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Role of Klebanoff modes in active flow control
of separation: direct numerical simulations
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Our previous research has shown that an active flow control strategy using two-
dimensional (2-D) harmonic blowing and suction with properly chosen frequency
and amplitude can significantly reduce the separation region, delay transition to
turbulence and can even relaminarize the flow. How such effective flow control for
transition delay and relaminarization is affected by free-stream turbulence (FST)
remains an open question. In order to answer this question, highly resolved direct
numerical simulations (DNS) are carried out where very low-amplitude isotropic
FST fluctuations are introduced at the inflow boundary of the computational domain.
With FST the effectiveness of the flow control is not diminished, and the extent of
the separated flow region is reduced by the same amount as for the zero FST case.
However, a striking difference observed in the DNS is the fact that in the presence
of even very low levels of FST, the flow transitions shortly downstream of the
reattachment location of the bubble, contrary to the case without FST. It appears that
this different behaviour for even very small levels of FST is caused by an interaction
between the high-amplitude 2-D disturbances introduced by the flow control forcing
and 3-D Klebanoff modes (K-modes) that are generated by the FST. The streamwise
elongated streaks due to the K-modes cause a spanwise-periodic modulation of the
basic flow and subsequently of the primary 2-D wave. The disturbances associated
with this modulation exhibit strong growth and initiate the breakdown process to
turbulence. Linear secondary instability investigations with respect to low-frequency
3-D disturbances are carried out based on the linearized Navier–Stokes equations. The
response of the forced flow to the low-frequency 3-D disturbances reveals that the
time-periodic base flow is unstable with respect to a wide range of 3-D modes. In
particular, the wavelength associated with the spanwise spacing of the K-mode falls
into the range of, and is in fact very close to, the most unstable 3-D disturbances.
Results from the secondary instability analysis and the comparison with DNS results,
support the conjecture that the forcing amplitude has a major impact on the onset
and amplification rate of the K-modes: lowering the forcing amplitude postpones the
onset of the growth of the K-modes and reduces the growth rate of the K-modes
for a given FST intensity. The net effect of these two events is a delay of the
transition onset. Nevertheless, the instability mechanism that governs the transition
process is the same as previously identified, i.e. interaction of the K-mode and 2-D
primary wave. Furthermore, for low levels of FST, the amplitude of the low-frequency
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Interaction of active flow separation control and K-mode 955

K-modes scales linearly with the FST intensity in the approach boundary layer up to
the secondary instability regime.

Key words: boundary layer separation, flow control, transition to turbulence

1. Introduction
For flight vehicles, successful active flow control (AFC) strategies to mitigate

the detrimental effects of boundary-layer separation for lifting surfaces could
lead to significant performance gains. This is especially true for unmanned aerial
vehicles (UAVs) which, due to the usually small wing dimensions and low air
speeds, often operate within a Reynolds-number flight regime, for which a strong
interaction exists between separation and transition. Hydrodynamic instabilities and
the laminar-to-turbulent transition process have a profound impact on the mean flow
topology and the unsteady behaviour of unforced/forced laminar separation bubbles
(LSBs). Therefore, an improved understanding of the relevant physical mechanisms
governing separation and separation control in general, and the transition process in
particular, especially in the presence of free-stream turbulence, is required.

The laminar–turbulent transition process in boundary layers can be understood as a
progression of stages, which depend on many parameters, such as Reynolds number,
pressure gradient, environmental disturbances, etc. (Morkovin, Reshotko & Herbert
1994). In the framework of spatially growing perturbations in ‘quiet’ free-stream
disturbance environments, which are typical of flight conditions, the transition
process can be broken down into four major stages (according to Morkovin et al.
1994): receptivity, linear ‘eigenmode’ growth, secondary instability and nonlinear
breakdown. Receptivity in the present context refers to the process through which
external disturbances (such as free-stream turbulence, acoustic waves or surface
roughness, etc.) penetrate the boundary layer and generate instability modes such as
the Tollmien–Schlichting (TS) waves. For a zero-pressure-gradient (ZPG) flat-plate
boundary layer, transition can be initiated by the exponential growth of TS waves
when the critical Reynolds number, Recr, is exceeded. An adverse pressure gradient
(APG) has a destabilizing effect, effectively decreasing the critical Reynolds number.
If the adverse pressure gradient is strong enough, the flow separates: the resulting
velocity profile in the separated region becomes inviscidly unstable (often referred
to as Kelvin–Helmholtz instability) due to the presence of an inflection point in the
velocity profile. The switchover from the viscous TS instability mechanism in the
approaching attached boundary layer to the inviscid Kelvin–Helmholtz (KH) instability
leads to growth rates that are much larger compared to the growth rates associated
with TS instabilities for the attached boundary layer. As a result, high-frequency,
two-dimensional or weakly oblique disturbances can rapidly reach large (nonlinear)
amplitudes within the separated region, leading to the commonly observed periodic
shedding of spanwise coherent vortical structures that are often referred to as ‘rollers’.
At this stage, secondary instabilities can take hold, which subsequently leads to a
rapid breakdown to small-scale three-dimensional (3-D) structures and eventually to
a fully turbulent flow (see Marxen et al. 2003; Diwan & Ramesh 2009; Marxen &
Henningson 2011; Marxen, Lang & Rist 2012; Balzer & Fasel 2016).

Previous studies have shown that active flow control that exploits the shear-layer
instability is both effective and efficient for controlling laminar separation bubble at
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low Reynolds numbers (Jones, Sandberg & Sandham 2008; Postl, Balzer & Fasel
2011; Embacher & Fasel 2014; Benton & Visbal 2016). The primary convective
instability strongly amplifies the disturbance waves (within the Kelvin–Helmholtz
frequency range of the separated shear layer), that are introduced upstream of the
separation location, until they saturate to finite nonlinear amplitudes, leading to
the commonly observed periodic shedding of spanwise coherent vortical structures.
The presence of the large-amplitude waves (or vortices) facilitates an exchange of
momentum, which limits the extent of the separation region.

The onset of unsteadiness in LSBs must not necessarily be caused by the spatial
growth of incoming disturbances (convective instability) as observed by Spalart &
Strelets (2000) and Jones et al. (2008). Besides the ‘amplifier characteristics’ of the
LSBs, Huerre & Monkewitz (1990) showed that LSBs can also act as oscillators
where the disturbance waves propagate in both the downstream and upstream
directions while being amplified in time, independent of external excitations, and
ultimately result in vortex shedding leading to transition. This type of instability,
which is not limited to separated flows, is called ‘absolute/global instability’. For a
separation bubble, two parameters play an important role in the context of absolute
instability: (i) the height of the bubble and (ii) the magnitude of the reverse flow
(Rodríguez & Theofilis 2010). In general, a reverse flow of approximately 7–10 % of
the free-stream velocity is required for the onset of an absolute instability. Rodríguez,
Gennaro & Juniper (2013) demonstrated that the nature of such an instability mode
is a global centrifugal instability, which requires a reverse flow with a magnitude of
7–8 % of the free-stream velocity.

In addition to reducing the extent of the separated flow region, Embacher & Fasel
(2014) have shown that high-amplitude 2-D disturbance waves with a properly chosen
frequency and amplitude can suppress the secondary absolute instability and thus delay
transition and even relaminarize the flow downstream of reattachment. In these high-
order accurate numerical simulations, the effects of realistic operation conditions, such
as free-stream turbulence, noise and vibrations were neglected. Therefore, the question
arises whether the observed transition delay and relaminarization of the flow is still
possible in a ‘real’ environment as encountered in free flight or wind/water tunnel
experiments.

From experiments (Klebanoff 1971; Kendall 1985, 1990), theoretical and numerical
studies (Leib, Wundrow & Goldstein 1999; Ricco, Luo & Wu 2011; Goldstein
2014) and direct numerical simulations (Jacobs & Durbin 2001; Brandt, Schlatter
& Henningson 2004; Balzer & Fasel 2016), it is well known that free-stream
turbulence (FST) can cause the formation of streamwise elongated streaks inside
the laminar boundary layer, the so-called Klebanoff modes (K-modes). The K-mode
is manifested in the form of a significant distortion in the u-velocity component
in the spanwise and wall-normal directions. K-modes are fundamentally different
from Tollmien–Schlichting waves. Characteristic features of the K-mode are its low
frequency, low spatial growth rate and spanwise length scale of a few boundary-layer
thicknesses.

The interaction of TS waves and streamwise streaks (or K-modes) in a ZPG
boundary layer has been investigated using numerical simulations (Fasel 2002; Liu,
Zaki & Durbin 2008a), secondary stability analysis (Liu, Zaki & Durbin 2008b) and
experiments (Fransson et al. 2005). A key result was that, while streaks of large or
small spanwise wavelengths reduce the growth rate of the primary TS waves, they
can also enhance secondary instabilities by promoting the formation of Λ vortices.
Another important observation in the direct numerical simulations of Fasel (2002)
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and Liu et al. (2008a) was that the spanwise wavelengths of the Λ-structures were
related to the spanwise wavelength of the streaks, which is much smaller than the
one obtained from classical secondary instability, i.e. fundamental and subharmonic
resonances without the presence of streaks (Herbert 1988). Furthermore, secondary
instability investigations using a Floquet analysis of a ZPG boundary layer distorted
by Klebanoff modes and (saturated) TS waves by Liu et al. (2008b) predicted that
the ‘wide’ streaks (βδ1= 0.54) promote both fundamental and subharmonic secondary
instabilities (β and δ1 correspond to the spanwise wavelength and displacement
thickness, respectively). In contrast, for the ‘narrow’ streak case (βδ1 = 1.35), the
secondary instability is dominated by a detuned instability.

For airplane applications, it is reasonable to assume that surface roughness and
free-stream turbulence can provide the disturbances that influence laminar–turbulent
transition. Both have to be considered when investigating separation and separation
control. The main objective of the present numerical investigations is to gain insight
into the underlying physical mechanisms governing active flow control applied to
LSBs in the presence of low levels of free-stream turbulence. Towards this end,
possible interactions of instability modes induced by FST and the disturbances
introduced by the forcing applied for the control in a strong APG boundary layer
are investigated. In particular, highly resolved direct numerical simulation (DNS)
data are scrutinized using instantaneous flow visualizations, spectral analysis, proper
orthogonal decomposition and secondary instability analysis (SIA) with the goal
of understanding whether FST affects the surprising effectiveness of 2-D harmonic
excitation for transition delay and relaminarization as found by Embacher & Fasel
(2014). Towards this end, very low-amplitude isotropic FST velocity and vorticity
fluctuations are introduced at the inflow boundary of the computational domain and
a response of separated flow to the forcing in the presence of FST is investigated.
Our main focus in this paper will be on low levels of FST, as this is more relevant
for free flight and high-quality water/wind tunnel experiments. Furthermore, a main
focus is on controlled LSBs where relaminarization and transition delay is achievable
in the absence of FST.

The paper is organized as follows: in the next section, § 2, the computational set-up,
the free-stream turbulence generation and disturbance generation for the flow control
are introduced. A detailed discussion of the results is provided in § 3. A summary of
the results and the contributions of the paper are given in § 4.

2. Computational framework
An extensively validated high-order accurate Navier–Stokes solver developed in

our Computational Fluid Dynamics (CFD) Laboratory was employed for the present
numerical simulations (Meitz & Fasel 2000). The simulation code solves the three-
dimensional, unsteady incompressible Navier–Stokes equations in vorticity–velocity
formulation

∂ω

∂t
=∇× (u×ω)+

1
Re
∇

2ω, (2.1)

where the vorticity, ω, is defined as the negative curl of the velocity ω = −∇ × u.
In the above equation, the global Reynolds number is defined as Re = U∗

∞
L∗
∞
/ν∗,

where U∗
∞

and L∗
∞

are reference velocity and length scales, respectively, and ν∗ is the
kinematic viscosity. The asterisk is used to denote dimensional quantities. Coordinates
and velocities were made dimensionless with L∗

∞
and U∗

∞
, respectively.
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With the definition of vorticity and using the fact that both the velocity and vorticity
vector fields are solenoidal, the Poisson equations for the velocity components are
obtained,

∇
2u=∇×ω. (2.2)

The governing equations are solved in a three-dimensional Cartesian coordinate system
where the streamwise, wall-normal and spanwise directions are denoted by x, y and z,
respectively, and the corresponding velocity and vorticity components are denoted by
(u, v, w) and (ωx, ωy, ωz), respectively.

The governing equations are integrated in time using an explicit fourth-order
accurate Runge–Kutta scheme. All derivatives in the streamwise and wall-normal
directions are approximated with fourth-order accurate compact differences. In the
wall-normal direction, an exponential grid stretching is used in order to cluster grid
points near the wall. Note that the finite difference approximations for the derivatives
with respect to y are constructed for a non-equidistant grid instead of using a
coordinate transformation. The flow field is assumed to be periodic in the spanwise
direction. Therefore, the flow field is expanded in Fourier cosine and sine series with
a pseudo-spectral treatment of the nonlinear terms. More details on the DNS code
can be found in Meitz & Fasel (2000) and Balzer & Fasel (2016).

2.1. Simulation set-up
The computational domain for the DNS is the same as that used by Balzer & Fasel
(2016) (see figure 4 in Balzer & Fasel 2016) which was guided by the experimental
investigations of laminar separation bubbles by Gaster (1967), specifically series I case
VI. In the experiments, laminar separation was generated on a flat plate through the
close proximity of an auxiliary wing that is mounted inverted in the wind tunnel. This
model geometry is designed such that it models a flow with similar physical properties
as the flow over an airfoil but at reduced geometric complexity.

The velocity scale is chosen according to the tunnel speed in the experiments,
U∗
∞
= 6.64 (m s−1). The reference length scale is L∗

∞
= 0.0254 (m). This length scale

does not, however, correspond to a scale with physical meaning. It is chosen because
the experimental data were reported in inches. The computational domain for the
DNS is defined as 5 6 x 6 19.4, 0 6 y 6 2, and the domain width in the spanwise
direction is Lz= 2. All the simulations presented in this work are carried out using the
same computational grid with a resolution of Nx ×Ny ×Nz = 1801× 300× 250≈ 135
million grid points. The grid spacing is uniform in the streamwise direction. The grid
resolution in wall units, ∆+, within the separation bubble and in the redeveloping
turbulent boundary layer downstream of the reattachment point is 1x+ 6 5.3,
1z+ 6 5.3 and 1y+w 6 0.5, where ∆+ is calculated according to ∆+ = Re

√
cf /2∆.

The grid resolution in the presented simulations is slightly finer compared to the
resolutions used in Balzer & Fasel (2016).

At the inflow boundary all velocity and vorticity components are specified.
Specifically, the velocity and vorticity components of a two-dimensional (2-D)
steady-state basic flow (obtained from the Blasius solution) and superposing the
velocity and vorticity fluctuations from the FST model, are prescribed as Dirichlet
conditions. The displacement thickness Reynolds number at the inflow is Reδ1 = 407.8.
In addition, for maintaining the fourth-order accuracy of the code near the inflow
boundary, the streamwise derivatives of all dependent variables are prescribed as well.
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A v-velocity distribution is applied as a Dirichlet boundary condition at the upper
boundary for generating the favourable to adverse pressure gradients that induce
laminar separation on the flat plate. It is chosen such that the resulting downstream
pressure gradient closely matches that of the wind tunnel experiments by Gaster
(1967). More details and validation regarding the free-stream boundary condition can
be found in Balzer & Fasel (2016).

At the outflow boundary, all second derivatives in the streamwise direction are set to
zero. In addition, a buffer domain in region 18.16 x6 19.4, as proposed by Meitz &
Fasel (2000), is employed in order to smoothly dampen out the fluctuations generated
inside the domain and to prevent upstream contamination.

2.2. Free-stream turbulence generation
The methodology adopted here to generate free-stream disturbances at the inflow
boundary of the computational domain is similar to that proposed by Jacobs &
Durbin (2001) and Brandt et al. (2004) i.e. a superposition of eigenmodes from
the continuous spectra of the Orr–Sommerfeld (OS) and homogeneous Squire (SQ)
operators

u′(x0, y, z, t)=
∑
ω

∑
kz

∑
ky

A(k)Φ(y;ω, ky, kz)ei(kzz−ωt), (2.3)

where ω is the angular disturbance frequency, ky and kz are the wall-normal and
spanwise wavenumbers, respectively with k= (ω2

+ k2
y + k2

z )
0.5. The dispersion relation

kx = ω/U∞ was used in (2.3) to express the streamwise wavenumber in terms of
the angular frequency. In the same manner, the inflow disturbance vorticity field
is calculated from the disturbance velocity field as ω′ = −∇ × u′. The coefficients
A(k) determine the contribution of the eigenfunctions to the total turbulent kinetic
energy. The eigenfunction Φ is a normalized weighted superposition of OS and SQ
eigenmodes as follows

Φ = [Φu, Φv, Φw]
T
=

1
EΦ
[eiθ1 cos(φ)ΦOS + eiθ2 sin(φ)ΦSQ]

T. (2.4)

Here θ1, θ2 and φ are uniformly distributed random numbers, and ΦOS and ΦSQ

represent the OS and SQ continuous modes. The normalization is such that the
energy of each disturbance mode is 1. This leads to an expression for EΦ :

EΦ =
1

ymax

∫ ymax

0

1
2
(ΦuΦ

∗

u +ΦvΦ
∗

v +ΦwΦ
∗

w) dy. (2.5)

The complex conjugate is denoted by the asterisk. The velocity fluctuations at the
inflow model the specified energy spectrum. Various analytic forms for the energy
spectrum exist. For the simulations presented in this work, the von Kármán energy
spectrum is employed for distributing the turbulent kinetic energy among the various
modes,

E(k)= Tu2L11
1.196(kL11)

4

0.558[1+ (kL11)2]17/6
. (2.6)
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The turbulent integral length scale, L11, determines the wavenumber associated with
the maximum in the E(k) distribution and Tu is the FST intensity. For large scales
(small k) the spectrum is asymptotically proportional to k4. For small scales (large k)
the spectrum matches Kolmogorov’s k−5/3 law.

To obtain isotropic turbulence, several wavenumbers k have to be selected in the
domain kmin 6 k 6 kmax, where the limiting wavenumbers are determined by the
domain size and the computational resolution. For the present simulations, kmin = 2
and kmax = 100 was chosen. It is worth noting that the smallest and largest spanwise
wavenumbers which are resolved by the DNS are kz,min= 2.09 and kz,max= 131.95. For
the present investigations, the wavenumber space (k) was divided into 40 equidistant
concentric spherical shells. Modes on a given shell have an identical wavenumber
magnitude k and a limited number, Np, of disturbance modes then selected on each
shell where to each mode a wave vector k= [ω, ky, kz]

T is associated such that k= |k|.
After choosing the angular frequency, wall-normal and spanwise wavenumbers, the
eigenvalue α of the continuous spectrum can be obtained from analytical expression
(see Grosch & Salwen 1978; Jacobs & Durbin 2001) and then, the associated
eigenmodes are obtained from the numerical solution of the homogenous OS/SQ
system together with proper boundary conditions (see Brandt, Henningson & Ponziani
2002). The coefficients of each terms in (2.3) are given by A(k) =

√
2E(k)1k/Np,

where 1k is the difference in wavenumber between two shells. Finally, upon choosing
the parameters L11 and Tu, the inflow velocity and vorticity disturbance fields can
be entirely determined. In summary, the approach adopted in this paper to generate
free-stream fluctuations is very similar to the procedure presented by Brandt et al.
(2004).

It is worth noting that this approach using the homogenous SQ operator and
a weighted superposition of eigenfunctions to generate inlet perturbations, avoids
‘abnormal anisotropy’ behaviour with respect to streamwise velocity in the coupled
OS and SQ (inhomogeneous) system as pointed out by Dong & Wu (2013) and Wu &
Dong (2016). Furthermore, the evolution of the disturbances downstream of the inflow
boundary of the computational domain is computed by the complete Navier–Stokes
equations and therefore non-parallel and nonlinear effects are fully taken into account.

For the present investigation, the turbulent integral length scale was chosen as
L11 = 5δ1,0 which is the same L11 used in Balzer & Fasel (2016). Here δ1,0 is
the displacement thickness at the inflow boundary. A detailed description of the
implementation and validation results are provided in Hosseinverdi, Balzer & Fasel
(2012) and Balzer & Fasel (2016).

2.3. Flow control: harmonic blowing and suction through a 2-D slot
In the present simulation, high-amplitude, two-dimensional disturbance waves are
generated upstream of the separation location by specifying a wall-normal velocity
component across a narrow blowing and suction slot at the wall. The forcing function
for the harmonic blowing and suction (HBS) simulations has the form

vf (x, t)= B · S(x) · sin(2πfhbst), (2.7)

where B is the maximum forcing amplitude and fhbs represents the forcing frequency.
The shape function, S(x), is a polynomial which is zero outside the suction/
blowing slot such that smooth derivatives near boundaries of the suction/blowing slot
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are obtained:

S(x)=
1
48


+729ψ5

− 1701ψ4
+ 972ψ3, ψ =

x− xs

xf − xs
; xs 6 x 6 xf ,

−729ψ5
+ 1701ψ4

− 972ψ3, ψ =
xe − x
xe − xf

; xf 6 x 6 xe.
(2.8)

The downstream locations xs, xe and xf correspond the beginning, the end and the
centre of the slot, respectively. This shape function guarantees zero net volume flux
through the disturbance slot at any time instant.

3. Results
Results obtained from the 3-D DNS of the uncontrolled and controlled separation

bubbles in the absence and presence of FST are discussed in this section. The main
focus will be directed towards the response of a forced (‘controlled’) LSB to vortical
perturbations generated by free-stream turbulence.

For the cases with forcing, 2-D disturbance waves were introduced upstream of
the separation location at xf = 9.5 (the beginning of the adverse pressure gradient).
The width of the forcing slot was 0.2. The frequency of the actuation is the same
for the zero and non-zero FST cases and it is set to f ∗hbs = 240 (hz) based on
hydrodynamic results from instability analyses, see Hosseinverdi & Fasel (2017). The
forcing frequency is very close to the natural shedding frequency of the unforced
separation bubbles.

3.1. Main features of uncontrolled flow
Prior to the detailed discussion of the investigations for the controlled flow, results
obtained from 3-D DNS for the uncontrolled case are presented in order to understand
the relevant length scales of the LSBs in the presence and the absence of FST. For
the simulation with FST, a full spectrum of isotropic FST with an intensity of
Tu = 0.005 % is introduced at the inflow boundary of the computational domain as
discussed above.

Instantaneous contours of spanwise vorticity, ωz, of the uncontrolled flow for the
two cases, Tu = 0 and Tu = 0.005 %, are presented in figure 1(a) together with
the contour lines of ln|ωz|. A logarithmic scale was employed because the vorticity
associated with the FST fluctuations in the free stream is much smaller than the
vorticity associated with the near-wall structures for the case with FST. For the zero
FST environment, the free stream is undisturbed (top plot). From the contours of
ωz-vorticity, it can be seen that the separated shear layer ‘rolls up’ and grows in
intensity due to the Kelvin–Helmholtz instability as it is convected downstream. This
is followed by shedding of strong spanwise coherent vortices (often referred to as
‘rollers’), finally leading to turbulent reattachment.

Hydrodynamic instability of laminar separated shear layers makes the LSB highly
susceptive to the free-stream turbulence. Therefore, the onset of transition is moved
upstream when the FST is introduced at the inflow, which in turn, leads to a slight
reduction of the separated flow region. The free-stream vortical disturbances permeate
into the boundary layer and induce low-frequency u-velocity distortions inside the
laminar boundary layer – known as Klebanoff modes – as illustrated in figure 1(b)
by the contours of u′u′ at x= 9.5 with a preferred spanwise wavelength of λz ≈ Lz/7.

Contours of spanwise, one-dimensional power spectra of the u′-velocity as a
function of the spanwise mode number m (2πm/Lz is spanwise wavenumber) are
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x = 9.5

-1.0 -0.5 0 0.5 1.0

FIGURE 1. (Colour online) (a) Uncontrolled flow: instantaneous contours of ωz-vorticity
together with the contour lines of ln |ωz| for zero FST (top) and FST of Tu = 0.005 %
(bottom). (b) Contours of the longitudinal component of the normal Reynolds stress, u′u′,
at x= 9.5 for Tu= 0.005 %. The overbar represents the time average. The mean separation
and reattachment locations are marked by up arrows in (a).

plotted in figure 2 for selected streamwise locations for the uncontrolled case with
FST. Three x-stations were selected: the inflow boundary, x0, the onset of the adverse
pressure gradient, xAPG, and the separation location, xS. The energy in the power
spectrum at the inflow is clearly concentrated in the free stream and the maximum
amplitude is at 16m6 2 (this is related to the chosen turbulent integral length scale
L11). While propagating in the downstream direction, the vortical structures in the
free stream enter the boundary layer as can be clearly observed at xAPG and xS. The
disturbances with the spanwise mode number of m = 7 correspond to the K-mode
which is consistent with the figure 1(b) and also matches the finding of Balzer &
Fasel (2016) for the spanwise spacing of K-mode. Furthermore, the spanwise spacing
of the Klebanoff modes based on the local boundary-layer thickness, δ, is of the order
of λz,K ≈ (2.2δ − 3δ) for 9 6 x 6 xs, which is consistent with the spanwise scaling of
O(2δ − 4δ) reported for ZPG flat-plate boundary layers (Kendall 1985, 1990).

3.2. Characteristic features of controlled flow
In this section, the response of the flow to the 2-D harmonic forcing with a wall-
normal forcing amplitude of B= 0.05 is discussed in detail for zero FST and a very
low level of FST (Tu= 0.005 %).

The effect of the forcing on the LSB is demonstrated in figure 3, which shows
instantaneous perspective views of iso-surfaces of the λ2-criterion coloured by the
streamwise velocity together with the contours of the spanwise-averaged spanwise
vorticity in the x–y plane. The visualizations for the zero FST case reveal that the
flow is ‘locking on’ to the forcing signal and is shedding spanwise ‘rollers’ at
the forcing frequency. The Kelvin–Helmholtz instability leads to the exponential
growth of 2-D downstream travelling waves. At nonlinear saturation, these waves
manifest themselves in form of spanwise ‘rollers’. These structures are very effective
in increasing the wall-normal momentum transfer and therefore reducing the size
of the separation bubble. Moreover, transition to turbulence is delayed significantly.
In particular, transition does not occur within the integration domain and the flow
remains completely laminar in the entire domain. The fact that for the controlled
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FIGURE 2. (Colour online) Spanwise one-dimensional energy spectra of the streamwise
velocity at selected streamwise stations for the uncontrolled flow with Tu = 0.005 %.
Dashed lines are the displacement thickness. The wall-normal coordinate was normalized
with the local boundary-layer thickness.
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FIGURE 3. (Colour online) Instantaneous flow visualization for controlled flow. Plotted
are iso-surfaces of λ2=−40 coloured by u-velocity in perspective view together with the
contours of ωz-vorticity and contour lines of ln |ωz| in the x–y plane (spanwise averaged).
(a) zero FST; (b) Tu= 0.005 %.

case the flow remains laminar far downstream suggests that the 2-D large-amplitude
forcing is suppressing the secondary absolute instability. These findings are consistent
with those by Embacher & Fasel (2014), who performed DNS for a similar separation
bubble.

Spanwise rollers caused by strong forcing lead to a time-periodic base flow, thus, a
secondary convective (possibly elliptical) instability is possible. In contrast to the zero
FST case where 3-D disturbances have extremely low amplitude (‘numerical noise’)
upstream of the separation location, the amplitude level of the 3-D disturbances is
elevated in the presence of FST (orders of magnitude higher than in the zero FST
case). As a result, the primary vortex cores appear modulated sinusoidally in the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f A

ri
zo

na
, o

n 
11

 Ju
l 2

01
8 

at
 0

7:
09

:2
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
48

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.489


964 S. Hosseinverdi and H. F. Fasel
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FIGURE 4. (Colour online) (a) Comparison of skin-friction coefficients for controlled flow.
(b) Time-averaged contours of the spanwise wall vorticity (top–down view) of controlled
flow for zero FST (top) and Tu= 0.005 % (bottom). Dashed lines represent ωz = 0.

spanwise direction due to the secondary instability of the periodic controlled base
flow as shown in figure 3(b). Contours of the spanwise-averaged spanwise vorticity
(plotted in the x–y plane in figure 3b) reveal that with FST the strong spanwise
structures break up into smaller scales soon after their first appearance such that
transition to turbulence is initiated immediately. In fact, prior to transition only three
spanwise structures are still visible. The observed lateral wavelength of the modulation
is identical to the spanwise spacing of the Klebanoff modes, i.e. λz,K = Lz/7. It is
worth noting that the ratio of the spanwise wavelength to the streamwise wavelength
of the disturbance waves in the transition region is λz/λx≈ 0.41. A secondary stability
analysis by von Terzi (2004) revealed that the most unstable spanwise wavelengths
were in the range 0.36 λz/λx 6 0.6 for the separated shear layer developing behind a
backward-facing step where a spanwise sinusoidal deformation of the primary vortices
was observed similar to the present case.

A comparison of the time- and spanwise-averaged skin-friction coefficient, cf , for
the zero FST case and the FST case for the controlled flow is presented in figure 4(a).
For a given forcing amplitude, the large 2-D vortices, whose strengths alone seems to
determine the mean reattachment, leads to virtually identical bubble sizes independent
of the FST. Figure 4(a) indicates that the value of cf for Tu= 0.005 % closely follows
the laminar curve of the zero FST case until x= 13.2 where it increases rapidly due
to the laminar-to-turbulent transition. Time-averaged contours of ωz-vorticity at the
wall are plotted in figure 4(b). The ωz-vorticity at the wall is directly proportional
to the local skin friction. Also included are the ωz = 0 lines which indicate the time-
mean separation and reattachment locations. Streamwise aligned ‘streaks’ are visible
for Tu = 0.005 % downstream of the reattachment location, with a spanwise spacing
that agrees very well with the spanwise spacing of the Klebanoff modes.

Figure 5 demonstrates that the lower skin-friction coefficient for the zero FST case,
despite the train of strong spanwise vortices, is due to the intermittent reverse flow that
is induced by the travelling rollers, and results in a positive but low mean u-velocity
across the boundary layer as opposed to the ‘fuller’ turbulent velocity profile.
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FIGURE 5. (Colour online) Wall-normal u-velocity profiles at x = 15 for the controlled
case with B= 0.05. (a) u-velocity profiles at five time instances separated by one fifth of
the forcing period (Thbs) shown together with the time-averaged profile for zero FST case.
(b) Comparison of the time-averaged u-velocity profile for zero FST and Tu= 0.005 %.

3.2.1. Disturbance evolution
Based on the results presented in the previous section, we conjecture that the

relaminarization of the flow for the zero FST case is indeed due to the extremely low
‘noise’ level of the highly accurate DNS code, which does not occur in a practical
experimental wind tunnel conditions even with very low FST. The results imply that a
strong interaction between the spanwise modulations caused by FST and the primary
spanwise vortices exists since the spanwise wavelength of the vortex distortions
is identical to the spacing of the Klebanoff modes. By tracking the downstream
development of the disturbance waves, information can be gained regarding the
nature of the instability mechanisms. Toward this end, the flow data were Fourier
decomposed in the spanwise direction as well as in time. The notation (h,m) is used
for a pair of mode numbers. Here, h/Thbs is the frequency where Thbs is the period
of the actuation and 2πm/Lz is the spanwise wavenumber of a disturbance wave.

The downstream development of the maximum u′-velocity Fourier amplitude of a
pair of mode numbers, Ah,m

u , for the steady and unsteady disturbance waves for the
controlled flow with Tu= 0.005 % is presented in figure 6; however only the modes
that reach high nonlinear amplitudes are highlighted. Mode (1, 0) corresponds to
the primary disturbance wave that is directly excited through the 2-D HBS forcing.
Downstream of the forcing location, mode (1, 0) initially decays until x = 10.2,
which corresponds to Recr, then it experiences exponential growth and grows several
orders of magnitude until nonlinear saturation sets in. In addition, it remains at much
larger-amplitude levels compared to the 3-D disturbances. The 2-D mode amplitude
then decays for x > 12.7. The beginning of the decay in the amplitude of the 2-D
wave can be correlated with the onset of the spanwise modulation of the primary
vortices (see figure 3b). It should be noted that the streamwise development of mode
(1, 0) upstream of the forcing location corresponds to the upstream influence of the
excitation and is not caused by the exponential amplification of this mode.

Figure 6(a) highlights the streamwise development of the steady disturbances for
various spanwise mode numbers. Although these modes have a non-zero frequency
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FIGURE 6. (Colour online) Disturbance development of the Fourier amplitudes of
controlled flow with Tu = 0.005 %. (a) Steady disturbance waves. (b) Unsteady modes
with the forcing frequency. The vertical dashed lines correspond to the forcing location
and shaded area represents the mean separated region. Also, (0, 7) − UNC in (a) and
(1, 7)−UNC in (b) refer to the steady and unsteady K-modes for the uncontrolled flow
with FST, respectively, and (1, 0) − Tu = 0 in (b) corresponds to the primary wave for
controlled flow with zero FST.

(h ≈ 0.01), they are referred to as modes (0, m) due to their very low frequency.
Figure 6(a) clearly shows that the strongest steady 3-D disturbance wave is mode
(0, 7). The spanwise wavelength associated with this mode was found earlier to
correspond to the spacing of the Klebanoff modes. While the K-mode grows slowly
in the downstream direction prior to the separation location, it experiences very strong
amplification (even higher than the primary wave) inside the separated region, until
it reaches the nonlinear amplitude of the primary mode (1, 0) and causes the flow to
break down. The streamwise evolution of the K-mode for the uncontrolled flow with
Tu= 0.005 % is shown in figure 6(a) for comparison as well. The downstream growth
of the K-mode for the uncontrolled case is identical to the one for the controlled
case for x< 10.4, which is the separation location in the absence of 2-D forcing. The
growth rate is enhanced downstream of the separation location, however, there is a
noticeable difference in amplification rates between the controlled and uncontrolled
cases, which suggests that different instability mechanisms might play a role in the
presence of strong 2-D waves.

The downstream development of unsteady disturbances related to the forcing
frequency, i.e. modes (1,m), is presented in figure 6(b). Whereas strong growth rates
can be detected for nonlinearly generated unsteady 3-D disturbances downstream
of the forcing location, the disturbance wave with the forcing frequency and the
spanwise mode number of the K-mode, mode (1, 7), becomes the dominant mode.
This can be explained by the fact that mode (1, 7) is directly generated through
a nonlinear wave interaction of the primary wave (1, 0) and the (0, 7) (Klebanoff)
mode. Because of this nonlinear interaction, the unsteady 3-D mode (1, 7) assumes
higher amplitude downstream of the forcing location and prevails further downstream.

The strong amplification rates detected for disturbance modes (0, 7) and (1, 7)
could be an indication of a secondary instability mechanism. The secondary instability
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transfers kinetic energy from the large 2-D vortices to the 3-D disturbance waves. In
absence of FST, this transfer is not present and hence, the 2-D primary wave remains
at large amplitude levels. Therefore, the spanwise rollers remain laminar in the entire
integration domain. This can be observed in figure 6(b) where the amplitude of the
2-D mode at the fundamental frequency for the controlled case with zero FST is
compared with the primary 2-D wave of the case with FST.

3.2.2. Proper orthogonal decomposition
A detailed analysis of the simulation data using proper orthogonal decomposition

(POD) is carried out in order to provide additional insight in the underlying flow
physics and to identify the dominant structures in the transition region. POD, first
proposed by Lumley (1967), is a method for identifying large-scale energetic flow
structures in transitional and turbulent flows. For the present results, the snapshot
method, which was proposed by Sirovich (1987), is employed. In the POD method,
for a given set of time (t) and space (x) dependent flow data, the flow field can be
represented by

u(x, tn)=

N∑
i=1

ai(tn)φi(x), (3.1)

where the φi are the POD spatial eigenfunctions and the ai are the POD time
coefficients. The POD modes are orthogonal and optimized with respect to their
energy content, i.e. the largest fraction of the total kinetic energy of the flow field
is captured with the smallest number of modes. Therefore, assuming that large-scale
coherent structures possess a significant amount of energy, POD can provide valuable
information regarding the most relevant flow structures.

For the present modal decomposition analysis, 1500 snapshots of the velocity field
(u, v,w)T equidistantly distributed over 50 forcing periods are used. The focus here is
on identifying and extracting the dominant and coherent structures in the transitional
region for controlled flow in the presence of Tu= 0.005 % from the initial linear stage
all the way up to the nonlinear development of the instability waves. Therefore, the
spatial extent of the snapshots was chosen from x= 6 up to the x= 14.5 (see figure 8).

POD energy spectra are shown in figure 7 where figure 7(a) displays the
contribution of each individual POD mode to the total kinetic energy, Ei, and
figure 7(b) illustrates the cumulative energy sum, Si, which are defined as

Ei =

(
λi

/ N∑
j=1

λj

)
× 100, Si =

(
i∑

k=1

λk

/ N∑
j=1

λj

)
× 100. (3.2a,b)

In this equation, λi is the magnitude of the eigenvalue of the POD mode, which
corresponds to twice the kinetic energy content of the respective POD mode, and
N is the total number of POD modes. The POD eigenvalue spectra reveal that for
the controlled flow, most of the energy is contained in the lower mode numbers.
In particular, the most energetic modes (modes 1 and 2) contain almost 50 % of
the total kinetic energy. In figure 7(a), it can be observed that the eigenvalues of
the dominant POD modes, except modes 5 and 6, occur in pairs of almost equal
value, whereas a large gap in magnitude exists between pairs. Each pair essentially
represents the same structure, one of the eigenfunction being just shifted with respect
to the other one in the streamwise direction (often referred as ‘travelling waves’,
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FIGURE 7. (Colour online) POD eigenvalue (energy) spectrum for the controlled flow with
Tu = 0.005 %: (a) normalizied POD eigenvalues and (b) their cumulative energy. Spatial
eigenfunctions and time signal of coloured symbols in (a) are shown in figures 8 and 9.

see Rempfer & Fasel 1994). Therefore, only the odd numbered modes of each pair
and modes 5 and 6 are discussed here.

The eigenfunctions of the ‘most energetic’ POD modes are plotted in a perspective
representation in figure 8, using iso-surfaces of the streamwise velocity component,
|u| = 0.4. Figure 8 demonstrates that the most energetic structure as represented by
mode 1 (and mode 2) is predominantly two-dimensional until x < 13 from where
it becomes increasingly three-dimensional further downstream. The respective time
coefficient and the associated Fourier spectrum of the time coefficient (see figure 9)
exhibit nearly sinusoidal behaviour with a dominant frequency matching the forcing
frequency, F = 1. In figure 9, the time is non-dimensionalized by the forcing period,
T= t/Thbs and similarly the frequency is non-dimensionalized by the forcing frequency,
F= f /fhbs.

The POD eigenfunction and time coefficient for mode 3 (and mode 4) also
represents (partially) the two-dimensional ‘travelling wave’ but has twice the frequency
of the harmonic forcing (nonlinearly generated). The energy content of mode 3 is
one fifth of that in mode 1. From the visualizations of modes 1 and 3, it can be
seen that α1F1 ≈ α3F3 with α being the streamwise wavelength of the structures and
F the dominant frequency observed for these modes. The observation of the pairs of
eigenfunctions φ1 and φ2 and φ3 and φ4, postulates that the spatially evolving coherent
structures, γ (x, t), can be represented by γ (x, t) = ai(t)φi(x) + ai+1(t)φi+1(x), with i
being 1 and 3. The eigenfunction of a pair not only contains the complete information
regarding the shape of the corresponding coherent structure, but also shows the
evolution that the coherent structure undergoes while propagating downstream. As
can be observed in figure 8, the POD modes 1 and 3 exhibit a spanwise modulation
for x> 13 which is more pronounced in mode 3.

Of particular interest in figure 8 is the observation that POD modes 5 and 6 are low-
frequency streamwise oriented ‘streaky’ structures, which correspond to the Klebanoff
modes caused by FST. The spanwise wavelength of these streaky structures (K-modes)
is in agreement with the results found from the instantaneous visualizations (figure 3b)
and spectral analysis (λz,K ≈ Lz/7). Moreover, despite their similar structures,
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FIGURE 8. (Colour online) Dominant POD eigenfunctions for the controlled LSB with
B= 0.05 and Tu= 0.005 %. Shown are iso-surfaces of |u| = 0.4. Dashed red lines indicate
the mean separation and reattachment locations.

modes 5 and 6 do not have the same energy level since they do not represent
the traveling modes as was the case for modes 1 and 2 and 3 and 4.

The perspective views of modes 7 and 9 in figure 8 exhibit purely 3-D structures.
In fact, they exhibit a ‘checkerboard’ pattern typically associated with oblique waves.
A detailed inspection of these two modes and a comparison with the dominant modes
1, 3 and 5 reveals that modes 7 and 9 have the same spanwise wavelength as mode
5 while the streamwise wavelengths of modes 3 and 7 and modes 1 and 9 are very
similar. This observation is directly linked to the mode interaction found between the
primary wave and the K-mode, as identified in the spectral analysis.

The time signals for modes 7 and 9 (figure 9a, right plot) are reminiscent of
‘modulated wave trains’ and are qualitatively similar to those observed by Schubauer
& Skramstad (1948) in their classical ‘natural’ transition experiments of a flat-plate
boundary layer. The corresponding frequency spectrum (figure 9b, right plot) exhibits
a dominant frequency peak close to 2fhbs and fhbs, respectively. It is important to note
that for POD modes 7 and 9, their dominant frequencies do not occur at 2fhbs and fhbs

but instead at 2fhbs ± fK and fhbs ± fK , respectively, (as you could see from a close-up
view of figure 9b, right plot) where fK is the frequency associated with the ‘streaky’
structures as observed in POD mode 5 (figure 9b, middle plot).

Linking the dominant POD modes to the spectral analysis from previous section,
confirms that POD modes 1 and 2 correspond to the primary wave, that POD modes
5 and 6 represent mode (0, 7) which was identified in the spectral analysis as the
instability mode causing the laminar–turbulent transition, and that POD modes 9
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FIGURE 9. (Colour online) (a) POD time coefficients of modes 1 (red), 3 (green),
5 (black), 6 (purple), 7 (dark yellow) and 9 (blue). (b) Associated frequency spectra.
Controlled LSB with B= 0.05 in the presence of FST with Tu= 0.005 %.

and 10 have close similarity to mode (1, 7). Moreover, POD modes 3 and 4 and 7
and 8 are higher harmonics that are nonlinearly generated.

3.2.3. Secondary instability investigations
Results presented in the previous sections revealed that the spanwise wavelength

of the observed modulation of ‘rollers’ in the transition region is governed by the
spanwise spacing of the Klebanoff modes inside the boundary layer. This scenario
suggests that a secondary instability analysis of the two-dimensional time-periodic
disturbance wave with respect to steady (or low-frequency) spanwise sinusoidal
disturbances may be helpful for identifying the relevant physical mechanism that
cause the modulation as observed in figure 3(b). Secondary instability investigations
can also gain insight into the receptivity of the secondary instability regime of a
forced (‘controlled’) LSB with respect to the low-frequency 3-D disturbances.

The goal of this secondary stability analysis is to obtain a range of unstable
wavenumbers for comparison with the dominant spanwise wavelength as identified in
the previous sections. The fact that the secondary instability mechanism is a linear
mechanism, it is therefore, accessible using the linearized Navier–Stokes equations
(LNSE) and employing a Floquet-type analysis. Towards this end, we developed an
approach that directly solves the LNSE where time-dependent solutions from DNS
serve as a base flow (or basic flow) without using any additional assumptions as
required by the standard secondary instability analysis (i.e. assuming the mean flow
is locally parallel, the amplitude of primary wave is independent of x, and requiring
a ‘shape assumption’ that the primary wave does not change its shape as it saturates;
see Herbert 1988). Thus, all ‘non-parallel’ effects with respect to the base flow and
the primary wave are included in the LNSE approach, which is important as separated
flows are considered here.
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Interaction of active flow separation control and K-mode 971

For the secondary instability analysis employed here based on LNSE, the total flow
field is decomposed into the unsteady base flow and disturbance flow

u(x, y, z, t)= uB(x, y, t)+ u′(x, y, z, t), (3.3a)
ω(x, y, z, t)=ωB(x, y, t)+ω′(x, y, z, t). (3.3b)

Substituting these decompositions into the Navier–Stokes equations (2.1), yields the
governing equations for the total flow field, which after linearization (by neglecting
products of the disturbance quantities), is a linear superposition of the base flow and
the disturbance flow. Thus, the governing equations for the base flow can be subtracted
from the equations for the total flow in order to obtain the LNSE with the unsteady
base flow,

∂ω′

∂t
=∇× (u′ ×ωB + uB ×ω

′)+
1

Re
∇

2ω′ −∇×F . (3.4)

The disturbance velocity field can be obtained from ∇2u′ = ∇ × ω′. In the above
equation, F is a volume force. For numerically solving the LNSE, the same time
integration and spatial discretization schemes are employed as for the nonlinear
equations used in the DNS. To analyse the stability with respect to 3-D (oblique)
disturbance waves when the base flow is two-dimensional, a spectral discretization
in the z-direction is implemented into the linearized solver. Since the base flow is
homogeneous in the spanwise direction, the perturbation can be further decomposed,
such that

ϕ′(x, y, z, t)=
M∑

m=0

ϕ̂m(x, y, t) cos(βmz), (3.5a)

ψ ′(x, y, z, t)=
M∑

m=0

ψ̂m(x, y, t) sin(βmz), (3.5b)

where ϕ = [u, v, ωz]
T, ψ = [w, ωx, ωy]

T and βm is the spanwise wavenumber. Since
the linearized equations are solved, Fourier modes with different βm are decoupled
and can be analysed separately. The time-dependent two-dimensional base flow, uB=

[uB, vB, 0]T and ωB = [0, 0, ωz,B]
T, is a superposition of a steady part (time averaged)

and N downstream travelling waves,

ΨB(x, y, t)=Ψ0(x, y)+
N∑

n=1

Ψ
(n)

A (x, y) cos[2πnfhbst+Ψ
(n)

ph (x, y)], (3.6)

where Ψ = [u, v, ωz]
T and Ψ0 corresponds to the two-dimensional steady flow that

is identical to the temporal mean of the total flow field (velocity and vorticity).
The unsteady part consists of a fundamental wave ( fhbs) and its first (N − 1) higher
harmonics propagating in the downstream direction. Amplitudes (ΨA) and phase
distributions (Ψph) of these waves are obtained from a Fourier analysis of the total
flow provided by DNS.

To generate streamwise vortices outside the boundary layer in the LNSE solver for
the SIA, a (unsteady) volume force F(x, t)= [ fu, fv, fw]

T is added to the LNSE. Its
components are fu = 0, fv = 0 and

fw(x, t)=
M∑

m=0

f̂w,m exp

[
−

(
x− xcm

am

)2

−

(
y− ycm

bm

)2
]

sin(βmz) cos(Ωmt). (3.7)
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xcm ycm am bm Ωm (Hz)

5.5 0.25 0.045 0.02 2π× 2.4

TABLE 1. Computational parameters used to define the volume force in (3.7).

In (3.7), xcm, ycm, am and bm define the shape of the forcing of each spanwise Fourier
mode, βm, f̂w,m is the amplitude and Ωm is the angular frequency. For the specific
values used in the present investigation see table 1. In the calculations, the curl ∇×F
is used as a source term on the right-hand side of the linearized vorticity transport
equation. Regarding the computational parameters given in table 1, it is worth noting
that the frequency is chosen according to the frequency associated with the K-mode
obtained from the Fourier analysis and the wall-normal location of the volume force
is approximately 2.5 of the local boundary-layer thickness.

It should be noted that no perturbations from the FST model (continuous modes) are
used in the secondary instability investigations. Instead, in the linearized calculations
the source term, equation (3.7), is employed to generate the streamwise vortices close
to the inflow boundary and outside the boundary layer. This numerical model was
successfully implemented by Fasel (2002) to generate low-frequency vortices outside
the boundary layer in order to excite Klebanoff modes inside the boundary layer.
Making use of the observation in figure 3(a) that the controlled flow with zero FST
is predominantly two-dimensional, a 2-D simulation with B = 0.05 is carried out to
obtain the unsteady base flow required for SIA. The flow data are sampled with a
time interval of 1t = Thbs/30 for 12 forcing periods. Then, the time-dependent data
were Fourier transformed in time to provide the amplitude and phase distributions.

In figure 10, the spatial growth rates and u′-velocity Fourier amplitude profile
(uA) of the three-dimensional mode with βm ≈ 22, which corresponds to the lateral
wavelength of the K-mode (λz ≈ 0.286), are plotted as obtained from the SIA and
are compared with the DNS results of a controlled LSB with Tu = 0.005 %. The
local growth rate is computed based on the wall-normal maxima of the uA according
to σu(x) = ∂ log(uA,max)/∂x. In figure 10, the Fourier amplitudes are scaled by their
respective maximum amplitudes and uB is the corresponding time-averaged u-velocity
profile normalized by its boundary-layer edge value. The growth rates of the K-modes
obtained from the SIA compare very well with those from the DNS for mode (0, 7)
and mode (1, 7) as shown in figure 10(a,b), respectively. Comparison of wall-normal
distributions of the disturbance amplitude in figure 10 (bottom plots) confirms the
proper implementation and accuracy of the unsteady base flow method for the SIA.
It is important to note that mode (1, 7) is not forced in the LNSE calculations, but
generated due to the unsteady component of the base flow.

Figure 10(a) also provides the growth rate of the K-mode as computed from the
linearized Navier–Stokes equations when only the time-averaged part of the base flow
is considered (dot-dash curve), hereinafter referred to as ‘LINTAB’. The terminology
‘LINTAB’ is introduced to distinguish this approach (stability calculation using LNSE
based on the time-averaged base flow) from the SIA (secondary stability calculation
using LNSE based on the time-dependent base flow). As displayed in figure 10(a),
the growth rates, σu, from the LINTAB are identical to those obtained from SIA and
DNS calculations up to the separation location and remain almost unchanged thereafter
while the SIA and DNS results show much larger amplification rates. Therefore, this
analysis confirms that the growth rate identified for mode (0, 7) is indeed caused by
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FIGURE 10. (Colour online) Comparison of local spatial growth rates (top) and
wall-normal distributions of the u′-velocity Fourier amplitudes at several x-locations
(bottom) obtained from SIA and DNS with Tu = 0.005 %: (a) mode (0, 7); (b) mode
(1, 7). Disturbance amplitudes are scaled by their respective maximum. Dashed lines in
the bottom plots represent the corresponding time-averaged u-velocity profile normalized
by the edge velocity. LINTAB in (a) refers to linear calculation for mode (0,7) based on
the time-averaged base flow. Shaded area indicates the mean separated region. Wall-normal
coordinates are normalized by the local boundary-layer thickness.

the unsteady component (due to the 2-D forcing) of the base flow while the instability
of the mean flow only has negligible effect.

Next, results from calculations for disturbances with a wide range of spanwise
wavelengths are presented in order to identify the band of unstable wavelengths.
The spatial growth rates of the steady modes as computed based on the spectral
disturbance kinetic energy (SDKE), are plotted in figure 11(a) as a function of the
spanwise disturbance wavelength. The SDKE is computed from the wall-normal
integral of the Fourier amplitude of the velocity components according to

q(x)=
1
δ(x)

∫ δ(x)

0

1
2
[u2

A(x, y)+ v2
A(x, y)+w2

A(x, y)] dy, (3.8)

where δ(x) is the local boundary-layer thickness. Furthermore, the energy growth
ratio, G = log10[q(x = 13.5)/q(x = 10)], is introduced to evaluate the disturbance
amplification from the results of the SIA and is shown in figure 11(b).

In figures 6 and 10 it was seen that the growth rates of the 3-D disturbances vary
upstream of the mean reattachment location and even until x = 12.5, while a nearly
constant exponential growth rate is observed further downstream. Therefore, two
growth rates, σ1 and σ2, are observed in figure 11(a) where σ1 is the averaged growth
rate for 11 6 x 6 12.5 and σ2 is an exponentially fitted growth rate for x > 12.5.
What is significant in figure 11(a) is that the range of unstable 3-D modes is very
broad. From the spanwise variation of σ1, it appears that the most unstable 3-D
disturbances have a wavelength in the range of 0.2 6 λz 6 0.4. In that range, the
dependency of the growth rate on the wavelength is less pronounced and σ1 stays
almost constant. On the other hand, judging from the energy growth ratio G and σ2,
the most unstable spanwise wavelength is λz ≈ 0.22. Of particular interest, however,
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FIGURE 11. (Colour online) Results from the secondary instability analysis of the
controlled flow with B= 0.05 for steady disturbances. (a) Growth rate (σ ) of disturbances
as a function of spanwise wavelength where σ1 corresponds to the averaged σ over
11 6 x 6 12.5, and σ2 represents the exponentially fitted σ for x> 12.5. (b) Variation of
energy growth ratio versus spanwise wavelength. The spanwise wavelength of the K-mode,
λz,K , is marked by vertical dashed lines.

is the observation that the wavelength associated with the spanwise spacing of the
K-mode, i.e. λz,K ≈ 0.29, falls into the range of, and is in fact very close to, the most
unstable 3-D disturbances.

It is important to note, however, that the SDKE of the K-mode is order(s) of
magnitude larger than that of the other low-frequency 3-D disturbances according to
the spectral analysis results obtained from DNS of controlled flow with Tu= 0.005 %.
In fact, the SDKE of disturbances with λz ≈ 0.22, the dominant mode from SIA, is
4–5 orders of magnitude lower than the one with λz ≈ 0.29 (K-mode). Therefore,
considering the large initial amplitude, the high growth rate and large energy growth
ratio of disturbance waves with λz ≈ 0.29, it can be concluded that such disturbances
will dominate the transition process.

3.3. Effect of forcing amplitude
The results presented thus far indicate that the laminar–turbulent transition for
the forced LSB in the presence of FST is directly linked to the interaction of
low-amplitude K-modes with the high-amplitude 2-D mode associated with the flow
control. Thus, the question arises if and how varying the 2-D forcing amplitude (B)
affects this interaction. In order to answer this question, secondary instability analyses
using the LNSE approach (as described in the previous section) are carried out for
0.008 6 B 6 0.07. For brevity only the evolution of low frequency 3-D disturbances
with a spanwise wavelength equal to the one of the K-mode is examined.

Figure 12(a) shows the streamwise amplitude development of mode (0, 7) for
different forcing amplitudes. Figure 12(b) provides the mean separation/reattachment
locations (xs, xr), as well as the onset locations of the growth of the K-modes
(xK) as a function of the forcing amplitude. Also, included in figure 12(b) is the
variation of the exponential amplification rate measured downstream of xr as a
function of B. Whereas the downstream development of the K-modes suggests that
the underlying instability characteristic is similar for different forcing amplitudes,
figure 12 also points to some interesting aspects when B decreases: (i) the growth

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f A

ri
zo

na
, o

n 
11

 Ju
l 2

01
8 

at
 0

7:
09

:2
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
48

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.489


Interaction of active flow separation control and K-mode 975

10
x

11 12

B

ß

xK

xK

xs

xr

13

10-4

10-3

uA0,
 7 10-2

10-1

(a) (b)

-4.8 -4.0
log(B)

-3.2

10.8

11.2

11.6

x

12.0

2.25

2.50

2.75

ß

FIGURE 12. (Colour online) (a) Streamwise development of the K-mode obtained
from SIA for controlled flow with different forcing amplitudes B. (b) Mean
separation/reattachment locations (xs, xr) as well as onset locations of K-mode growth
(xK) as a function of log(B). Right vertical axis in (b) is the exponential growth rate of
the K-mode measured downstream of xr.

of the disturbance waves is delayed and (ii) the exponential amplification rate of the
3-D modes is reduced. It can therefore be conjectured that the combined effect of
these two events is that, for reduced forcing amplitudes, transition is delayed.

To further investigate the effect of forcing amplitude and verify the results predicted
from SIA, DNS are carried out for two additional forcing amplitudes B = 0.01 and
B = 0.025 for the same FST as before (Tu = 0.005 %). The forcing slot for the
DNS was located at the end of favourable-pressure-gradient region where the local
boundary-layer edge velocity is ue = 1.37U∞. Based on this local condition, the
effective forcing amplitude is therefore, approximately 3.65 %, 1.82 % and 0.73 %
of the free-stream velocity for B = 0.05, 0.025 and 0.01, respectively. As can be
observed in figure 6 for B= 0.05, for example, the disturbances introduced at x= 9.5
initially decay until x = 10.2 and start to grow thereafter. Hence, a smaller forcing
amplitude can be introduced downstream of Recr while still having the same effect
as for the ones observed with B= 0.05.

Instantaneous contours of spanwise vorticity from DNS as shown in figure 13(a),
corroborate the SIA results, namely that transition is delayed for smaller forcing
amplitudes. In fact, four 2-D ‘laminar’ spanwise ‘rollers’ are visible for B = 0.01
compared to only two ‘rollers’ for B = 0.05. The mean separation and reattachment
locations are indicated in figure 13(a) by vertical dashed lines for each case. Thus
the DNS results confirm the predictions made from figure 12(b), i.e. a reduction of
the bubble size (due to delayed separation and earlier reattachment) with increasing
forcing amplitudes. Contours of spanwise vorticity for B= 0.01 in the absence of FST
are also shown in figure 13(a) for comparison purposes, which demonstrates, similarly
to the case with B = 0.05 presented in figure 3, that the strength of the 2-D rollers
alone could determine the extent of the mean separated region and that this extent is
independent of the FST. In fact, for every 2-D vortex in zero FST simulation, there are
modulated but still laminar ‘rollers’ in the DNS with Tu=0.005 % until approximately
x = 15 where the spanwise structures become strongly distorted (‘shredded’) as can
be observed in figure 13(b) for B= 0.01.
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FIGURE 13. (Colour online) (a) Instantaneous contours of the spanwise-averaged spanwise
vorticity and contour lines (blue dashed) of ln(|ωz|) for different forcing amplitudes with
Tu= 0.005 %. From top to bottom: B= 0.05, B= 0.025 and B= 0.01. The bottom plot was
obtained from a zero FST simulation with B= 0.01. (b) Perspective view of instantaneous
flow visualization for the case with B=0.01. Plotted are iso-surfaces of λ2=−40 coloured
by u-velocity.

The perspective view of the dominant flow structures (identified using iso-surfaces
of λ2 = −40) in figure 13(b), provides an overview of the transition process for
this case. The dominant flow structures look similar to those from the DNS with
B= 0.05 as presented in figure 3(b) where the modulated structures with the spanwise
wavelength of the K-mode lead to the laminar-to-turbulent transition. However, for
the case with B = 0.01 the modulation takes place further downstream, and as a
consequence of this, transition is delayed as compared to the case with B = 0.05
(see figure 3b). This conclusion is further supported by the streamwise development
of the Fourier amplitudes as presented in figure 14. Shown are comparisons of the
downstream development of the maximum u′-velocity Fourier amplitude (Ah,m

u ) of
modes (1, 0) and (0, 7) for the controlled flow with Tu = 0.005 % for three forcing
amplitudes. In addition to results from DNS, figure 14 includes the results from SIA
for mode (0, 7) as well as the streamwise development of the same mode computed
with the LINTAB approach (LNSE based on the time-averaged base flow only).

The evolution of mode (1,0) illustrates the dependency of the stability characteristics
of the mean flow on the amplitude of the forcing, namely, a stabilization of
the convective instability of the separated boundary layer with increasing forcing
amplitude. Similar observations were reported by Marxen & Rist (2010) and Marxen
& Henningson (2011). Once the 2-D mode saturates (at a nonlinear, finite amplitude),
it remains at much larger-amplitude levels compared to the 3-D disturbances. The
break down occurs when the amplitude of the K-mode reaches the level of the
primary mode. In agreement with the results in figure 12, the strong amplification
of the K-mode moves downstream as the forcing amplitude decreases. Consequently,
the beginning of the amplitude decay of mode (1, 0) is delayed. Thus, the net
consequence is a delay of laminar–turbulent transition.

In agreement with the previous findings (in figure 10, top plot) for B = 0.05,
figure 14 indicates that the convective instability characteristic of the mean flow
is very weak with respect to low-frequency 3-D disturbance waves. Moreover, the
significant increase in the amplification rate of mode (0, 7) as observed from the
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 m
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FIGURE 14. (Colour online) Streamwise development of primary wave, (1, 0), and
K-mode, (0, 7), for different forcing amplitudes. Shown also is the streamwise amplitude
development for modes (1, 0) and (0, 7) computed with LINTAB (time-averaged base
flow) and SIA (time-dependent base flow) for mode (0, 7). The mean separated region
is identified by shaded area.

DNS and SIA for smaller forcing amplitudes, is caused by the unsteady part of the
base flow. Also included in figure 14 is the evolution of the primary wave computed
with the LINTAB approach. The base flows for the LINTAB investigations are the
time-averaged flow fields obtained from DNS for various forcing amplitudes. Excellent
agreement between the LINTAB and DNS results in the region of exponential growth
for B = 0.01 provides strong support that the evolution of the 2-D mode before
saturation is indeed an entirely linear mechanism and that nonlinear effects are
negligible. Although the overall agreement between the DNS and LINTAB for mode
(1, 0) for B = 0.05 is good, a closer inspection of figure 14 (right plot) reveals
that the growth of the 2-D mode obtained from DNS deviates slightly from the one
computed using the LINTAB downstream of the separation location. This could be
an indication of nonlinearity caused by a large-amplitude forcing.

3.4. Effect of free-stream turbulence level
The results presented so far were for a fixed FST intensity of Tu=0.005 %. In order to
assess the influence of the FST intensity on the findings discussed previously, a series
of numerical simulations with a constant forcing amplitude of B= 0.01 are performed
for different FST intensities in the range of Tu=[0.05, 50]× 10−3 (%). The extremely
low level of FST, Tu= 5× 10−5 (%), is chosen in order to investigate if the boundary-
layer development is similar to the case with zero FST. The highest FST intensity
examined, Tu= 0.05(%), is a representative of high-quality wind or water tunnels.

The streamwise development of the time- and spanwise-averaged wall skin-friction
coefficient as obtained from DNS is plotted in figure 15 for the controlled flow
(B = 0.01) for various FST intensities. In all cases, the flow separates at xs = 10.76
and reattaches near xr = 12.1 leading to virtually identical bubble sizes. It can
therefore be concluded that for flow control with B = 0.01 and the levels of FST
investigated here (low FST intensities), the control effectiveness for all cases is
solely a consequence of the wall-normal momentum exchange provided by the strong
spanwise ‘rollers’ resulting from the control. Despite the same bubble sizes, the
boundary-layer development downstream of the mean reattachment location is very
different for the various FST intensities. For the highest FST intensity investigated,
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FIGURE 15. (Colour online) Comparison of time- and spanwise-averaged wall skin-friction
coefficients of the controlled flow with B= 0.01 for various levels of FST intensity.

Tu= 0.05 %, cf closely follows the laminar curve of the zero FST case until x= 13.2
from where it grows rapidly due to the laminar-to-turbulent transition. The x-location
where the cf starts to deviate from the laminar curve moves downstream when
the level of FST decreases. Comparison of the cf distributions for Tu = 0 and
Tu = 5 × 10−5 (%) indicates that the limit of no free-stream turbulence can be
reached asymptotically as the level of FST decreases.

In figure 16, a side-by-side comparison of results obtained from the simulations
with Tu= 5× 10−2 (%) and Tu= 5× 10−5 (%) is presented. Shown are visualizations
of instantaneous contours of the spanwise vorticity in the x–y plane (spanwise
averaged) and the total vorticity in the x–z plane extracted at y(x)= 1.5δ1(x), where
δ1(x) is the local mean displacement thickness. As can be observed in figure 16(a),
a spanwise dominant vortex structure that has just been shed from the separated
shear layer experiences a strong modulation (‘shredding’) in the lateral direction for
a FST intensity of Tu= 5× 10−2 (%). In contrast, for extremely low FST amplitude,
Tu= 5× 10−5 (%), in figure 16(b), the flow remains laminar. The dominant structures
remain essentially two-dimensional downstream of the mean reattachment location,
which is very similar to the zero FST case (bottom plot in figure 13a). It is not
until much further downstream near the outflow boundary that a slight spanwise
modulation (‘shredding’) is visible, which however is considerably less pronounced
compared to the Tu= 0.05 % case.

Finally in figure 17(a), the streamwise evolution of the wall-normal maximum of the
u′-velocity Fourier amplitude of K-mode, A0,7

u , is shown for the various levels of FST.
Immediately downstream of the inflow location, the K-mode experiences streamwise
growth for x< 6, which is most likely the consequence of transient growth and lift-up
mechanisms (Landahl 1975). The initial growth of the K-mode is followed by slow
streamwise growth in the region of a favourable pressure gradient 6 6 x 6 9.6. For
x > 9.6, the onset of the adverse pressure gradient, the K-mode experiences slightly
stronger amplification up to the mean reattachment location (x≈ 11.6), where it starts
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FIGURE 16. (Colour online) Instantaneous contours of spanwise-averaged spanwise
vorticity in the x–y plane (top) and total vorticity in the x–z plane at y(x) = 1.5δ1(x)
(bottom) for the controlled flow with B = 0.01. (a) Tu = 5 × 10−2 (%); (b) Tu = 5 ×
10−5 (%). Dashed red lines indicate the mean separation and reattachment locations.
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FIGURE 17. (Colour online) (a) Comparison of the downstream development of the
K-mode for various FST intensities. Plotted are the wall-normal maximum of u′-velocity
Fourier amplitude. (b) Data from (a) scaled with the inlet turbulence intensity. Included in
(b) is mode (0, 7) as obtained from SIA. Shaded area corresponds to the mean separated
region.

to get strongly amplified. Downstream of the mean reattachment location, the K-mode
exhibits a nearly constant exponential growth rate until it reaches the peak amplitude,
a level close to that of the saturated primary mode, which then triggers the transition
to turbulence (see figure 14, left plot for Tu= 0.005 %).

As seen in figure 17(a), the streamwise development of the K-mode from the
beginning all the way up to the reattachment location, and even further downstream
until x ≈ 13, is very similar for all the different levels of FST investigated here
(just shifted vertically with respect to each other). Therefore, when the disturbance
amplitudes are rescaled with the turbulence intensity at the inflow boundary, as
shown in figure 17(b), for all FST intensities investigated, the curves collapse up
to x 6 13. This is an indication that the growth of the 3-D low-frequency modes
caused by the primary wave scale linearly with FST intensity, and that the receptivity
mechanism in this region (upstream of the separation location, inside the separated
region, and within the secondary instability regime) is linear with regard to the FST
intensity. A similar observation was reported by Schrader, Amin & Brandt (2010)
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for an attached laminar boundary layer even for higher FST intensities of up to 1 %.
What is remarkable in figure 17(b) is that SIA accurately captures that behaviour
from upstream of the separation location and through the separated region almost all
the way until the peak amplitude of the K-mode occurs.

For the given forcing amplitude of B= 0.01, it can therefore, be concluded that for
Tu6 6.25× 10−7 (%), the boundary layer remains laminar in the entire computational
domain similar to the results obtained from the zero FST simulation.

4. Conclusion

The objective of this paper is to answer the question whether the surprising
effectiveness of selected 2-D harmonic forcing that can lead to relaminarization and
transition delay could also be observed in a realistic wind tunnel operation conditions,
i.e. in the presence of free-stream turbulence. Toward this end, high-resolution DNS
of canonical separation bubbles on a flat plate were carried out and the response to
high-amplitude 2-D forcing was investigated in the absence of and in the presence
of FST. Harmonic blowing and suction through a spanwise slot was shown to be
very effective in both environments with respect to reducing the extent of separation.
This was attributed to the shear-layer instability, which amplifies the disturbance
input. Without FST, the controlled flow is virtually two-dimensional and dominated
by strong spanwise vortices (‘rollers’). This suggests that the control is effective in
suppressing temporally growing disturbances.

When very low-amplitude isotropic turbulence velocity fluctuations, which are
generated based on a weighted superposition of the continuous modes of the
Orr–Sommerfeld and homogeneous Squire equations, were seeded at the inflow
boundary of the computational domain, the situation changed. With even very low
FST level, complete relaminarization of the flow within the computational domain
as observed in the zero FST case, could no longer be accomplished. In particular,
the flow remained laminar only for short distance downstream of the reattachment
location until it transitioned to turbulence. This can be explained by the fact that in
the presence of even very small levels FST, strong interactions occur between the
high-amplitude 2-D disturbance waves introduced by the forcing and 3-D Klebanoff
modes that are excited by the FST.

Based on the results presented here, corroborated by instantaneous flow visualizations,
spectral analysis, modal decomposition and secondary instability investigations, the
transition process for a controlled (forced) LSB subjected to a low level of FST,
is governed by the interaction of the primary 2-D wave with the forcing frequency
and the steady (very low-frequency) K-mode and unsteady disturbance waves with
the forcing frequency and with the same spanwise mode number as the K-mode.
Based on the linearized Navier–Stokes equations (without additional assumptions
as required by the standard secondary instability analysis) and using time-dependent
solutions of DNS as a base flow, secondary instability investigations indicated that the
time-periodic, controlled flow is secondarily unstable to broad range of low-frequency
3-D disturbance waves. The SIA investigations have also shown that the spanwise
wavelength associated with K-mode is very close to that of the most unstable
3-D disturbances. Therefore, it can be concluded that the K-mode prevails further
downstream and dominates the transition process because it has the largest initial
amplitude upstream of the separation location among all the 3-D disturbances.

Detailed investigations were carried out to evaluate the effect of the forcing
amplitude and FST intensity on the effectiveness of the separation control in
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general and on the transition process in particular. For all levels of FST and forcing
amplitudes investigated, the underlying instability mechanisms leading to transition
were similar, in particular regarding the interaction of the 3-D K-mode and the
2-D primary wave. However, the response of the boundary layer with respect to
the forcing amplitude and FST intensity were different. For a given level of FST
intensity, a reduction in input forcing amplitude increases the bubble size, although
the convective instability of the mean flow with respect to 2-D disturbances is
increased. Simultaneously, the transition to turbulence is delayed. Two physical
mechanisms appear to play the major role in the delay of boundary-layer transition:
(i) The onset of the strong growth of low-frequency 3-D modes is moved farther
downstream, and (ii) the exponential amplification rate of the K-modes was reduced.
On the other hand for a given forcing amplitude, increasing the intensity of the
incoming vortical fluctuations (due to increased FST), results in virtually identical
bubble sizes independent of FST levels for Tu 6 0.05 %. Despite the same bubble
sizes, the boundary-layer development downstream of the mean reattachment location
was very sensitive to the FST intensity. While the onset of the growth and the
subsequent amplification rate of the K-mode was almost identical for the levels of
FST intensity examined, laminar-to-turbulent transition occurred further downstream
for decreasing levels of FST. This can be explained by the fact that the growth of
the 3-D low-frequency modes scale linearly with FST intensity.

In summary, ‘clean’ simulations where the FST is negligible (zero FST) is
extremely difficult to accomplish in practical wind tunnel experiments. However,
in extremely low FST levels as in free flight, the relaminarization strategy may
still be advantageously employed. The presented results are an important finding as
they advance our fundamental physical understanding of the effect of FST on the
separation and separation control.
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