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Abstract 

Direct numerical simulations (DNS) are employed to investigate the hydrodynamic instability mechanisms and transition to 
turbulence in laminar separation bubbles (LSBs) on a flat plate. A set of numerical simulations has been carried out to investigate 
the transition process, and in particular to shed light on the development of the large coherent structures, which arise during 
transition. Particular focus is directed towards understanding and identifying the relevant physical mechanisms governing the 
interaction of separation and transition in laminar separation bubbles in the presence of free-stream turbulence (FST). For the 
natural flow. i.e. zero FST, the transition mechanism involves a Kelvin-Helmholtz instability and a growth of three-dimensional 
very low-frequency disturbances of the shear layer. With the inclusion of FST, transition is accelerated. For the separation bubbles 
investigated, the transition process is the result of two different mechanisms: i) Strong amplification of high-frequency (order of 
the shedding frequency), essentially two-dimensional or weakly oblique fluctuating disturbances and ii) low-frequency, three-
dimensional Klebanoff perturbations caused by FST. Depending on the intensity of the FST, one of these mechanisms would 
dominate the transition process, or both mechanisms are blended together and contribute simultaneously.  
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of ABCM (Brazilian Society of Mechanical Sciences and Engineering). 
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1. Introduction 

A well-founded understanding of the physics of laminar-to-turbulent transition in laminar separation bubbles (LSBs) 
is key for reliable prediction of the behavior of LSBs in technical applications. Despite considerable advances in the 
understanding of the relevant mechanisms, a complete understanding of this phenomenon is still missing. Laminar 
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separation bubbles are encountered in many practical applications such as low-pressure turbines blades, wings of small 
unmanned aerial vehicles (UAVs) and rotor blades of wind turbines to name a few. 

For a low amplitude-disturbance environment, beyond a certain Reynolds number, , transition can be initiated 
by the exponential amplification of so-called Tollmien-Schlichting (TS) waves. Adverse pressure gradients have a 
destabilizing effect and lower the critical Reynolds number. The presence of an inflection point in the velocity profiles 
in LSBs gives rise to an inviscid Kelvin-Helmholtz (K-H) instability mechanism. The growth rates associated with 
the K-H instability are typically much higher than the growth rates associated with TS instabilities for an attached 
boundary layer. In separated shear layers, two-dimensional disturbances are generally more strongly amplified than 
3D disturbances. Therefore, these waves can rapidly reach large (non-linear) amplitudes within the separated region, 
leading to the commonly observed periodic shedding of spanwise coherent (2D) vortical structures. At this stage, 
secondary instabilities can take hold, which will subsequently lead to a rapid breakdown to small-scale 3-D structures 
and eventually to a fully turbulent flow. While the separated regions allow for a rapid growth of vortical disturbances, 
at the same time the presence of the large-amplitude waves (or vortices) facilitates an exchange of momentum, which 
limits the extent and intensity of the separation. From the discussion above, it is obvious that separation and transition 
are intricately linked.  

Referred to the above discussion, a number of detailed investigations (theory, experiments and numerical 
simulations) have addressed laminar-turbulent transition aimed at providing insight into the instability mechanisms in 
laminar separation bubbles (see Gaster1; Watmuff2; Diwan & Ramesh3; Alam & Sandham4; Spalart & Strelets5; Rist 
& Maucher6; Postl & Fasel7; Hosseinverdi & Fasel8; Marxen et al.9,10). In those investigations, usually small two-
dimensional and/or oblique disturbance waves with a simple spectrum were introduced upstream of the separation and 
the evolution of the disturbances was tracked all the way to the reattachment region and beyond into the fully turbulent 
region in order to identify the dominant mechanisms in the separated flow.  

The major deficiency of the above transition investigations is that they only address only so-called “controlled 
transition scenarios” which can only be observed in carefully controlled water/wind tunnel experiments where the 
environmental disturbances, such as free-stream turbulence (FST), noise and vibrations have been reduced to a 
minimum. Therefore the question arises whether this path to turbulence is still prevalent in a “real” environment as 
encountered in free flight, for example. Free-stream turbulence is of particular relevance for technical applications. 
Atmospheric turbulence is characterized by large length scales and can reach significant turbulent kinetic-energy 
levels and thus has to be considered when investigating transition in laminar separation bubbles. 

For attached boundary layers under natural conditions (e.g., wind tunnels with FST levels >0.1%) transition 
appears to be preceded by streamwise streaks in the boundary layer. These streaks are now commonly accepted to be 
caused by ‘Klebanoff-modes’ (or K-modes), after P. S. Klebanoff who first observed them (Klebanoff & Tidstrom11; 
Klebanoff12). His findings have been confirmed in numerous experiments by other researchers (Kendall13; Westin et 
al. 14; Fasel15). The streamwise streaks appear to be caused by free-stream turbulence. They have a large downstream 
extent and a characteristic spanwise length scale of a few boundary-layer thicknesses, δ, of the unperturbed boundary 
layer. They are fundamentally different both from TS-waves and from the structures commonly observed in turbulent 
boundary layers. Other characteristic features of the K-modes are their low frequencies and high amplitudes.  

The existence of low-frequency, large-amplitude streaks was reported by Häggmark16 in experiments of laminar 
separated boundary layers. Free-stream turbulence with an intensity of 1.5% was generated by a grid upstream of the 
leading edge of the plate. Smoke visualization photographs showed the existence of streaky structures in the boundary 
layer upstream of the separation and in the separated boundary layer associated with the bubble. No strong evidence 
for the existence of two-dimensional waves, which are typical for separation bubbles in an undisturbed environment, 
could be produced. Using spectral analysis, it was shown that lower frequencies are dominant in the case of high FST.  

The effect of free-stream turbulence (FST) on laminar separation was investigated by Balzer & Fasel17. They 
carried out a set of DNS based on Gaster’s case VI, series I experiment (Gaster1). The free-stream turbulence was 
introduced at the inflow. They showed that even very small FST levels caused a significant reduction of the size of 
the separation bubble. Elevated FST levels led to the generation of streamwise boundary-layer streaks, which 
enhanced the three-dimensional disturbance level. They found that the inviscid shear-layer instability was present for 
all cases. They showed that transition to turbulence was a consequence of both the primary shear-layer instability and 
the streamwise streaks caused by the FST. 

The main goal of the present work is to contribute towards a better understanding of the highly complex flow 
physics of laminar separation bubbles subjected to free-stream turbulence. Towards this end, highly-resolved 3D DNS 
are carried for a LSB developing on a flat plate in the presence of a free-stream pressure gradient, which is the same 
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as in accompanying water-tunnel experiments, which are carried out in the Hydrodynamics Laboratory at the 
University of Arizona (see Jagadeesh & Fasel18). The present work will attempt to provide a fundamental physics-
based understanding of how FST affects laminar-to-turbulent transition in separation bubbles. 

2. Computational framework 

2.1 Governing Equation and Numerical Methods 

The conservation of mass (continuity equation), conservation of momentum (Navier-Stokes equations), form the set 
of governing equations for the incompressible flow. In the present investigation, the vorticity-velocity formulation in 
which pressure as a dependent variable is eliminated, is used as follow, 

  (1) 

The vorticity vector is defined as . Using the fact that the both vorticity and velocity vector fields are 
solenoidal, one obtains a vector Poisson equation for the velocity field, 
  (2) 

Both the vorticity and the velocity vector field are solenoidal. In the above equations, all quantities are non-
dimensionalized by the free-stream velocity, , a reference length, , and the kinematic viscosity, . The global 
Reynolds number is defined as . A three-dimensional Cartesian coordinate system is employed.  

The flow field is assumed to be periodic in the spanwise -direction. Therefore, the flow variables are expanded 
in Fourier cosine and sine series. Each variable is represented by a total of 2K+1 Fourier modes: The 2D spanwise 
average (zeroth Fourier mode), K symmetric Fourier cosine as well as K antisymmetric Fourier sine modes. To avoid 
aliasing errors, the nonlinear terms are computed in physical space using К ≈ 3K spanwise collocation points. 

A three-dimensional Cartesian coordinate system is employed. The governing equations are integrated in time 
with a standard fourth-order-accurate Runge–Kutta scheme. The spatial derivatives in the streamwise (x) and the wall-
normal (y) directions are discretized using fourth-order-accurate compact differences. In the spanwise (z) direction, a 
pseudo-spectral approach is applied. Fast Fourier Transforms (FFTs) are employed to convert each variable from 
spectral space to physical space and back, so that the nonlinear terms could be computed in physical space. For the 
calculation of the nonlinear terms, the flow field is transformed from spectral to physical space (and back) before each 
Runge-Kutta sub-step, which requires a redistributing of the entire three-dimensional arrays among the processors. 
This extensive inter-processor communication is realized using the message passing interface (MPI). Details of the 
numerical method, parallelization, program performance, and of numerous validation cases are presented in Meitz & 
Fasel19.   

2.2 Method for generating FST in the DNS 

 The methodology adopted here to generate realistic free-stream disturbances at the inflow boundary of the 
computational domain is similar to that proposed by Jacobs & Durbin20. The method is based on an expansion of the 
disturbance velocity, u', in terms of its Fourier coefficients, 
 

 (3) 

where k is the wavenumber vector with length . In the same manner, the inflow disturbance 
vorticity field is calculated from the disturbance velocity field as . The objective is to specify the Fourier 
coefficients of a disturbance velocity field such that the inlet disturbance flow field satisfies continuity and generates 
isotropic turbulence in the free-stream and models a specified energy spectrum. By invoking Taylor’s hypothesis and 
ignoring the streamwise decay, the streamwise wavenumber, , in the definition of , can be replaced by - , where 

 is the disturbance frequency. The implementation of the spanwise Fourier modes, , is straightforward since the 
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numerical model assumes periodicity of the flow field in z-direction. However in the presence of the plate, the vortical 
modes have to decay smoothly to zero towards the wall.  
      As pointed out in Grosch & Salwen21, a natural choice for the new basis is the use of the modes of the continuous 
spectrum. In fact, the Orr–Sommerfeld and Squire eigenvalue problem for a parallel flow in a semi-bounded domain 
is characterized by the discrete and a continuous spectra. The discrete modes decay exponentially with the distance 
from the wall, while the continuous modes are oscillatory in the free stream and decay to zero inside the boundary 
layer (Grosch & Salwen21). Instead of Fourier modes in the expansion of the disturbance quantities, 
Jacobs & Durbin20 suggested to use eigenmodes from the continuous spectrum of the Orr-Sommerfeld and Squire 
operators, therefore equation (3) can be reformulated as    
 

 (4) 

Here, the coefficients  determine the contribution of the eigenfunctions to the total turbulent kinetic energy and 
 is a normalized superposition of Orr–Sommerfeld and Squire continuous eigenfunctions. A detailed description of 

the implementation and validation results are provided in Balzer & Fasel17. 

2.3 Computational domain 

The setup for the DNS was guided by water-tunnel experiments that are being carried out at the Hydrodynamics 
Laboratory at the University of Arizona18. In the experiments a laminar separation bubble is generated on a flat plate 
through the close proximity of a displacement body with a modified NACA 643-618 airfoil. Suction is applied in the 
aft part of the airfoil to prevent flow separation from the airfoil such that flow separation and reattachment occur only 
on the flat plate. In the simulation model a wall normal velocity distribution is specified at the free-stream boundary 
such that the same streamwise pressure distribution was created as in the experiment. The computational setup is 
shown in Fig. 1. In the numerical simulation, the integration domain does not include the leading edge. The 
streamwise, wall-normal and spanwise coordinates are x, y, and z, respectively. The domain width in the spanwise 
direction is . The Reynolds number based on inflow displacement thickness and streamwise velocity at the 
inflow boundary,  is 161. All the simulations presented in this work are carried out using the same computational 
grid with approximately 89 million grid points ( ). The grid spacing is uniform in streamwise 
direction and the points are stretched exponentially away from the wall in wall-normal direction to improve the 
resolution near the wall. Free-stream turbulence is introduced at the inflow boundary. A Falkner-Skan velocity profile 
is prescribed at the inflow, which closely matches that of the experiments. At the downstream boundary, a buffer 
domain as proposed by Meitz & Fasel19 is employed in order to smoothly dampen out the turbulent fluctuations 
generated inside the domain.  
 

 

Fig. 1. Schematic illustration of the computational setup. Indicated are the wall-normal velocity distribution at the upper boundary, the velocity 
profile at the inflow and the buffer zone near the outflow. Also shown are: instantaneous contours of spanwise-averaged ωz-vorticity, time- and the 
spanwise-averaged boundary-layer thickness and the dividing streamline (dashed line). The domain extent in the streamwise is 

, the domain height is . 
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3. General characteristic of natural flow simulation, zero FST 

In this section results obtained from 3-D DNS are discussed for a case without free-stream turbulence. As 
mentioned in the introduction, because the velocity profiles in the separated region exhibit an inflection point, the 
separated shear layer is highly unstable with respect to small disturbances within the flow thus allowing for rapid 
growth of spanwise vortical structures that can persist even in the turbulent flow region downstream of the 
reattachment location (coherent structures). To gain insight into the nature of the vortical structures and their evolution, 
contours of total vorticity in different streamwise stations were analyzed in Fig. 2. The top-left plot shows contours 
of the streamwise vorticity component at . Starting from left in Fig. 2, the boundary layer separates at , 
followed by a very smooth separated shear layer, which has negligible dependency in spanwise direction. Just 
downstream of the separation location, the vortical structures are mainly confined to the inner region of the boundary 
layer. Farther downstream, the vortices are lifted into the shear layer. Near , three-dimensionality appears to 
play a role and two “legs” are extended toward the wall at two different spanwise positions. The spanwise wavelength 
of the legs is . Further downstream, the “legs” touch the wall and start to fill out the boundary layer in 
spanwise direction. Looking at the streamwise vorticity component at  (top-left plot) demonstrates that the 
“legs” are contour-rotating vortices. Contours of spanwise vorticity reveal that the shear layer undergoes transition, 
followed by shedding of strong coherent (clockwise-rotating) vortices (often referred to as “rollers”), and finally 
leading to turbulent reattachment. Downstream of reattachment, the vortices are stretched in wall-normal direction as 
they are traveling downstream. Near reattachment, the large-scale vortices have penetrated the boundary layer. The 
vortices maintain coherence in spanwise direction at first while further downstream the spanwise coherence is 
destroyed. To gain more information into the vortical flow structures, ios-surfaces of the -criterion by Jeong & 
Hussain22 are also shown in Fig. 2. The -criterion indicates areas where rotation dominates strain. Focus here is on 
the transitional region where small vortices are concentrated in areas with strong spanwise coherent rollers. The 
spanwise oriented structures are visible near  before the flow breaks down to smaller scales. Earlier research by 
Postl et al.23 suggests that these structures are resulting from a saturation of the 2-D disturbances associated with the 
primary (Kelvin-Helmholtz) instability of the 2-D mean flow profile. It can be seen that the small-scales are organized 
in lumps (coherent structures). More important is that the dominant coherent structures persist even downstream of 
reattachment. 

 

Fig. 2. Visualization of the total vorticity in selected planes for case without FST. Top-left: Contours of streamwise vorticity at =7; right-bottom: 
Iso-surfaces of . Also, contours of spanwise vorticity (averaged in spanwise direction) are shown in plane . 
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 The time trace of the wall–normal disturbance 
velocity (averaged in spanwise direction) provide 
further information of the unsteady nature of the LSB 
as presented in Fig. 3 for several streamwise locations 
within the bubble and downstream of reattachment at 
a fixed distance of 0.42 from the wall (close to the 
center of shedding vortex core). Frequency spectra 
associated with these velocity signals are given in Fig. 
4. Here, the dimensional frequency is non-
dimensionalized as follows:   (5) 

Downstream of the separation point at , the 
signal is composed of short (wave-packet like) pulses 
around  with quite undisturbed steady 
flow after and before that. The corresponding 
frequency content (Fig. 4) shows a fairly high level of 
energy at very low-frequency ( ). The low frequency 
content in the spectra may correspond to a so-called 
“flapping” of the LSB (see Spalart & Strelets5). The 
flapping is related to a long-wave length, vertical 
oscillation of the separated layer and it usually 
occurred when no external disturbances were 
introduced. The signal also exhibits a high frequency 
content, which is caused by the growth of instability 
waves in the separated region. Farther downstream, 
patches of disturbances begin to be more frequent and 
the time signals become more periodic, yet still highly 
modulated. These periodic variations are associated 
with the fundamental shedding cycle of the separation 
bubble.  A distinct peak at the fundamental frequency 

 ( ) develops for all streamwise locations 
shown here. The peak is associated with the inviscid 
shear layer instability. The high-frequency 
oscillations in the shear layer become more dominant 
further downstream while the low-frequency 
characteristics become less pronounced. It appears 
that strong higher harmonics are also generated 
nonlinearly ( ). 

4. Effect of free-stream turbulence on transition process 

In real technical applications, transition occurs via amplification of naturally occurring background disturbances, such 
as caused by free-stream turbulence, vibrations or by surface roughness. These disturbances will of course accelerate 
transition, and as consequence, reduce the size of the separation bubble. Such disturbances are not present in the DNS, 
except for a low level of background disturbances (‘numerical noise’), which can be kept extremely small in our highly 
resolved simulations using high-order accurate simulation codes. In this section we address laminar-turbulent 
transition in LSBs exposed to free-stream turbulence in order to explore if and how the FST affects the fundamental 
flow physics compared to the laminar LSBs without FST. Four different levels of FST were investigated: 

 and . 
The picture changes when isotropic free-stream turbulence is introduced at the inflow boundary as shown in Fig. 

5. Transition moves upstream compared to the case without FST when the FST level is increased to  

Fig. 3. Temporal and spatial evolution of the wall–normal disturbance 
velocity (averaged in spanwise direction) at various streamwise locations 
along the centreline of shear layer. 

Fig. 4. Frequency spectra for wall–normal disturbance velocity at various 
streamwise locations along the centreline of the shear layer (see Fig. 3). 
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Fig. 5. Iso-surfaces of  together with contours of the total vorticity in selected planes for case with . Top-left: Contours of 
streamwise vorticity at . The extent of time- and spanwise-averaged separation length was indicated by . 

Instantaneous iso-surfaces of  are presented in Fig. 5 together with the contours of total vorticity at several 
streamwise locations. The top-left plots are for the streamwise vorticity at two different planes. The vortical 
disturbances are present in the free-stream as shown in the left-top plot for . The free-stream vortical 
disturbances permeate in to the boundary-layer and manifest themselves as the contour-rotating longitudinal vortices 
(see top-left plot for ) with a preferred spanwise wavelength of , which can be clearly observed for 
example at slice =7 (see perspective view of Fig. 5). These contour-rotating vortices facilitate the exchange of 
momentum by transporting the low-momentum fluid away the wall and pushing the high-momentum fluid towards 
the wall. Also one spanwise coherent roller is visible before the flow breaks down to smaller scales. 

Spanwise, one-dimensional power spectra of the streamwise velocity component are plotted for selected 
streamwise locations for  in Fig. 6. Five x-stations were selected, the inflow boundary, , the onset of 
adverse pressure gradient, , the separation location, , the location of maximum bubble height, , and the 
mean reattachment location, . For the simulations with FST introduced at the inflow, the energy in the power 
spectrum at the inflow is clearly concentrated in the free-stream and the maximum amplitude is at , where 

 is the spanwise mode number (e.g.  indicates that the spanwise width of the disturbances is  and for 
, , where  is the domain width in spanwise direction). While propagating in downstream direction, 

the vortical structures in the free-stream penetrate the boundary layer as can be clearly observed in Fig. 6. At the onset 
of the pressure gradient, there is preferred spanwise mode number, , for which the disturbances have the 
maximum amplitude. The disturbances are amplified inside the boundary layer close to the displacement thickness, 
whereby the spanwise mode  becomes dominant. Close to the location of maximum bubble height, the 
disturbances have filled the boundary layer, which is more pronounced at the reattachment location where the near-
wall peaks appear for a lower spanwise mode number, indicating that the boundary layer is starting to re-develop. 
In order to understand the mechanisms responsible for the generation and evolution of the coherent structures, the 
Fourier decomposed (in time and spanwise direction) flow field was scrutinized in more detail. The wall-normal 
maxima of the disturbance kinetic energy in the frequency -  plane for 2D modes ( ) for  and 

 are shown in Fig. 7 (top).  
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Fig. 6. Spanwise one-dimensional energy spectra of the streamwise velocity at selected streamwise stations for . Dashed lines are the 
displacement thickness. Wall-normal coordinates was normalized with the local boundary layer thickness. 

A strong peak appears for , in the frequency spectra for 2D modes, which corresponds to the fundamental 
shedding frequency in the bubble. Note that the maximum disturbance kinetic energy decreases as the FST intensity 
is increased to . From experiments and numerical simulations (Klebanoff & Tidstrom11; Klebanoff12; 
Meitz24; Jacobs & Durbin20; Fasel15), it is known that the FST can cause the formation of streamwise elongated streaks 
inside the boundary layer, the so-called Klebanoff modes. The Klebanoff mode is a low frequency mode characterized 
by a distinct spanwise spacing. The spanwise spectra and 
analysis of the instantaneous flow field obtained from our 
simulation data provided evidence of a pronounced 
spanwise periodicity of the stream-wise structures in the 
laminar and transitional regions.  The spanwise spacing 
and the frequency of the Klebanoff modes can be assessed 
by evaluating the disturbance kinetic energy spectrum. 

From the power spectra in Fig. 6 it is obvious that there 
is dominant spanwise mode with  for which the 
disturbances have the maximum amplitude. The wall-
normal maximum amplitude of the disturbance kinetic 
energy in the frequency-  plane at  for cases with 

 and  are shown in Fig. 7 (bottom). 
The shedding frequency, , is shown in the figure 
by a dashed line. High energy content is observed near 

. The frequency spectra reflect the generation of 
the low-frequency disturbances, due to the presence of 
Klebanoff modes, which are amplified in the adverse 
pressure gradient region. Thus, for the cases with FST, two 
different modes could be clearly identified: i) The strongly 
amplified 2D modes with a shedding frequency that is 
directly related to the Kelvin-Helmholtz instability, and ii) 
the low-frequency Klebanoff modes. Tracking the 
downstream development of the disturbance kinetic 
energy, , provides additional information regarding the 
dominant instability mechanisms and a possible shift in 
importance of the two identified instability modes for 
different FST intensities. The spectral disturbance kinetic 
energy for each mode  was computed from the wall-
normal amplitude distributions of the Fourier velocity 
components, 
 

 (6) 

 

 
Fig. 7. Disturbance energy spectrum in frequency-x plane for 

 (left) and  (right). Plotted are the wall normal maxima 
inside the boundary-layer. From top to bottom: Two-dimensional 
modes, ; three-dimensional disturbances, . The dashed 
lines indicate the fundamental shedding frequency. Reattachment is 
marked by down arrow. 
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The notation  is used for a pair of mode numbers. Here,  is the non-dimensional frequency and  is the 
spanwise wavenumber of a structure. The maximum amplitude of the Klebanoff modes, , are compared with 
the maximum amplitude of the 2D fundamental modes,  for all cases with FST in Fig. 8. For the Klebanoff 
modes, the streamwise growth is increased for  which is the onset of adverse pressure gradient, and the 
maximum amplitude increases as the free-stream turbulence level is elevated. For the lowest level of FST, , 
the region upstream of reattachment, which is at the end of the transition region, is dominated by 2D modes, while for 
the highest FST,  , the Klebanoff modes are dominant in the entire transition region. For the FST levels in 
between, both modes are blended together and contribute to the transition process simultaneously. One would expect 
that with increasing FST, the dominant structures would lose their spanwise coherence. Downstream of the mean 
reattachment location, the K-modes are decaying much faster than the 2D modes. 

 

 

Fig. 8. Comparison of the downstream development between the 2D modes at the fundamental frequency, (915, 0), and 
the 3D low frequency disturbances, (26, 5). (●) (915, 0); (○) (26, 5). From top-left to bottom-right: ; 

; ; . Plotted are the wall-normal maxima of the spectral kinetic energy inside the boundary 
layer. Streamwise locations of separation and reattachment are indicated by down arrows. 
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5. Conclusion  

Highly resolved direct numerical simulations (DNS) were employed to investigate the effect of free-stream turbulence 
(FST) on transition in laminar separation bubbles on a flat-plate. Towards this end, in the simulations disturbances 
generated by isotropic free-stream were introduced at the inflow boundary. For modelling of the FST, the continuous 
modes of the Orr-Sommerfeld and Squire equations were employed. Four different levels of FST intensity, 

 and  were considered. For the simulations with FST, the frequency spectra exhibited a strong peak 
for two-dimensional modes, which corresponded to the fundamental shedding frequency of the bubbles. Instantaneous 
flow structures revealed that the vortical disturbances in the free-stream can also generate longitudinal contour-rotating 
flow structures – the so-called Klebanoff modes (K-modes). Thus, for the cases investigated here, transition to 
turbulence appeared to be the consequences of the strong amplification of high-frequency disturbances and the low-
frequency, three-dimensional disturbances (K-modes). In particular, for the lowest level of FST, , an 
inviscid Kelvin-Helmholtz (K-H) instability is the dominant mechanism causing transition in the bubble, while for 
moderate turbulent intensity, , the disturbances resulting from the K-H instability and the Klebanoff 
modes caused by FST are blended together and contribute simultaneously to the transition process. For the highest 
FST intensity , the transition mechanism is dominated by K-modes. 
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