid
shear-layer instability mechanism, and that the primary linear stage of the transition
process is not bypassed. As a result, unsteady flow control strategies may still be
effective means to reduce/prevent separation for these cases by exploiting the inviscid
shear-layer instability.

These findings are consistent with those by Balzer & Fasel (2016). It is important
to note, however, that disturbances associated with the K-modes are orders of
magnitude larger than the 2D KH instability waves for LSBs for high levels of
FST, as demonstrated in the present investigations by spectral analysis and POD.
Hence, it is postulated that, whereas a significant reduction of the separation length
can be obtained with unsteady flow control techniques, which are aimed at exploiting
the shear-layer instability for zero and small levels of FST, laminar separation control
becomes less effective for high levels of FST. Although flow control will exponentially
amplify 2D modes, disturbances due to FST (K-modes) will remain at much larger
amplitude levels compared to the 2D disturbances in the entire transition region.
Thus, for higher levels of FST, in addition to exploiting the shear-layer instability, an
effective and efficient active flow control is required also to reduce the streamwise
growth of K-modes.

3.6. Effect of free-stream turbulence energy spectrum
For all cases, the von Kármán energy spectrum is used to distribute the turbulent
kinetic energy among the modes with different wavenumbers (see § 2.5). A set
of numerical simulations were performed while varying the energy spectrum of the
incoming synthetic turbulence to investigate if and how it affects the transition process
in LSB. Towards this end, energy spectra proposed by Ossia & Lesieur (2001) were
employed,

E(k)=
1
2

Tu2
0

As

ke

(
k
ks

)s

exp
(
−

s
2

k2

k2
e

)
, (3.7)

where As is a normalization constant chosen such that
∫

E(k) dk = 1.5Tu2
0. The

wavenumber ke denotes the wavenumber of the most energetic structures (ke ≈

1.157/L11). The parameter s determines the slope of the low-wavenumber range.
Figure 31 compares the typical spectrum obtained from the von Kármán energy
spectrum (vKES) with that obtained using (3.7) with s= 0.5. The Ossia and Lesieur
energy spectrum (OLES) decreases rapidly above a prescribed wavenumber ke.

Simulations using the two different energy spectra, namely vKES and OLES, for
the FST intensity of Tu0= 0.1 % and Tu0= 2 % were carried out. However, the results
for Tu0 = 0.1 % are not reported here since the results obtained from the two spectra
were very similar, so only the results for Tu0 = 2 % are discussed below. It should
be noted that the wavenumber associated with the maximum energy and the integral
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FIGURE 31. Energy spectra used to generate isotropic FST at the inflow boundary: E,
von Kármán energy spectrum, equation (2.5);u, spectrum proposed by Ossia & Lesieur
(2001), equation (3.7). The wavenumber of the maximum energy, ke, is represented by the
dashed line.

of the energy with respect to the wavenumber (
∫

E(k) dk) are kept the same for both
spectra.

Contours of spanwise, one-dimensional power spectra of the streamwise velocity
component as a function of the spanwise mode number (m) are plotted for selected
streamwise locations for the two FST spectra in figure 32. The spectra were computed
using a spanwise Fourier transform and the relationship

Euu(x, y,m)= um(x, y, t)um(x, y, t), (3.8)

where the overbar indicates a time average and um symbolizes the Fourier-transformed
u-velocity component in the spanwise direction (spanwise mode number m). Five
x-stations were selected: the inflow boundary, xinlet, the onset of the APG, xAPG, the
separation location, xS, the location of maximum bubble height, xh,max, and the mean
reattachment location, xR. The wall-normal coordinate is normalized by the local
boundary-layer thickness and the local displacement thickness is indicated by dashed
lines in each panel.

For both cases, the energy in the power spectrum at the inflow is clearly
concentrated in the free stream and the maximum amplitude is at 1 6 m 6 2 (this is
related to the chosen turbulent integral length scale L11). While propagating in the
downstream direction, the vortical structures in the free stream enter the boundary
layer, as can be clearly observed at xAPG. At the onset of the APG, two bands (m= 2,
m= 5) are visible for the case with vKES. The maximum amplitude has a spanwise
mode number of m= 5, which, as already known from spectral analysis, corresponds
to the K-mode. For the other case (OLES), however, the spectra are dominated by
the disturbances with spanwise mode number of m = 2 without the appearance of
the K-mode (or the K-mode has a smaller amplitude than minimum contour level).
Moving further downstream to the separation location, the disturbances are amplified
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FIGURE 32. (Colour online) Contours of spanwise one-dimensional energy spectra of the
streamwise velocity at selected streamwise locations obtained for (a) von Kármán energy
spectrum and (b) Ossia and Lesieur energy spectrum. The wall-normal direction is scaled
by the local boundary-layer thickness. The displacement thickness is marked by dashed
red lines.

inside the boundary layer, and the trace of the K-mode becomes visible for the case
with OLES although the disturbances with m = 2 are still dominant. Close to the
location of maximum bubble height, the K-mode attains a larger amplitude than
disturbances with a smaller wavenumber for the case with OLES. For the vKES case,
the K-mode remains dominant and the disturbances with a smaller wavenumber have
penetrated the boundary layer, which is more pronounced at the reattachment location
where the near-wall peaks appear for a lower spanwise mode number, indicating that
the boundary layer is starting to redevelop. The case OLES exhibits a similar pattern
at the reattachment location.

A closer inspection of (3.7) and figure 31 reveals that the kinetic energy is
distributed among the different modes such that the lower-wavenumber modes contain
most of the kinetic energy and the spectrum lacks the high-wavenumber contents
present in the von Kármán energy spectrum. This kind of distribution biases the
energy distribution initially towards the low-wavenumber disturbances. However, the
modes with low frequency and higher spanwise wavenumber (K-modes) become
visible further downstream. Therefore, it could be speculated that, in the absence of
high-wavenumber scales in the FST spectrum, the Klebanoff modes need a larger
downstream distance to become dominant.

Figure 33 shows the downstream development of the SDKE and the energy growth
ratio, E(x)/E(x = 1), of the 2D modes with the fundamental frequency and of the
low-frequency Klebanoff modes, mode (26, 5), obtained for the two different FST
energy spectra. For the 2D modes, both cases experience the same amplification rate
in the region of exponential growth; thus, the higher initial amplitude leads to a larger
maximum amplitude at the saturation location for the OLES case. Consequently, when
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FIGURE 33. (Colour online) Streamwise development of disturbance kinetic energy for
different FST energy spectra: (a) not-normalized, (b) normalized with inflow values.
Plotted are 2D modes at the fundamental frequency and Klebanoff modes, mode (26, 5).
Included in (a) is the streamwise evolution of mode (26,2) as obtained from DNS with the
OLES (dot-dashed curve). Onset of APG and separation location are indicated by vertical
dashed lines and solid lines, respectively.

the local energy is normalized by the inflow value, the two curves collapse, indicating
that the large initial amplitude is carried all the way in the downstream direction
as indicated in figure 33(b). The opposite behaviour is observed for the K-mode,
where the initial and maximum amplitudes are the largest for the case with the vKES.
While both cases undergo the same transient growth, the exponential growth rate
is slightly larger for the OLES case. As a result, the normalized energy curves are
only identical for x < 5. Also, included in figure 33(a) is the streamwise evolution
of low-frequency disturbance waves with the spanwise mode number identified in
figure 32, mode (26, 2), which was obtained from the DNS with the OLES energy
spectrum (dot-dashed curve). It is worth noting that, for the DNS with the OLES,
m = 2 is the dominant mode until x < 5.2, from where onwards disturbance waves
with m= 5 (K-modes) prevail further downstream and dominate the transition process
similar to the DNS with the von Kármán energy spectrum.

Figure 34 compares the time- and spanwise-averaged skin-friction coefficients and
displacement thicknesses obtained for the two cases, indicating that the separation
region is slightly increased for the OLES case in both the streamwise and wall-normal
directions. The transition process is governed mainly by the amplification of the K-
mode for Tu0= 2 %. The K-mode is more energetic in the vKES case, and thus leads
to a smaller separation bubble.

All results presented here were obtained for a fixed turbulent integral length scale
L11= 1.5δ0, where δ0 is the boundary-layer thickness at the inflow boundary, while the
FST intensity and spectrum content were varied. However, related studies of bypass
transition on a zero-pressure-gradient flat-plate boundary layer have shown that the
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FIGURE 34. Time- and spanwise-averaged skin-friction coefficients (a) and displacement
thickness (b) versus x: E, von Kármán energy spectrum; u, Ossia and Lesieur energy
spectrum.

choice of the integral length scale, L11, can have a significant effect on the transition
process (Brandt et al. 2004). Therefore, simulations were carried out for Tu0 = 2.0 %
using different integral length scales L11=0.9δ0, 1.5δ0 and 3δ0. These simulations have
shown that, despite the considerable variation of the integral length scales, the size of
the separation bubble was largely independent of L11 for the range investigated here.
The same conclusion was obtained for the case with the lowest FST intensity Tu =
0.1 %. These results are not presented here since they did not display any particular
new features/characteristics.

4. Conclusion
Highly resolved direct numerical simulations (DNS) were employed to investigate

the effect of free-stream turbulence (FST) on the structure and dynamics of laminar
separation bubbles (LSBs). Laminar separation on a flat plate was induced by a
streamwise pressure gradient. A blowing–suction wall-normal velocity at the free-
stream boundary of the computational domain was prescribed such that the resulting
downstream pressure gradient closely matches that of accompanying water-tunnel
experiments carried out in the Hydrodynamics Laboratory at the University of
Arizona. Isotropic turbulence velocity fluctuations, which are obtained based on a
weighted superposition of the continuous modes of the Orr–Sommerfeld and Squire
equations, were seeded at the inflow boundary of the computational domain. Five
different levels of FST intensity were considered, Tu0 = 0.1 %, 0.5 %, 1 %, 2 % and
3 %, in addition to the zero FST, which is used for comparison. This range of FST
levels covers the typical conditions encountered from free flight to turbomachinery
applications.

Based on the results presented here, corroborated by instantaneous flow visuali-
zations, spectral analysis and modal decompositions, the transition process in LSB
subjected to FST can be summarized as follows. The transition process in the
LSB is caused by the strong amplification of high-frequency disturbances due to
an inviscid Kelvin–Helmholtz (KH) instability of the separated shear layer and the
low-frequency, 3D disturbances (Klebanoff mode). For the lowest level of FST,
Tu0 = 0.1 %, the inviscid KH instability is the dominant mechanism, while for
moderate turbulent intensities, Tu0 ∼ 0.5 %–1 %, the disturbances resulting from both
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the KH instability and the Klebanoff (K) modes (that are caused by FST) are blended
together and contribute simultaneously to the transition process. For the elevated FST
intensity, Tu0 = 2 %–3 %, the transition mechanism is dominated by the presence of
large-amplitude K-modes.

Results from a linear instability investigation based on the linearized Navier–Stokes
equations (without additional assumptions as required by the linear stability theory)
and the comparison with DNS results, indicated that the slow (algebraic) growth of
the K-mode is followed by a strong exponential amplification downstream of the onset
of the adverse pressure gradient. While 2D instability waves also exhibit exponential
growth, the 2D disturbance waves can be distinguished from the K-mode by their
exponential growth, i.e. by the larger growth rates for 2D modes. The combined effect
of these two instability mechanisms, KH and K-mode, is that, for increased levels of
FST, transition is accelerated, leading to a smaller mean separated region.

Detailed investigations were carried out to evaluate the effect of the FST energy
spectrum used in the FST model. The general finding was that the energy spectrum
of FST fluctuations has appreciable but limited effects on the prevalent separation and
transition mechanisms for the cases investigated here; in particular, the bubble size was
only mildly affected.
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