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Highly resolved direct numerical simulations (DNS) are employed to investigate active flow 
control of laminar boundary-layer separation by means of two-dimensional harmonic blowing 
and suction through a narrow spanwise slot. The uncontrolled flow configurations are 
represented by laminar separation bubbles (LSBs) generated on a flat plate by an adverse 
pressure gradient according to earlier wind-tunnel experiments by Gaster.1 Active flow 
control is shown to significantly reduce the separation region. In agreement with our previous 
research the effectiveness of the flow control can be explained by the fact that the primary 
shear-layer instability is exploited. Furthermore, it is demonstrated that two-dimensional 
periodic forcing with a properly chosen frequency and amplitude can suppress the growth of 
three-dimensional disturbances and thus delays transition to turbulence, and even can 
relaminarize the flow. To investigate the effects of a realistic flow environment, very low-
amplitude isotropic free-stream turbulence (FST) fluctuations are introduced at the inflow 
boundary. With FST the effectiveness of the flow control is not diminished and the extent of 
the separated flow region is reduced by the same amount as for the zero FST case. However, 
a striking difference is that in the presence of even very low FST, the flow transitions shortly 
downstream of the reattachment location of the bubble. It appears that this different behavior 
for even very small levels of FST is caused by an interaction between the high-amplitude 2D 
wave introduced by the forcing and the 3D Klebanoff modes caused by the FST. The 
streamwise streaks due to the Klebanoff modes cause a spanwise-periodic modulation of the 
primary 2D wave. The disturbances associated with this modulation exhibit strong growth 
and initiate transition via a continuous formation of Λ-vortices. Therefore, the 
relaminarization of the flow does not occur in a realistic environment, even for very low FST 
levels. 

I. Introduction 
HEN subjected to a strong enough adverse pressure gradient, a laminar boundary-layer will detach from the 
wall, and for sufficiently large Reynolds numbers, the separated flow will transition in the separated region 

thus creating a so-called laminar separation bubble. The size and nature of the separated region itself affect the 
circulation (e.g., for an airfoil) and, thereby, separation itself. In general, flow separation has to be avoided because it 
negatively affects airplane performance. Large separation bubbles can drastically reduce the aerodynamic efficiency 
by reducing the usable lift and increasing drag. Another aspect is the increase in flow unsteadiness and noise caused 
by flow separation. 
 For flight vehicles, successful active flow control (AFC) of boundary-layer separation for lifting surfaces could 
lead to significant performance gains. This is especially true for Unmanned Aerial Vehicles (UAVs), which have 
become increasingly important for military operations. Due to the usually small wing dimensions and low air-speeds, 
UAVs often operate within a Reynolds-number flight regime, for which a strong interaction exists between separation 
and transition. An improved understanding of the relevant physical mechanisms, especially in the presence of free-
stream turbulence (FST), is required for effective flow control. 
 Previous studies have shown that flow control that exploits the shear-layer instability is both effective and efficient 
for controlling laminar separation at low-Reynolds numbers [2-6]. The primary convective instability strongly 
amplifies the disturbance waves (within the Kelvin-Helmholtz frequency range of the separated shear layer) 
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introduced upstream of the separation location until they saturate at a finite nonlinear amplitude, leading to the 
commonly observed periodic shedding of spanwise coherent vortical structures. The presence of the large-amplitude 
waves (or vortices) facilitates an exchange of momentum, which limits the extent of the separation region.  
 In addition to reducing the extent of the separated flow region, Embacher & Fasel2 showed that high-amplitude 
two-dimensional (2D) disturbance waves with a properly chosen frequency and amplitude can suppress the secondary 
absolute instability and thus delay transition and even relaminarize the flow downstream of reattachment. In these 
high-order accurate, numerical simulations the effects of realistic operation conditions, such as free-stream turbulence, 
noise and vibrations were neglected. Therefore, the question arises whether the observed transition delay and 
relaminarization of the flow is still possible in a “real” environment as encountered in free flight or wind/water-tunnel 
experiments. 
 For airplane applications, it is reasonable to assume that surface roughness and free-stream turbulence can provide 
the disturbances that lead to laminar-turbulent transition. Both have to be considered when investigating separation 
and separation control. The present work is aimed at investigating whether FST affects the stunning effectiveness of 
the 2D harmonic excitation for transition delay and relaminarization. Towards this end, very low-amplitude isotropic 
FST velocity and vorticity fluctuations are introduced at the inflow boundary of the computational domain. 
 For the present investigations, laminar separation bubbles on a flat plate caused by a favorable-to-adverse 
streamwise pressure gradient are considered. The simulations discussed here are based on the conditions of the wind 
tunnel experiments by Gaster1, specifically series I case IV (“short” LSB), and case VI (“long” LSB). The simulation 
set-up and key aspects of the computational grid are discussed in Section II. The governing equations, the numerical 
method, the procedure for generating the FST, and the flow control details are provided in Section III. Characteristic 
features of the uncontrolled flow for both zero and non-zero FST conditions are discussed in section IV. A detailed 
discussion of the results for the controlled LSBs is provided in section V. Finally, a summary of the results is provided. 

II. Simulation Set-Up 
The set-up of the numerical simulations was guided by the experimental investigations of laminar separation bubbles 
by Gaster.1 In the experiments, laminar separation on a flat plate is induced through the close proximity of an auxiliary 
wing that is mounted upside down in the wind tunnel. Gaster1 also provided measurements where the boundary layer 
was tripped to turbulence and therefore did not separate in order to get an approximate ‘inviscid’ solution for the 
streamwise pressure gradient. The wall-normal velocity distributions at the upper domain boundary of the 
computational domain for the DNS were specified to reproduce the ‘inviscid’ wall pressure distributions reported by 
the Gaster’s series I experiments, (see Fig. 2).  
 Depending on the governing parameters, such as Reynolds number and pressure distribution, LSBs can be 
classified as either “short” or “long”. There are several parameters proposed by researchers to determine whether a 
bubble is “short” or “long” (see for example, Gaster1, Owen & Klanfer7 and Diwan et al.8). However, it seems more 
intuitive to classify a bubble as either “short” or “long” based on their effect on the pressure distribution. Towards this 
end, the effect of a separation bubble on the pressure distribution is local and limited in the case of a “short” bubble 
while a “long” bubble has a strong upstream and downstream impact on the inviscid pressure field. 
 By varying the tunnel speed, Gaster1 generated a series of “short” and “long” separation bubbles. The present 
investigation focuses on both a “long” bubble (case VI) and a “short” bubble (case IV). The velocity scales are chosen 
according to the tunnel speed in the experiments, 𝑈𝑈∞∗ = 6.64[𝑚𝑚/𝑠𝑠] for case VI and 𝑈𝑈∞∗ = 12.192[𝑚𝑚/𝑠𝑠] for case IV. 
The reference length scale is 𝐿𝐿∞∗ = 1[𝑖𝑖𝑖𝑖] = 0.0254[𝑚𝑚]. This length scale is chosen because the experimental data 
were reported in inches. The chord length of the wing section in the experiments is 𝐶𝐶∗ = 5.5[𝑖𝑖𝑖𝑖] and the global 
Reynolds number based on 𝐶𝐶∗ and 𝑈𝑈∞∗  are 𝑅𝑅𝑅𝑅𝐶𝐶∗ = 61,840 and 𝑅𝑅𝑅𝑅𝐶𝐶∗ = 113,550 for cases VI and IV, respectively. 
The asterisk is used to denote dimensional quantities. 
 For our simulations, we employ our high-order-accurate, spatial DNS code for a model geometry (separation is 
generated on a flat plate as in the experiments). This model geometry is defined such that it exhibits a flow with similar 
physical properties as the flow over an airfoil but at reduced geometric complexity. This approach will enable higher 
grid resolution and the use of a considerably more efficient incompressible DNS code, which will allow capturing of 
the relevant physics with greater confidence.  
 The computational domain is depicted in Fig. 2. The integration domain does not include the leading edge. The 
streamwise coordinate is x, the spanwise coordinate is z, and the wall-normal coordinate is y. The domain extent and 
computational grid parameters are summarized in Tab. 1 for each case. The grid spacing is uniform in the streamwise 
direction. An exponential grid point distribution was employed in the wall-normal direction to improve the near-wall 
resolution. Length scales were made dimensionless with a reference length of 𝐿𝐿∞∗ , and velocities were made 
dimensionless with a reference velocity 𝑈𝑈∞∗ . A Blasius velocity profile is prescribed at the inflow. The Reynolds 
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number based on the inflow displacement thickness and the free-stream streamwise velocity at the inflow boundary is 
𝑅𝑅𝑅𝑅𝛿𝛿1 = 407.8 and 𝑅𝑅𝑅𝑅𝛿𝛿1 = 552.6 for case VI and case IV, respectively.  

In Gaster’s experiments at the separation location, the boundary-layer edge velocity and Reynolds number based 
on the momentum thickness were 𝑢𝑢𝑒𝑒,𝑆𝑆 = 1.3 and 𝑅𝑅𝑅𝑅𝜃𝜃,𝑆𝑆 = 218 for case 𝐿𝐿 (“long” bubble) and 𝑢𝑢𝑒𝑒,𝑆𝑆 = 1.355 and 
𝑅𝑅𝑅𝑅𝜃𝜃,𝑆𝑆 = 298 for case 𝑆𝑆 (“short” bubble).  In the DNS, these values are 𝑢𝑢𝑒𝑒,𝑆𝑆 = 1.32 and 𝑅𝑅𝑅𝑅𝜃𝜃,𝑆𝑆 = 189 for case 𝐿𝐿 and 
𝑢𝑢𝑒𝑒,𝑆𝑆 = 1.37 and 𝑅𝑅𝑅𝑅𝜃𝜃,𝑆𝑆 = 252 for case 𝑆𝑆, which compare favorably to the values measured in the experiments. 

 
Figure 1. Wall-pressure coefficient: (—) inviscid solution; (○) experiment tripped to turbulence for Series I 
experiments by Gaster1: (a) Case VI, (b) case IV. 
 

 
Figure 2. Schematic of the computational setup. Isotropic FST fluctuations are seeded at the inflow boundary. Flow 
control is applied at 𝒙𝒙𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂. 
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case 𝒙𝒙𝟎𝟎×𝒙𝒙𝒎𝒎𝒂𝒂𝒙𝒙×𝒚𝒚𝒎𝒎𝒂𝒂𝒙𝒙×𝑳𝑳𝒛𝒛 𝒏𝒏𝒙𝒙×𝒏𝒏𝒙𝒙×𝒏𝒏𝒙𝒙 ∆𝒙𝒙+×∆𝒚𝒚𝒘𝒘𝒂𝒂𝒘𝒘𝒘𝒘+ ×∆𝒛𝒛+ 

𝑳𝑳 5×21.2×2×2 1801×256×200 5.54×0.95×6.16 

𝑺𝑺 5×17.95×2×1 3501×340×270 4.35×0.43×4.36 

Table 1. Parameters for the computational domain as shown in Fig. 2. Case 𝑳𝑳 corresponds to Gaster case VI, 
(“long” bubble) and case 𝑺𝑺 to Gaster case IV (“short” bubble). The grid resolution in wall units are based on a 
maximum skin-friction coefficient in the developing turbulent boundary layer. 

III. Numerical Methodology 
Direct Numerical Simulation (DNS) of transition requires numerical methods with low numerical dispersion and 
dissipation. Therefore, a three-dimensional incompressible Navier-Stokes code, using a combination of high-order 
accurate finite-difference approximations and a pseudo-spectral method, was employed. This code was developed in 
our CFD Laboratory and validated for numerous cases of boundary-layer transition (Meitz & Fasel9), laminar 
separation bubbles in two and three-dimensional boundary-layers (Balzer & Fasel10, Hosseinverdi et al.11, 
Hosseinverdi & Fasel12), and separation control (Hosseinverdi & Fasel13; Postl et al.14). The following section provides 
a summary of the numerical method and the computational approach. 

A. Governing Equations 
The governing equations are the incompressible, unsteady Navier-Stokes equations in vorticity velocity formulation. 
The transport equation for the vorticity vector 𝝎𝝎 is 

 
𝜕𝜕 𝝎𝝎
𝜕𝜕𝜕𝜕

= 𝜵𝜵×( 𝒂𝒂×𝝎𝝎) +
1
𝑅𝑅𝑅𝑅

𝜵𝜵2 𝝎𝝎 . (1) 

Here the vorticity is defined as the negative curl of the velocity 𝝎𝝎 = −𝜵𝜵×𝒂𝒂. Equation (1) consists of three transport 
equations for the vorticity components in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. 
The global Reynolds number in equation 1 is defined as 𝑅𝑅𝑅𝑅 = 𝑈𝑈∞∗ 𝐿𝐿∞∗ /𝜈𝜈∗, where 𝜈𝜈∗ is the kinematic viscosity. Using 
the fact that the both vorticity and velocity vector fields are solenoidal, one can obtain a vector Poisson equation for 
the velocity field,  

 𝛻𝛻2𝒂𝒂 = 𝜵𝜵×𝝎𝝎 (2) 

B. Numerical Method 
The governing equations are integrated in time using an explicit fourth-order-accurate Runge–Kutta scheme. All 
derivatives in streamwise and wall-normal directions are approximated with fourth-order compact differences. No 
explicit filtering is used in present investigations. Instead stability is enhanced by appropriate treatment of the first 
derivative of the nonlinear terms, which are discretized using fourth-order accurate (split) compact differences in x-
direction. At consecutive sub-steps of the four-stage Runge–Kutta scheme, the numerical scheme alternates between 
upwind-biased differences and downwind-biased differences. In the wall-normal direction, an exponential grid 
stretching is used in order to cluster grid points near the wall. Note that the finite-difference approximations for the 
derivatives with respect to y are constructed for a non-equidistant grid instead of using a coordinate transformation. 
While this approach is tedious, it can yield higher accuracy than the traditional method of grid stretching by using a 
coordinate transformation. 
 The flow field is assumed to be periodic in the spanwise direction. Therefore, the flow field is expanded in Fourier 
cosine and sine series. Each variable is represented by a total of 2K+1 Fourier modes: the 2D spanwise average (zeroth 
Fourier mode), K symmetric Fourier cosine as well as K antisymmetric Fourier sine modes. To avoid aliasing errors, 
the nonlinear terms in physical space are computed on К ≈ 3K spanwise collocation points. 
 Fast Fourier Transforms (FFTs) are employed to convert each variable from spectral space to physical space and 
vice versa. The nonlinear terms are computed in physical space, while differentiation, integration, and imposition of 
the boundary conditions take place in spectral space. For the calculation of the nonlinear terms, the flow field is 
transformed from spectral to physical space (and back) before each Runge-Kutta sub-step, which requires 
redistributing of the entire three-dimensional arrays among the processors. This extensive inter-processor 
communication is realized using the message passing interface (MPI). 
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 The velocity Poisson equation (2) is solved by a direct method using fourth-order standard compact differences in 
wall-normal direction and Fourier sine transforms in streamwise direction. 

C. Boundary Conditions 
The flow enters the computational domain at the inflow boundary located at 𝑥𝑥0, and leaves it through the outflow 
boundary at 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . In the spanwise direction, the flow is assumed to be periodic with the fundamental wavelength 
𝜆𝜆𝑧𝑧 = 𝐿𝐿𝑧𝑧, where 𝐿𝐿𝑧𝑧 is the domain width in spanwise direction.  
 At the inflow boundary at 𝑥𝑥 = 𝑥𝑥0 all velocity and vorticity components are specified. In particular, the velocity 
and vorticity components of a two-dimensional (2-D) steady-state basic flow obtained from the Blasius equations, 
superimposed with velocity and vorticity fluctuations from the FST model, are prescribed as Dirichlet conditions. In 
addition, for maintaining the fourth-order accuracy of the code near the inflow boundary, the streamwise derivatives 
are prescribed as well.  
 At the outflow boundary, 𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, all second derivatives in streamwise direction are set to zero. In addition, a 
buffer domain in region 𝑥𝑥𝐵𝐵 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 as proposed by Meitz & Fasel9, is employed in order to smoothly dampen 
out the fluctuations generated inside the domain. Note that near the outflow boundary, the boundary layer is turbulent 
and large errors would occur if a laminar boundary–layer solution would be enforced at the outflow boundary. 
Therefore, within the buffer region, the solution was ramped down to turbulent mean flow profiles, which were 
obtained from precursor simulations with a longer integration domain. 
 The no-slip and no-penetration conditions are enforced on the surface of the flat plate. In addition, the wall-normal 
derivative of the v-velocity is set to zero to ensure conservation of mass. At the free-stream boundary 𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 it is 
assumed that the flow is irrotational, thus all vorticity components and their derivatives are set to zero. A wall-normal 
velocity distribution is applied at the upper boundary for generating the favorable to adverse pressure gradients that 
induces laminar separation on the flat plate. The v-velocity distribution is chosen such that the resulting downstream 
pressure gradient closely matches that of the wind-tunnel experiments by Gaster.1  

D. Free-Stream Turbulence Generation 
The LSBs investigated here are subjected to the FST, which was modeled by introducing a set of velocity and vorticity 
disturbances at the inflow boundary of the domain. The methodology adopted for generating realistic free-stream 
turbulence velocity fluctuations at the inflow boundary is similar to that proposed by Jacobs & Durbin.15 The method 
is based on a Fourier expansion of the disturbance velocity with random amplitudes: 

 
𝒂𝒂′(𝒙𝒙, 𝜕𝜕) = �𝒂𝒂�(𝒌𝒌, 𝜕𝜕)𝑅𝑅𝑖𝑖𝒌𝒌∙𝒙𝒙

 

𝑘𝑘

 , (3) 

where the wavenumber vector is 𝒌𝒌 = �𝑘𝑘𝑚𝑚, 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧�
𝑇𝑇
 with 𝑘𝑘 = |𝒌𝒌|. Here 𝑘𝑘𝑚𝑚 , 𝑘𝑘𝑦𝑦 and 𝑘𝑘𝑧𝑧 are the streamwise, wall-normal 

and spanwise wavenumbers, respectively. In the same manner, the inflow disturbance vorticity field is calculated from 
the disturbance velocity field as 𝝎𝝎′ = −∇×𝒂𝒂′.  
 The objective is to specify the Fourier coefficients of a disturbance velocity field such that the inlet disturbance 
flow field satisfies continuity and generates isotropic turbulence in the free-stream and models a specified energy 
spectrum. By invoking Taylor’s hypothesis and ignoring the streamwise decay, 𝑘𝑘𝑚𝑚𝑥𝑥 can be replaced by a -𝜔𝜔𝜕𝜕, where 
𝜔𝜔 is the angular disturbance frequency. The implementation of the spanwise Fourier modes, 𝑅𝑅𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧, is straightforward 
since the numerical model assumes periodicity of the flow field in z-direction. However, in the presence of an 
inhomogeneous direction y, specific basis functions are needed to account for the presence of the wall. Instead of 
Fourier modes �exp (𝑖𝑖𝑘𝑘𝑦𝑦𝑦𝑦)� in the expansion of the disturbance quantities, Jacobs & Durbine15 and Brandt et.al.16 
suggested to use eigenmodes from the continuous spectrum of the Orr-Sommerfeld and Squire operators since they 
are sinusoidal in the free-stream, but naturally decay inside the boundary layer (see Grosch & Salwen17). Therefore 
Eq. 3 can be reformulated as    

 
𝒂𝒂′(𝑥𝑥0, 𝑦𝑦, 𝑧𝑧, 𝜕𝜕) = ���𝐴𝐴

 

𝑘𝑘𝑦𝑦

 

𝑘𝑘𝑧𝑧

 

𝜔𝜔

(|𝑘𝑘|)𝛷𝛷�𝜔𝜔, 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧�𝑅𝑅𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧𝑅𝑅−𝑖𝑖𝜔𝜔𝑖𝑖  . (4) 

Here, the coefficients 𝐴𝐴(|𝑘𝑘|) determine the contribution of the eigenfunctions to the total turbulent kinetic energy and 
𝛷𝛷 is a normalized superposition of Orr–Sommerfeld, 𝛷𝛷𝑂𝑂𝑆𝑆, and Squire, 𝛷𝛷𝑆𝑆𝑆𝑆, continuous eigenfunctions. The velocity 
fluctuations at the inflow model the specified energy spectrum. Various analytic forms for energy spectrum exist. For 
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most of the simulations presented in this work, the von Karman energy spectrum is employed for distributing the 
turbulent kinetic energy among the various modes 
 

𝐸𝐸(𝑘𝑘) = 𝑇𝑇𝑢𝑢02𝐿𝐿11
1.196(𝑘𝑘𝐿𝐿11)4

0.558[1 + (𝑘𝑘𝐿𝐿11)2]17/6. (5) 

The turbulent integral length scale, 𝐿𝐿11, determines the wavenumber associated with the maximum in the 𝐸𝐸(𝑘𝑘) 
distribution. For large scales (small 𝑘𝑘) the spectrum is asymptotically proportional to 𝑘𝑘4. For small scales (large 𝑘𝑘) 
the spectrum matches Kolmogorov’s 𝑘𝑘−5/3law.  
 In order to obtain isotropic turbulence, several wavenumbers 𝑘𝑘 have to be selected in the domain 𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑘𝑘 <
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, where the limiting wavenumbers are determined by the chosen numerical resolution. For the present 
investigations, the wavenumber space (𝑘𝑘) was divided into 40 equidistant concentric shells over which energy was 
distributed discretely using a limited number, 𝑁𝑁𝑝𝑝, of disturbance modes. Modes on a given shell have an identical 
wave number magnitude, |𝑘𝑘| = �𝜔𝜔 

2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2. The coefficient of each terms in equation (2.4) is given by 𝐴𝐴(|𝑘𝑘|) =
�2𝐸𝐸(𝑘𝑘)∆𝑘𝑘/𝑁𝑁𝑝𝑝, where ∆𝑘𝑘 is difference in wavenumber between two shells. Finally, upon choosing the parameters 
𝐿𝐿11 and the FST intensity 𝑇𝑇𝑢𝑢0, the inflow velocity- and vorticity disturbance fields can be entirely determined. A 
detailed description of the implementation and validation results are provided in Balzer & Fasel10 and Hosseinverdi et 
al.11 

E. Flow Control: Harmonic Blowing and Suction Through 2D Slot 
In the present simulation, high amplitude, two-dimensional disturbance waves are generated upstream of the 
separation location by specifying a wall-normal velocity component across a narrow blowing and suction slot at the 
wall. The forcing function for the harmonic blowing and suction (HBS) simulations has the form 
 

𝑣𝑣𝑓𝑓(𝑥𝑥, 𝜕𝜕) = 𝐴𝐴 ∙ 𝐹𝐹(𝑥𝑥) ∙ cos�𝛽𝛽𝑓𝑓𝜕𝜕 + 𝜃𝜃𝑓𝑓�, (6) 

where 𝐴𝐴 is the maximum forcing amplitude and 𝛽𝛽𝑓𝑓 & 𝜃𝜃𝑓𝑓 represent the angular forcing frequency and phase shift, 
respectively. The shape function, 𝐹𝐹(𝑥𝑥), is a polynomial which is zero outside the suction/blowing slot such that smooth 
derivatives near boundaries of the suction/blowing slot are obtained. Furthermore, this shape function guarantees zero 
net volume flow through the disturbance slot at any time instant: 

 

𝐹𝐹(𝑥𝑥) =
1

48
⎩
⎨

⎧+729𝜓𝜓5 − 1701𝜓𝜓4 + 972𝜓𝜓3,     𝜓𝜓 =
𝑥𝑥 − 𝑥𝑥𝑠𝑠
𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑠𝑠

;     𝑥𝑥𝑠𝑠 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑓𝑓

−729𝜓𝜓5 + 1701𝜓𝜓4 − 972𝜓𝜓3,     𝜓𝜓 =
𝑥𝑥𝑒𝑒 − 𝑥𝑥
𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑓𝑓

;     𝑥𝑥𝑓𝑓 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑒𝑒
, (7) 

The downstream locations 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑒𝑒 and 𝑥𝑥𝑓𝑓 correspond the beginning, the end, and the center of the slot, respectively. 
The shape function for the spanwise slot actuation is plotted in Fig. 3. 

 

 
Figure 3. Wall-normal velocity distribution, F(x), for 2D harmonic blowing and suction slot. 
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IV. Characteristic Features of Uncontrolled Flow 
In this section results obtained from 3D DNS of the uncontrolled flow for the two cases (𝑆𝑆 & 𝐿𝐿) are discussed in order 
to understand the relevant length scales and characteristic frequencies of the LSBs in the presence of FST and zero 
FST. For the FST simulations, a full spectrum of isotropic FST with an intensity of 𝑇𝑇𝑢𝑢0 = 0.005% is introduced at 
the inflow boundary of the computational domain. 

The free-stream vortical disturbances generated by the free-stream turbulence model are illustrated in Fig. 4. 
Because the vorticity associated with the turbulent velocity fluctuations in the free-stream is much smaller than the 
vorticity associated with the near wall structures, a logarithmic scale was employed for plotting the spanwise vorticity 
in the free-stream (averaged in the spanwise direction) in Fig. 4. For the zero FST environment, the free-stream is 
undisturbed (top plots). For the zero FST case, the boundary layer separates laminar and then undergoes transition to 
turbulence and reattaches. The transition onset shifts upstream with the inclusion of FST. It has been shown (e.g., Liu 
et al.18) that laminar boundary layers act as a low-pass filter, which means that low frequency vortical fluctuations can 
penetrate the laminar boundary layer and promote transition. 
 To gain insight into the transient ‘roll-up’ of vorticity from the separated shear layer, the temporal variation of the 
spanwise vorticity (averaged in spanwise direction) was analyzed for one full period of the dominant shedding 
frequency for case S in the absence of FST and is plotted in Fig. 5. In each image, the mean dividing streamlines are 
indicated by the solid lines while the dashed lines correspond to the mean displacement thickness. The oblique line 
identifies the instantaneous location of one of the coherent structures generated in the transition process for the five 
time instances. For a laminar separation bubble, because the velocity profiles in the separated region exhibit an 
inflection point, the separated shear-layer is highly unstable w.r.t. 2D disturbances, which therefore are strongly 
amplified. The resulting spanwise structures (“rollers”) facilitate a transfer of high momentum fluid from the free-
stream towards the wall and of low momentum fluid away from the wall, and thus promote mixing and ultimately 
reattachment.  These spanwise vortical structures can persist even in the turbulent flow region downstream of the 
reattachment location (coherent structures). Examination of the transient roll-up of vorticity in the separated shear 
layer suggests that the roll-up takes place in three steps: (i) Onset of the roll-up upstream of the maximum bubble 
height, (ii) along the mean dividing streamline, the developed vortex (“spanwise roller”) grows in intensity due to the 
Kelvin-Helmholtz instability as it is convected downstream, and (iii) it is shed at the location of the maximum bubble 
height. Also, small vortical structures are present near the wall, which are also contributing to the exchange of 
momentum. 
 To detect the dominant frequencies in the separation bubble, the time signal of the spanwise-averaged wall-normal 
disturbance velocity component, 𝑣𝑣′ = 𝑣𝑣 − �̅�𝑣, is monitored along the local displacement thickness, which is very close 
to the inflection point. Figs. 6 and 7 show the contours of 𝑣𝑣′ in an x-t-diagram for cases L and S for zero FST and 
𝑇𝑇𝑢𝑢 = 0.005%, respectively. A strong variation of the velocity signal with a distinct timescale (strong temporal 
periodicity) can be observed for all cases. The onset of temporal periodicity moves upstream with the presence of 
FST. The unsteadiness is directly related to the vortex shedding of the separation bubble and can typically be 
associated with the inviscid shear layer instability. A Fourier analysis of the signals is performed in order to obtain 
the frequency spectrum associated with these velocity signals. Results of the spectral analyses are presented in Figs. 
6 and 7. From the spectral analysis, the following dominant frequencies are obtained: 
• case 𝐿𝐿: 𝑓𝑓∗ = 234 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0 and 𝑓𝑓∗ = 276 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0.005%. 
• case 𝑆𝑆: 𝑓𝑓∗ = 633 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0 and 𝑓𝑓∗ = 733 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0.005%. 
The non-dimensional frequencies based on the free-stream velocity and the mean separation length are 
• case 𝐿𝐿: 𝐹𝐹+ = 4.58 for 𝑇𝑇𝑢𝑢 = 0 and 𝐹𝐹+ = 4.46 for 𝑇𝑇𝑢𝑢 = 0.005%. 
• case 𝑆𝑆: 𝐹𝐹+ = 4.18 for 𝑇𝑇𝑢𝑢 = 0 and 𝐹𝐹+ = 4.54 for 𝑇𝑇𝑢𝑢 = 0.005%. 

 
Figure 4. Instantaneous contours of spanwise vorticity, 𝝎𝝎𝒛𝒛, for zero FST (top) and FST of 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎% 
(bottom). Dashed contour lines correspond to 𝒘𝒘𝒏𝒏|𝝎𝝎𝒛𝒛|. (a) case 𝑳𝑳; (b) case 𝑺𝑺. 
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Figure 5. Instantaneous contours of spanwise vorticity, 𝝎𝝎𝒛𝒛 (averaged in spanwise direction) at five time 
instances for disturbance-free simulation, case S. Time instances are separated by one fifth the vortex-
shedding period. The solid lines are the mean dividing stream line and dashed lines represent the mean 
displacement thickness. 

 
Figure 6. Contours of spanwise-averaged wall-normal disturbance velocity in t/x diagram extracted along the 
mean displacement thickness (left) and the respective Fourier spectra (right) for case 𝑳𝑳. (a) zero FST; (b) 𝑻𝑻𝒂𝒂 =
𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%. The dashed and solid lines correspond to the mean separation and reattachment locations, 
respectively.  

 
Figure 7. Contours of spanwise-averaged wall-normal disturbance velocity in t/x diagram extracted along the 
mean displacement thickness (left) and the corresponding Fourier spectra (right) for case 𝑺𝑺. (a) zero FST; (b) 
𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%.  The dashed and solid lines correspond to the mean separation and reattachment locations, 
respectively. 
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The dominant frequency increases slightly for the cases with FST. The increase in frequency must be attributed to the 
smaller bubble dimensions. Smaller bubbles shed at higher frequencies. 

From experiments and numerical simulations (Klebanoff & Tidstrom19, Klebanoff20, Jacobs & Durbin15; Fasel21), 
it is known that FST can cause the formation of streamwise elongated streaks inside the boundary layer, the so-called 
Klebanoff modes (K-modes). The K-modes lead to a significant distortion in the form of the u-component in the 
spanwise direction. K-modes are fundamentally different from TS-waves. Characteristic features of the K-modes are 
their low frequency, growth rate, high amplitude and a spanwise spacing of a few boundary layer thicknesses. 

To determine the spanwise wavelength associated with the K-modes, one-dimensional power spectra of the 
streamwise velocity component are computed for case 𝐿𝐿 and case 𝑆𝑆. The spectra were computed using spaniwse 
Fourier transform and the following relationship 

𝐸𝐸𝑢𝑢𝑢𝑢(𝑥𝑥, 𝑦𝑦,𝑚𝑚) = 𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝜕𝜕)𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝜕𝜕)��������������������������� ,                                                            (8) 

where the overbar indicates a time average and 𝑢𝑢𝑚𝑚 symbolizes the Fourier transformed u-velocity component in 
spanwise direction with 𝑚𝑚 as the spanwise modenumber (e.g. 𝑚𝑚 = 1 indicates that the spanwise spacing of the modes 
is 𝜆𝜆𝑧𝑧 = 𝐿𝐿𝑧𝑧 and for 𝑚𝑚 = 2, 𝜆𝜆𝑧𝑧 = 𝐿𝐿𝑧𝑧/2, and so on). Figure 8 shows the contours of spanwise, one-dimensional power 
spectra for selected streamwise locations: The inflow boundary, 𝑥𝑥0, the onset of the adverse pressure gradient, 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴 , 
and the separation location, 𝑥𝑥𝑆𝑆. The wall-normal coordinate is normalized by the local boundary-layer thickness and 
the local displacement thickness is indicated by dashed lines in each plot.  

For both cases with FST, the energy in the power spectrum at the inflow is clearly concentrated in the free-stream 
and the maximum amplitude is at 1 ≤ 𝑚𝑚 ≤ 2 (this is related to the chosen turbulent integral length scale 𝐿𝐿11). While 
propagating in the downstream direction, the vortical structures in the free-stream enter the boundary layer as can be 
clearly observed at 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴 . At the onset of the adverse pressure gradient, the spanwise mode number with the largest 
disturbances amplitude is 𝑚𝑚 = 8 for case 𝐿𝐿 and 𝑚𝑚 = 6 for case 𝑆𝑆. The disturbances are amplified further in the 
downstream direction. 

Furthermore, the spanwise spacing of the Klebanoff modes based on the local boundary-layer thickness is in the 
order of 𝜆𝜆𝑧𝑧,𝐾𝐾 ≈ (2.2𝛿𝛿 − 3𝛿𝛿) for case L and 𝜆𝜆𝑧𝑧,𝐾𝐾 ≈ (2.1𝛿𝛿 − 2.8𝛿𝛿) for 5 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑠𝑠 where 𝛿𝛿 is the local boundary layer 
thickness and 𝑥𝑥𝑠𝑠 is the separation location. These findings are consistent with the findings of 𝜆𝜆𝑧𝑧,𝐾𝐾 = 𝑂𝑂(2𝛿𝛿 − 4𝛿𝛿) for 
attached flat-plate boundary layers (Kendall22, 23, Westin et al.24).  

The time- and spanwise-averages of the skin friction coefficient are compared in Fig. 69 for case 𝐿𝐿 and case 𝑆𝑆 for 
zero FST and 𝑇𝑇𝑢𝑢 = 0.005%. With the inclusion of FST, the separation location is slightly delayed and the 
reattachment location moves upstream for both cases, hence leading to shorter bubbles in the presence of FST. 
However, the reduction in the mean separation length is different for case 𝐿𝐿 and case 𝑆𝑆: 17.5% for case 𝐿𝐿 and 6.2% 
for case 𝑆𝑆. 

 

                                               (a)                                                                                        (b) 

 
Figure 8. Spanwise one-dimensional energy spectra of the streamwise velocity at selected streamwise stations 
for 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎% for case 𝑳𝑳 (a) and case 𝑺𝑺 (b). Dashed lines are the displacement thickness. Wall-normal 
coordinates was normalized with the local boundary layer thickness.  
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Figure 9. Time- and spanwise-averaged results for skin friction coefficient for case 𝑳𝑳 (a) and case 𝑺𝑺 (b). 

V. Controlled Flow 
In this section, simulations are discussed where high-amplitude 2D disturbance waves were introduced upstream of 
the separation location for cases 𝐿𝐿 and 𝑆𝑆 in the absence and presence of FST. 

A. Hydrodynamic Instability 
To determine the forcing frequency, the hydrodynamic instability w.r.t. two-dimensional unsteady disturbances is 
investigated. To predict the evolution of instabilities in the linear regime, we developed a numerical method to directly 
solve the Linearized Navier-Stokes Equations (LNSE) without relying on additional assumptions such as required by 
Linear Stability Theory (LST), i.e. assuming that the basic flow is parallel. Thus, all effects due to locally non-parallel 
effects of the basic flow are included in the LNSE approach.  

The LNSE can be derived from the governing equations given in section III(A). The total flow field, 𝒂𝒂(𝒙𝒙, 𝜕𝜕) & 
𝝎𝝎(𝒙𝒙, 𝜕𝜕), is decomposed into the base (or basic) flow 𝒂𝒂𝑩𝑩(𝑥𝑥, 𝑦𝑦) & 𝝎𝝎𝑩𝑩(𝑥𝑥, 𝑦𝑦) and small disturbances 𝒂𝒂′(𝒙𝒙, 𝜕𝜕) & 𝝎𝝎′(𝒙𝒙, 𝜕𝜕). 
When this disturbance ansatz is introduced into the Navier-Stokes equations (Eq. 1) the governing equations in 
disturbance form are obtained. The equations are then linearized (neglecting products of the disturbance quantities) 
and the governing equations for the base flow are subtracted in order to obtain the LNSE. For numerically solving the 
LNSE, the same time integration and spatial discretization techniques are employed as for the non-linear equations 
used in the DNS. 

For the base flow in the LNSE investigations, the time- and spanwise-averaged results obtained for different 
uncontrolled flow conditions are employed. For the present linear instability investigations, 2D periodic disturbances 
of various frequencies were introduced at 𝑥𝑥 = 9.5 by specifying a wall-normal velocity component. Then the 
amplitude development of the disturbances was tracked in downstream direction in order to extract the linear stability 
behavior. The results of such LNSE investigations are shown in Figs. 10 and 11 for case 𝐿𝐿 and case 𝑆𝑆, respectively. 
The contours of wall-normal maxima of u-velocity disturbances are plotted in the frequency versus x for zero FST 
and 𝑇𝑇𝑢𝑢 = 0.005%. As can be observed in Figs. 10 and 11, the band width of amplified frequencies increases for case 
𝑆𝑆 compared to case 𝐿𝐿. From these plots, it is also obvious that there is a dominant frequency for all cases for which 
the disturbances reach the absolute maximum amplitudes:  
• case 𝐿𝐿: 𝑓𝑓∗ = 256 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0 and 𝑓𝑓∗ = 264 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0.005%. 
• case 𝑆𝑆: 𝑓𝑓∗ = 740 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0 and 𝑓𝑓∗ = 760 (ℎ𝑧𝑧) for 𝑇𝑇𝑢𝑢 = 0.005%. 
Note that the dominant frequencies for case 𝑆𝑆 are about 3 times higher than for case 𝐿𝐿, which can be cxplained by the 
fact the Reynolds number is higher for case 𝑆𝑆. Also, this is consistent with the results from DNS presented in the 
previous section.  
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Figure 10. Contours of the wall-normal maximum amplitude of u-velocity in the frequency–x plane for case 𝑳𝑳. 
(a) zero FST; (b) 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%. The dashed lines correspond to the shedding frequency obtained from the 
DNS. The mean separation and reattachment locations are marked by down arrows. 

 
Figure 11. Contours of the wall-normal maximum amplitude of u-velocity in the frequency–x plane for case 𝑺𝑺. 
(a) zero FST; (b) 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%. The dashed lines correspond to the shedding frequency obtained from the 
DNS. The mean separation and reattachment locations are marked by down arrows. 

B. Instantaneous Flow Structures  
In this section, the response of the flow to the 2D harmonic forcing for two different FST levels are discussed: Zero 
FST and very low FST (𝑇𝑇𝑢𝑢 = 0.005%). The frequency of the actuation is the same for the zero FST and the 𝑇𝑇𝑢𝑢 =
0.005% case and it is set to 𝑓𝑓∗ = 240 (ℎ𝑧𝑧) for case 𝐿𝐿 and 𝑓𝑓∗ = 667 (ℎ𝑧𝑧) for case 𝑆𝑆 based on the hydrodynamic 
instability analysis discussed above. Three different wall-normal forcing amplitudes are investigated: 𝐴𝐴 = 0.01, 𝐴𝐴 =
0.03 and 𝐴𝐴 = 0.05. The width of the forcing slot was 0.2 and 0.13 for case 𝐿𝐿 and case 𝑆𝑆, respectively. The forcing 
slot is located at the beginning of the adverse-pressure gradient region at 𝑥𝑥𝑓𝑓 = 9.5. 

The effect of the forcing on the LSB is demonstrated in Figs. 12 and 13 which show instantaneous contours of the 
spanwise vorticity for case 𝐿𝐿 and case 𝑆𝑆, respectively. The visualizations for the zero FST cases reveal that the flow 
is “locking on” to the forcing signal and is shedding spanwise vortices at the forcing frequency. As discussed for the 
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results of the uncontrolled flow, these structures are very effective in increasing the wall-normal momentum transfer 
and therefore reducing the size of the separation bubble. The vortices remain close to the wall and transition to 
turbulence is delayed significantly. For case 𝐿𝐿, transition does not occur inside the integration domain for the two 
lowest forcing amplitudes (𝐴𝐴 = 0.01 and 𝐴𝐴 = 0.03). In fact, the flow remains completely laminar in the entire 
integration domain. This result is in agreement with the findings of Embacher & Fasel.2 When the forcing amplitude 
is increased, small scale fluctuations become visible in the downstream part of the domain. 

For case 𝑆𝑆 which corresponds to the higher Reynolds number, the vortex shedding still “locks on” to the forcing 
frequency and a train of 2D spanwise rollers is observed for different forcing amplitudes. Compared to the case 𝐿𝐿, the 
transition process starts further upstream. For 𝐴𝐴 = 0.01 , the spanwise structures are seen to break up into smaller 
scales for 𝑥𝑥 > 17 which indicates the onset of transition.  
 In the presence of FST environment, the situation changes. Figures 12(b) and 13(b) reveal that with FST the strong 
spanwise structures break-up into smaller scales soon after their first appearance such that transition to turbulence is 
initiated. In fact, prior to transition only one or two spanwise coherent structures are still visible depending on the 
forcing amplitude. It must therefore be assumed, that the relaminarization of the flow for the zero FST cases is indeed 
an artifact of the extremely low "noise" level of the highly-accurate DNS code, which does not occur in a realistic 
environment even with very low FST conditions. 

To gain more insight into the response of the boundary layer to the 2D forcing and the transition process, the 𝜆𝜆2-
criterion by Jeong & Hussain25 is employed. The 𝜆𝜆2-criterion indicates areas where rotation dominates strain. Figures 
14 and 15 provides instantaneous perspective views of iso-surfaces of the 𝜆𝜆2-criterion colored by the streamwise 
velocity for case 𝐿𝐿 and case 𝑆𝑆. Also shown are instantaneous, spanwise-averaged 𝜔𝜔𝑧𝑧-vorticity contours. The 
visualizations show the train of spanwise “rollers” in the absence of FST.  
 
 

                                               (a)                                                                                      (b)  

 
Figure 12. Instantaneous contours of spanwise vorticity (average in spanwise direction) for various forcing 
amplitudes for case 𝑳𝑳. (a) zero FST; (b) 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%. The case “UNC” corresponds to the uncontrolled flow. 

                                               (a)                                                                                      (b)  

 
Figure 13. Instantaneous contours of spanwise vorticity (average in spanwise direction) for various forcing 
amplitudes for case 𝑺𝑺. (a) zero FST; (b) 𝑻𝑻𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎%. The case “UNC” corresponds to the uncontrolled flow. 
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                                               (a)                                                                                      (b)  

 
Figure 14. Instantaneous flow visualization for case 𝑳𝑳. Shown are 𝝀𝝀𝟐𝟐 = −𝟒𝟒𝟎𝟎 colored by u-velocity together with 
contours of 𝝎𝝎𝒛𝒛-vorticity (averaged in spaniwse direction). (a) zero FST, A=0.05; (b) Tu=0.005%, A=0.01. 

                                               (a)                                                                                      (b)  

 
Figure 15. Instantaneous flow visualization for case 𝑺𝑺. Shown are 𝝀𝝀𝟐𝟐 = −𝟏𝟏𝟎𝟎𝟎𝟎 colored by u-velocity together 
with contours of 𝝎𝝎𝒛𝒛-vorticity (averaged in spaniwse direction). (a) zero FST, A=0.05; (b) Tu=0.005%, A=0.01. 
 
Without FST, transition to turbulence is delayed until further downstream, where the primary vortex cores appear to 
be deformed sinusoidally in the spanwise direction due to the secondary instability of the periodic controlled baseflow.  
For a forcing amplitude of 𝐴𝐴 = 0.05, the spanwise wavelength of the amplified 3D disturbance waves is 𝜆𝜆𝑧𝑧 = 0.25 
for case L and 𝜆𝜆𝑧𝑧 = 0.2 for case 𝑆𝑆, which are in the order of the shear-layer thickness for both cases. It is worth noting 
that the ratio of the spanwise wavelength to the streamwise wavelength of the disturbance waves in the transition 
region is 𝜆𝜆𝑧𝑧/𝜆𝜆𝑚𝑚 ≈ 0.37 and  𝜆𝜆𝑧𝑧/𝜆𝜆𝑚𝑚 ≈ 0.44 for case L and case S, respectively.  

A secondary stability analysis by von Terzi26 revealed that the most unstable spanwise wavelengths were in the 
range 0.3 ≤ 𝜆𝜆𝑧𝑧/𝜆𝜆𝑚𝑚 ≤ 0.6 for the separated shear-layer developing behind a backward-facing step. Our previous study 
(Hosseinverdi & Fasel27) showed that the development of streamwise vortices in the ‘braid’ region (region which 
connects the bottom of one vortex core with the top of an adjoining vortex structure), between two neighboring 
spanwise vortices, may be associated with the instability that is comparable to that of an elliptic instability as observed 
in bluff-body wakes. 
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Figure 16. Comparison of skin friction coefficients for case 𝑳𝑳.  

 
Figure 17. Comparison of the skin friction coefficients for case 𝑺𝑺. 
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For the cases with FST, 3D disturbances do assume finite amplitudes. As a result, the primary vortex cores appear 
modulated in the spanwise direction shortly after the reattachment location. The spanwise spacing agrees very well 
with the spanwise spacing of the Klebanoff modes (see Fig. 8). Therefore, these results hint at a strong interaction 
between the spanwise modulation due to the Klebanoff modes and the 2D spanwise vortices, which ultimately causes 
transition of the flow. 
 A comparison of the time- and spanwise-averaged skin-friction coefficients for the uncontrolled and the controlled 
flows is presented in Figs. 16 and 17 for case 𝐿𝐿 and case 𝑆𝑆, respectively. In each figure, the top-left graph is for 𝑇𝑇𝑢𝑢 =
0 and the top-right graph is for 𝑇𝑇𝑢𝑢 = 0.005%. Comparisons of the 𝑐𝑐𝑓𝑓 for the zero FST case and the FST case are 
presented in the bottom plots.  
 For a given forcing amplitude, the forcing of strong 2D waves leads to virtually identical bubble sizes independent 
of the FST. This leads to the conclusion that the stunning effectiveness of the flow control is a consequence of the 
wall-normal momentum exchange caused by the strong 2D “rollers”, rather than the accelerated transition in the cases 
with FST. 

C. Disturbance Evolution: The Interaction Between Klebanoff-Modes and the 2D Primary Waves 
The flow visualizations in Figs. 14 and 15 suggest that a strong interaction between the spanwise modulations caused 
by FST and the primary spanwise vortices exists since the spanwise wavelength of the vortex distortions is identical 
to the spacing of the Klebanoff modes.  
 By tracking the downstream development of the disturbance waves, information can be gained regarding the nature 
of the instability mechanisms. Toward this end, the flow data were Fourier decomposed in the spanwise direction as 
well as in time. The notation (ℎ,𝑚𝑚) is used for a pair of mode numbers. Here, ℎ/𝑇𝑇 is the frequency and 2𝜋𝜋𝑚𝑚/𝐿𝐿𝑧𝑧 is 
the spanwise wavenumber of a disturbance wave. Furthermore, 𝑇𝑇 is the period of the actuation and 𝐿𝐿𝑧𝑧 is the spanwise 
domain width. Hence, (0, 0) represents the time- and spanwise-averaged flow and (1, 2) denotes a harmonic wave of 
period T with 𝜆𝜆𝑧𝑧 = 𝐿𝐿𝑧𝑧/2 and so on. For the Fourier transform in time, time-dependent DNS data were sampled over 
40 forcing periods, T, with 30 samples per period. 
 The disturbance amplitude for each mode (ℎ,𝑚𝑚) was computed from the wall-normal integration of the Fourier 
amplitude of disturbance u-velocity component inside the boundary-layer, 

𝐴𝐴𝑢𝑢
(ℎ,𝑚𝑚)(𝑥𝑥) = �

1
𝛿𝛿(𝑥𝑥)

� 𝑢𝑢𝐴𝐴
(ℎ,𝑚𝑚)(𝑥𝑥, 𝑦𝑦)2

𝛿𝛿(𝑚𝑚)

0
𝑑𝑑𝑦𝑦 ,                                                            (9) 

where 𝛿𝛿(𝑥𝑥) is the local boundary-layer thickness.  The downstream evolution of the Fourier amplitudes for the steady 
and unsteady disturbance waves for case 𝑆𝑆 for zero FST and 𝑇𝑇𝑢𝑢 = 0.005% are provided in Fig. 18, but only the modes 
that reach high non-linear amplitudes are highlighted. 

For a forcing amplitude of 𝐴𝐴 = 0.03 and in the absence of FST, the 2D disturbance wave at the fundamental 
frequency, (1,0), experience exponential growth and grows several orders of magnitude until non-linear saturation. In 
addition, it remains at much larger amplitude levels compared to the 3D disturbances. For 𝑥𝑥 > 14 the 2D mode 
amplitude decays. This behavior can be correlated with the onset of the spanwise modulation of the primary vortices 
(see Fig. 15a). 

In addition to the strong amplification of 2D modes, the steady and unsteady 3D disturbance modes grow from 
very small amplitudes in the order of 10−13 (numerical round-off). In particular, the unsteady mode (1,6) increases 
suddenly by approximately one order of magnitude at the forcing location. The unsteady disturbance mode (1,6) 
exhibits much higher amplification rates than that of the 2D wave, which could be an indication of a secondary 
instability mechanism. The strong amplification can also be observed for the 3D steady disturbance mode (0,6). 
Despite the large secondary amplification rates, modes (0,6) and (1,6) need a long downstream extent before they 
reach the amplitude level of the 2D wave, and transition is initiated when this occurs (at 𝑥𝑥 = 15.6). 

The same characteristics are observed for 𝐴𝐴 = 0.05. However, disturbances with spanwise modenumber 𝑚𝑚 = 5 
also play an important role in the transition process in addition to the disturbances with 𝑚𝑚 = 6. 

The spanwise modenumber associated with the Klebanoff mode is 𝑚𝑚 = 6. Thus, with low level FST, the transition 
process is governed by the interaction of the 2D wave with the forcing frequency and the steady and unsteady 
disturbance modes with the spanwise modenumber 𝑚𝑚 = 6 as shown in Fig. 18 (bottom plots). At the forcing location, 
𝑥𝑥𝑓𝑓 = 9.5, the amplitude of the unsteady 3D mode (1,6) increases suddenly by approximately one order of magnitude.  
This sudden increase can be explained by the non-linear interaction of the (1,0) fundamental disturbance mode and 
the (0,6) disturbance (Klebanoff) modes.  
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Figure 18. Downstream development of the Fourier amplitudes for steady and unsteady modes of case 𝑺𝑺. 

VI. Summary and Conclusion 
High-resolution direct numerical simulations of canonical separation bubbles on a flat plate were carried out and the 
response to high-amplitude 2D forcing was investigated in the absence of and in the presence of free-stream 
turbulence. Harmonic blowing and suction through a spaniwse slot was shown to be very effective in eliminating 
laminar separation. This was attributed to the shear-layer instability, which amplifies the disturbance input. Without 
FST, the controlled flow is virtually two-dimensional and dominated by strong spanwise vortices. This suggests that 
the control is effective in suppressing temporally-growing disturbances. 

Isotropic turbulence velocity fluctuations, which are generated based on a superposition of the continuous modes 
of the Orr-Sommerfeld and Squire equations, were seeded at the inflow boundary of the computational domain. In the 
presence of FST the shear-layer instability was also found to amplify the controlled disturbance input which makes 
the flow control equally efficient as for the zero FST case. However, with FST the transition delay and relaminarization 
could no longer be accomplished. This is an important finding as “clean” simulations where the FST is neglected (zero 
FST) appear to be not realistic when separation control and transition are investigated. In the presence of even very 
low FST level, the flow transitions shortly after reattachment location even when purely 2D disturbances are 
introduced upstream. This can be explained by the fact that in the presence of even very small levels FST, strong 
interactions occur between the high-amplitude 2D disturbance waves introduced by the forcing and the 3D Klebanoff 
modes that are excited by the FST. 
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