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ABSTRACT 

An automated system for the segmentation of vasculature in high-resolution 

digital color images of immunohistochemically stained slides of breast cancer tissue is 

presented. Manual immunohistochemical staining processes result in differences in stain 

retention by the regions of interest (ROIs). Difficulties in the segmentation processes 

arise when the stain retention is poor, causing the existing color profiling schemes in the 

literature to fail. The automated segmentation algorithm uses a principal component 

region-growing scheme with automated generation of seed pixels. The number of 

candidate seed pixels is extremely large due to the high-resolution. The main focus of the 

research is to present a multi-resolution scheme for accurate selection of a minimal 

number of seed pixels to be presented as inputs to the region-growing segmentation 

algorithm. The system is tested for accuracy, and the efficiency is measured in terms of 

percentage reduction in number of seed pixels, as well as accuracy of the segmentation 

results and false positive and false negative pixel classification ratios. The effect of the 

number of resolution levels on the accuracy and number of seed pixels selected is also 

discussed. 
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Chapter 1 

1. INTRODUCTION 

 

1.1 Breast Cancer 

 

Breast cancer is a cancer that starts in the cells of the breast.
 
 Worldwide, breast 

cancer is the second most common type of cancer after lung cancer (10.4% of all cancer 

incidence, both sexes counted)
 
and the fifth most common cause of cancer death.

 

Worldwide, breast cancer is by far the most common cancer amongst women, with an 

incidence rate more than twice that of colorectal cancer and cervical cancer and about 

three times that of lung cancer. However breast cancer mortality worldwide is just 25% 

greater than that of lung cancer in women.
 
 In 2005, breast cancer caused 502,000 deaths 

worldwide (7% of cancer deaths; almost 1% of all deaths).
 
The number of cases 

worldwide has significantly increased since the 1970s, a phenomenon partly blamed on 

modern lifestyles in the Western world.
 
 

In the US, both incidence and death rates for breast cancer have been declining in 

the last few years.
 
Nevertheless, a US study conducted in 2005 by the Society for 

Women's Health Research indicated that breast cancer remains the most feared disease, 

even though heart disease is a much more common cause of death among women.  
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1.2 Project Goals 

 

This project is aimed at producing high quality 3-D models of the blood 

vasculature and tumors present in breast cancer tissue in order to aid breast cancer 

research. The primary research goal of the project is to segment the regions of interest 

(hereafter referred as ROIs) which comprise of blood vasculature and/or tumors from the 

general tissue image comprising of additional cellular components like fats, non-

cancerous tissue etc.  

 

1.3 Image Acquisition 

 

The Tissue Acquisition and Cellular/Molecular Analysis Shared Service 

(TACMASS) provide support to both the Arizona Cancer Center (AZCC) and The 

University of Arizona (UA) research investigators. TACMASS offers services for routine 

histology using both frozen and formalin fixed, paraffin embedded (FFPE) human and 

research animal tissues and cell lines. Immunohistochemistry (IHC) and in situ 

hybridization are performed on an automated platform (Ventana Discovery XT).  

The breast cancer tissue slices are stained with a coloring agent (Cd-31) and are 

imaged using a DMetrix array microscope. The DMetrix system is distinguished by its 

virtual slide processing rate. One complete, high-resolution image file of a microscope 

slide can exceed 10 gigabytes in size. DMetrix's patent-pending digital-pathology 

imaging system is based on a revolutionary light microscope technology: 80 tiny 
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microscopes are arranged in staggered rows as a compact array. The entire array 

measures less than 1 inch across and less than one-third inch in height. The array glides 

along the surface of a glass slide to capture its images. This technology has been named 

"array microscopy." Fabrication of the device leverages recent advances in 

miniaturization and ultra-precise manufacturing.   

 As a result, the images under consideration are high-resolution digital color 

images of histological slides, containing breast cancer tissue slices stained using 

immunohistochemistry (IHC) techniques, with an average file size of 1,066,048 Kb each, 

having a pixel size of 0.5 µm × 0.5 µm with image dimensions of 16512 µm × 27168 µm 

(33024 × 54336 pixels) corresponding to 20X magnification on an average. 

 

1.4 Immunohistochemistry 

 

Immunohistochemistry or IHC refers to the process of localizing proteins in cells of a 

tissue section exploiting the principle of antibodies binding specifically to antigens in 

biological tissues. It takes its name from the roots "immuno," in reference to antibodies 

used in the procedure, and "histo" meaning tissue (compare to immunocytochemistry). 

Immunohistochemical staining is widely used in the diagnosis of abnormal cells such as 

those found in cancerous tumors. Specific molecular markers are characteristic of 

particular cellular events such as proliferation or cell death (apoptosis). IHC is also 

widely used in basic research to understand the distribution and localization of 

biomarkers and differentially expressed proteins in different parts of a biological tissue. 
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Visualizing an antibody-antigen interaction can be accomplished in a number of 

ways. In the most common instance, an antibody is conjugated to an enzyme, such as 

peroxidase, that can catalyze a color-producing reaction. Alternatively, the antibody can 

also be tagged to a fluorophore, such as FITC, rhodamine, Texas Red, Alexa Fluor, or 

DyLight Fluor. The latter method is of great use in confocal laser scanning microscopy, 

which is highly sensitive and can also be used to visualize interactions between multiple 

proteins.  

IHC is an excellent detection technique and has the tremendous advantage of being 

able to show exactly where a given protein is located within the tissue examined. This has 

made it a widely-used technique in the neurosciences, enabling researchers to examine 

protein expression within specific brain structures. Its major disadvantage is that, unlike 

immunoblotting techniques where staining is checked against a molecular weight ladder, 

it is impossible to show in IHC that the staining corresponds with the protein of interest. 

For this reason, primary antibodies must be well-validated in a Western Blot or similar 

procedure. The technique is even more widely used in diagnostic surgical pathology for 

typing tumors (e.g. carcinoma vs. melanoma). 

 

1.4.1 Antibody Types 
 

The antibodies used for specific detection can be polyclonal or monoclonal. 

Monoclonal antibodies are generally considered to exhibit greater specificity. Polyclonal 

antibodies are made by injecting animals with peptide antigens, and then after a 

secondary immune response are stimulated, isolating antibodies from whole serum. Thus, 
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polyclonal antibodies are a heterogeneous mix of antibodies that recognize several 

epitopes. 

Antibodies can also be classified as primary or secondary reagents. Primary 

antibodies are raised against an antigen of interest and are typically unconjugated 

(unlabelled), while secondary antibodies are raised against primary antibodies. Hence, 

secondary antibodies recognize immunoglobulin of a particular species and are 

conjugated to either biotin or a reporter enzyme such as alkaline phosphatase or 

horseradish peroxidase. Some secondary antibodies are conjugated to fluorescent agents, 

such as the Alexa Fluor or Dylight Fluor family, are also frequently used for detection of 

proteins in IHC procedures. Protein concentration is generally measured by densitometry 

analysis, where the intensity of staining correlates with the amount of the protein of 

interest. 

 

1.4.2 Sample Preparation 
 

In the procedure, depending on the purpose and the thickness of the experimental 

sample, either thin (about 4-40 µm) slices are taken of the tissue of interest, or if the 

tissue is not very thick and is penetrable it is used whole. The slicing is usually 

accomplished through the use of a microtome, and slices are mounted on slides. "Free-

floating IHC" uses slices that are not mounted; these slices are normally produced using a 

vibrating microtome. 
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1.4.3 Direct and Indirect IHC 
 

There are two strategies used for the immunohistochemical detection of antigens 

in tissue, the direct method and the indirect method. In both cases, the tissue is treated to 

rupture the membranes, usually by using a kind of detergent such as Triton X-100. Some 

antigen also need additional step for unmasking, resulting in better detection results. 

The direct method is a one-step staining method, and involves a labeled antibody (e.g. 

FITC conjugated antiserum) reacting directly with the antigen in tissue sections. This 

technique utilizes only one antibody and the procedure is therefore simple and rapid. 

However, it can suffer problems with sensitivity due to little signal amplification and is in 

less common use than indirect methods. 

The indirect method of immunohistochemical staining uses one antibody against 

the antigen being probed for, and a second, labelled, antibody against the first. 

The indirect method involves an unlabeled primary antibody (first layer) which 

reacts with tissue antigen, and a labeled secondary antibody (second layer) which reacts 

with the primary antibody. (The secondary antibody must be against the IgG of the 

animal species in which the primary antibody has been raised.) This method is more 

sensitive due to signal amplification through several secondary antibody reactions with 

different antigenic sites on the primary antibody. The second layer antibody can be 

labeled with a fluorescent dye or an enzyme. 

In a common procedure, a biotinylated secondary antibody is coupled with 

streptavidin-horseradish peroxidase. This is reacted with 3, 3’-Diaminobenzidine (DAB) 
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to produce a brown staining wherever primary and secondary antibodies are attached in a 

process known as DAB staining. The reaction can be enhanced using nickel, producing a 

deep purple/gray staining. 

The indirect method, aside from its greater sensitivity, also has the advantage that 

only a relatively small number of standard conjugated (labeled) secondary antibodies 

need to be generated. For example, a labeled secondary antibody raised against rabbit 

IgG, which can be purchased "off the shelf," is useful with any primary antibody raised in 

rabbit. With the direct method, it would be necessary to make custom labeled antibodies 

against every antigen of interest. 
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Chapter 2 

2. PRELIMINARY WORK 

 This chapter deals with the initial work done in the preliminary stages of research 

that sets up the thesis problem. 

The images under consideration for the project was a set of eight Cd-31 stained 

images (dataset 1), followed by another set of forty Cd-31 stained images (dataset 2). The 

difference in the two datasets is that they were both obtained at different times.  

 

Figure 1: Dataset 1 showing ROI. 
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Figure 2: Dataset 2 showing ROIs. 

The primary standout feature between the ROIs and the background in both 

datasets is the color information. This falls in line with the staining process because the 

tissue is stained with a coloring agent so that the ROIs retain the stain and when imaged 

they show a different color with respect to the background. 

Most manual immunohistochemical staining methods results in the antibody 

(ROI) reacting with the protein to produce a different color as compared to the rest of the 

background tissue. The amount of color retention by the ROIs also depends on the 

amount of time that is elapsed between staining and imaging. As a result different 

staining runs produce slight differences in stain retention by the ROIs and consequently 

the two datasets are different in the sense that the ROIs in them retain different levels of 

the coloring stain, and appear to be of different color. 
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2.1 Color Profiling 

Duffy et al. [1] have explained a method for object detection using colour, using a 

colour profile and colour histograms .  Colour profiling learns to detect objects which are 

members of a particular class, a class being a set of objects that share similar or 

overlapping colour distributions.  

Two sets of training images are used, one set is of images known to contain at 

least one target object, and the other is a set of images free of the target object. In the 

training images with target objects, the location and size of the target objects are not 

known, nor is the exact number of target objects present.  

A small change to these algorithms that profile the target object color from a set 

of training images is used here. The ROI in a training image is manually segmented and 

the color is profiled by finding the mean and standard deviations of the R, G and B 

components in the manually segmented piece. The original image is then segmented by 

matching all regions whose R, G, and B values fall within one standard deviation point 

on either side of the mean value of the color learnt by the profiling technique.  
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Figure 3: Dataset 2 Image showing ROIs. 

 

 

 

Figure 4: Segmentation using color profiling. 
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Figure 5: Dataset 2 Image showing ROIS. 

 

 

Figure 6: Segmentation using color profiling. 

 

As discussed earlier, different staining runs result in differences in retention of the 

coloring stain by the ROIs. Therefore the two datasets are vastly different from each 

other in terms of color profile. The ROIs are not as easily distinguishable from the 

background in dataset 1, as they were in dataset 2. This causes the color profiling method 



 

 

23 

 

 

to fail when applied to dataset 1. An alternative method is needed to segment the ROIs in 

dataset 1.  

Thus, we arrive at the problem definition for the thesis - The research into 

segmentation schemes that segment the ROIs (blood vasculature) from high-resolution 

immunohistochemical images, which are poorly stained due to poor stain (color) 

retention by the ROIs and/or differences in manual staining methods which cause poorer 

stain retention, where the color profiling technique in the literature fails to provide 

acceptable segmentations.  
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Chapter 3 

3. COLOR SPACES 

This chapter discusses the various color spaces that the RGB color image can be 

transformed into for color profiling to work. 

The digital images of the high-resolution histological slides produced by Cd-31 

staining of breast cancer tissue, is a three channel RGB (red, green, blue) digital image. 

Since dataset 1. did not produce acceptable segmentations with the color profile method 

that worked quite acceptably for dataset 2, there was a need to convert the image from the 

RGB color space into various other color spaces in order to test the working of the color 

profiling algorithm. 

Color spaces (also known as color coordinate systems, or color models) are three-

dimensional arrangements of color sensations [2]. Colors are specified by points in these 

spaces. The color spaces presented in this chapter are the most popular in the image 

processing community. Equations describing transformations between different 

colorspaces are presented. Spaces used in image processing are derived from visual 

system models (e.g. RGB, Opponent, IHS etc.); adopted from technical domains (e.g. 

XYZ, YUV etc.) or developed especially for image processing (e.g. Ohta). 

 

3.1 RGB Color Space 
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 The RGB space [2] is the most frequently used color space for image processing. 

Since image acquisition systems and image display systems are most often provided with 

a direct RGB signal input or output, this color space is the basic one, which is, if 

necessary transformed into other color spaces. However the RGB primaries of these 

devices are not always consistent. The color gamut in RGB space forms a cube. Each 

color, which is described by its RGB components, is represented by a point and can be 

found either on the surface or inside the cube. All grey colors are placed on the main 

diagonal of this cube from black (R = G = B = 0) to white (R = G = B = max). 

 The main disadvantage of RGB color space in applications involving natural 

images is a high correlation [2] between its components: about 0.78 for B – R, 0.98 for R 

– G and 0.94 for G – B, components. This makes the RGB space unsuitable for 

compression. Another disadvantage of RGB color space is non-uniformity, i.e. it is 

impossible to evaluate the perceived differences between colors on the basis of distance 

in RGB space. 

 

 

Figure 7: Image showing ROI in RGB color space. 
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3.2 rgb Color Space 

  

 The RGB components for a given image are proportional to the amount of light 

incident on the scene represented by the image. In order to eliminate the influence of 

illumination intensity, so-called chromaticity coordinates (normalized colors) were 

introduced in colorimetry [2].  

BGR

R
r

++
=         (3.2.1) 

BGR

G
g

++
=         (3.2.2) 

  gr
BGR

B
b −−=

++
= 1       (3.2.3) 

Since each of the normalized colors is linearly dependent, the rgb space may be 

represented by two normalized colors. Values of rgb coordinates are much more stable 

with changes in illumination [2]. 

 

Figure 8: Image showing ROI in rgb color space. 
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3.3 XYZ Color Space 

 

 The XYZ color space [2] was designed to yield non-negative tristimulus values for 

each color. In this system, Y represents the luminance of the color. The tristimulus values 

XYZ are related to CIE RGB tristimulus values by the following equations. 

 

BGRX 200.0310.0490.0 ++=      (3.3.1) 

BGRY 011.0812.0177.0 ++=      (3.3.2)  

BGRZ 090.0010.0000.0 ++=      (3.3.3) 

 

 

Figure 9: Image showing ROI in XYZ color space. 

 

 

 



 

 

28 

 

 

3.4 xyz Color Space 

  

 In colorimetry the following transformation equations for chromaticity 

coordinates x, y, z were used. This resulted in the transformation into a xyz color space 

[2]. 

ZYX

X
x

++
=         (3.4.1) 

ZYX

Y
y

++
=         (3.4.2) 

yx
ZYX

Z
z −−=

++
= 1       (3.4.3) 

 

 

Figure 10: Image showing ROI in xyz color space. 
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3.5 YUV Color Space 

 

 The Y (luminance) component is identical to the Y component in XYZ space. The 

UV plane is widely used in coding of color images in color video. Because the color 

representation of an image sequence requires less detail than the luminance, the data rate 

can be shared as follows 80% to the Y component and 10% each to the U and V 

components [2].  

 

BGRY 114.0587.0299.0 ++=      (3.5.1) 

)(493.0437.0289.0147.0 YBBGRU −=+−−=     (3.5.2) 

)(877.0100.0515.0615.0 YRBGRV −=−−=    (3.5.3) 

 

 

Figure 11: Image showing ROI in YUV color space. 

 

TheYUV space can be transformed into an IHS-type space.  
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= −

U

V
HUV

1tan        (3.5.4) 

( )22 VUSUV +=        (3.5.5) 

 

 

Figure 12: Image showing ROI in YUV (IHS type) color space. 

 

3.6 YIQ Color Space 

 

 As with the YUV space [2], the Y (luminance) component is identical to Y in XYZ 

space, while the I component (in-phase, an orange-cyan axis) and the Q component 

(quadrature, a magenta-green axis) express jointly hue and saturation [2]. 

 

BGRY 114.0587.0299.0 ++=      (3.6.1) 

)(27.0)(74.0322.0274.0596.0 YBYRBGRI −−−=−−=   (3.6.2) 

)(41.0)(48.0312.0523.0211.0 YBYRBGRQ −+−=+−=   (3.6.3) 
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Figure 13: Image showing ROI in YIQ color space. 

 

The YUV space can be transformed into an IHS-type space.  

 








= −

I

Q
H IQ

1tan        (3.6.4) 

( )22 QIS IQ +=        (3.6.5) 

 

Figure 14: Image showing ROI in YIQ (IHS type) color space. 
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3.7 YCbCr Color Space 

 

 The Y component is identical to that for YUV and YIQ. Current applications in 

image compression (e.g. JPEG format) often employ YCbCr space as a quantization space 

[2]. Greater compression is achieved using reduced spatial resolution and coarser 

quantization for Cb and Cr than for the Y component. 

 

BGRY 114.0587.0299.0 ++=      (3.7.1) 

)(564.0500.0331.0169.0 YBBGRCb −=+−−=    (3.7.2) 

)(713.0081.0418.0500.0 YRBGRCr −=−−=    (3.7.3) 

 

 

Figure 15: Image showing ROI in YCbCr color space. 
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3.8 Opponent Color Space 

  

 Opponent color space [2] has been inspired by the physiology of the human visual 

system (color opponent processes) and therefore is sometimes called physiologically 

motivated color space. Ewald Hering proposed color opponency theory , which explained 

some perceptual color phenomenon inexplicable by classical trichromatic theory. 

Illusions called ‘negative after-images’ and observations during color naming 

experiments that reddish-green and yellowish-blue colors are not identified, led Hering to 

suppose that red must be the ‘opposite’ color to green and likewise blue must be 

‘opposite’ to yellow. He presumed the existence of three opponent channels (processes) 

in the human visual system: red-green R-G channel, yellow-blue Ye-B channel and 

achromatic (white-black) Wh-Bl channel. Herings opponent process theory was one of the 

first approaches to separate luminance from chrominance [2]. 

 

GRRG −=         (3.8.1) 

GRBYeB −−= 2        (3.8.2) 

BGRWhBl ++=        (3.8.3) 
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Figure 16: Image showing ROI in Opponent color space. 

 

3.9 OhtaI1I2I3 Color Space 

 

 The Ohta color space [2] was derived as a result of a search of completely 

statistically independent components on a representative sample of images. The Ohta 

components are a good approximation of the Karhunen-Loeve transformation which is 

the best in respect of decorrelation of RGB components [2]. 

 

( )
3

1

BGR
I

++
=         (3.9.1) 

( )
2

2

BR
I

−
=         (3.9.2) 

( )
4

2
3

BRG
I

−−
=        (3.9.3) 

 



 

 

35 

 

 

 

Figure 17: Image showing ROI in Ohta color space. 

 

3.10 IHS Color Space 

 

 In the perception of colors, a layperson cannot make intuitive estimates of blue, 

green and red components, but can easily recognize basic attributes of color: intensity 

(brightness, lightness) I, hue H and saturation S [2].  The hue H represents the impression 

related to the dominant wavelength of the color stimulus. The saturation corresponds to 

relative color purity (lack of white in the color) and in the case of a pure color it is equal 

to 100%. (E.g. vivid red S = 100% and pale red (pink) S = 50%). Colors with zero 

saturation are grey levels. Maximum intensity is sensed as pure white, and minimum 

intensity is as pure black. The simpler formulae for RGB to IHS color space conversion 

has been used and is given by. 

 

if ( ) BBGR =,,min  then     (3.10.1) 
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else if ( ) RBGR =,,min  then 
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  ( ) ( )
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−=−=

,,min
31,,min31    (3.10.2) 

3

BGR
I

++
=        (3.10.3) 

 

 

Figure 18: Image showing ROI in IHS color space. 
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3.11 HSV Color Space 

 

 Another model similar to the IHS space is the HSV space [2]. It differs in 

formulae for the values of intensity and saturation. 

  

min = minimum(r, g, b)      (3.11.1) 

max = maximum(r, g, b)     (3.11.2) 

V = max       (3.11.3) 

if ( )0max!=  then      (3.11.4) 

( )
max

minmax−
=S  

else 

S = 0 

end  

 

Figure 19: Image showing ROI in HSV color space. 



 

 

38 

 

 

 

3.12 HLS Color Space 

 

Another model similar to the IHS and HSV spaces is the HLS space [2]. It also 

differs in formulae for the values of intensity and saturation. 

 

min = minimum(r, g, b)     (3.12.1) 

max = maximum(r, g, b)     (3.12.2) 

( )
2

minmax+
=L       (3.12.3) 

 if ( )minmax ==  then      (3.12.4) 

S = 0 

else if ( )5.0≤L  then 

( )
( )minmax

minmax

+
−

=S  

else 

( )
( )minmax2

minmax

−−
−

=S   

end 
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Figure 20: Image showing ROI in HLS color space. 

 

3.13 CIELAB Color Space 

 

 The CIELAB space [2]  is one of the approximately uniform color spaces, where L 

stands for lightness value and is orthogonal to a and b. L takes into consideration the non-

linear relation between the lightness and the luminance of a point. The component a 

denotes relative redness-greenness and b yellowness-blueness. It is defined by the 

following expressions, where (X0, Y0, Z0) represents reference white. 
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Figure 21: Image showing ROI in CIELAB color space. 

 

3.14 CIELUV Color Space  

 

 The CIELUV space [2] has component L identical to that of the CIELAB space, 

but it should also be noted that the u and v components are unrelated to the U and V in 

YUV space. The expressions are given as follows. 
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   ( )013 uuLu ′−′=       (3.14.2) 

( )013 vvLv ′−′=       (3.14.3) 

where 
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and  

  
( )ZYX
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++
=′       (3.14.5) 
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Y
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9

++
=′       (3.14.6) 

 

 

Figure 22: Image showing ROI in CIELUV color space. 

  



 

 

42 

 

 

 As seen in all the above images, the color information present in the ROIs are not 

significantly different from the background (the best case seen in the Ohta colorspace), 

causing the color profiling technique to provide unacceptable segmentations for dataset 1, 

in all of the colorspaces mentioned in this chapter. 
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Chapter 4 

4. IMAGE SEGMENTATION SCHEMES 

This chapter explains the broad classification of image segmentation schemes, as well 

as certain methods pertaining to our project that were implemented and used as 

benchmarks to compare against.  

The segmentation is required in order to aid the oncologist in researching the effects 

of the tumor on the blood vasculature surrounding it. Therefore, there is a need to provide 

a fast and reliable algorithm to accurately segment all the ROIs present in a particular 

high-resolution image.  

The existing automated segmentation schemes can be classified mainly into four 

categories: thresholding techniques, boundary-based techniques, region-based techniques 

and hybrid techniques [3]. 

4.1 Thresholding techniques 

Thresholding techniques are described by Sahoo et al. in [4] and by Pal et al. in [5]. 

These techniques are used to obtain good segmentation in images that have regions 

containing pixels whose intensity values (grayscale, color, etc.) lie within a certain range 

and are different from the range of values of the background. These techniques neglect 

the spatial correlation within regions, so the performance is often inadequate. 
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4.2 Boundary-based techniques 

Boundary-based techniques are used to segment images where the boundaries of the 

regions to be segmented have a distinctive change in pixel intensity. The most common 

method of finding region boundaries is by using edge detectors such as the Sobel 

operator, to find sharp changes in pixel values. The edge detectors usually provide 

discontinuous boundaries and may require post-processing such as gap-filling, 

smoothing, or curve fitting to obtain continuous edge boundaries. Another popular 

boundary-based segmentation method is the active contour model or snakes algorithm 

described by Kass et al. [6], as well as the GVF snake described by Xu and Prince [7]. 

While segmentation is fairly accurate in images that have a well-defined edge or 

boundary between the ROI and the background, these boundary-based methods are 

typically computationally intensive.  

4.3 Region-based techniques 

Region-based techniques are particularly effective in images that contain regions with 

somewhat homogeneous intensity values. Adams and Bischof [8] describe a seeded 

region growing method where the regions to be segmented are iteratively grown from 

initial points in the image called seed pixels. Another example of region-based 

segmentation is the split-and-merge approach described in [9][10]. The region-based 

techniques require the selection of appropriate seed points and homogeneity criteria in 

order to produce accurate segmentations. 
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4.4 Hybrid techniques 

Hybrid techniques involve the integration of more than one of the techniques 

described above to achieve a final accurate segmentation. Pavlidis et al. [11], Haddon and 

Boyce [12], Zhu et al. [13], Fan et al. [14] all describe hybrid segmentation methods 

where the segmentation is performed by unifying region growing schemes with various 

other schemes. The hybrid techniques are usually data-dependant and involve 

computationally complex algorithms that are used for the automated segmentation, 

making them unfeasible for high-resolution image segmentation. 

4.5 3-D Histogram method 

Gaddipati et al. [15] have explained a method for automated segmentation of 

immunohistochemically stained slides. This method involves a transformation into the 

HSV color space and the creation of a 3-D histogram.  

The automated classification system is based on three-dimensional histograms and 

designed based on the color invariance of stained tissues. Tissue clusters are enclosed in 

the 3-D histogram interactively using a few representative images. The HSV color space 

is used to reduce correlation between color features. Depth shaded projections of the 3-D 

histogram along the three color feature axes are displayed. The projections of the 

histogram along the three color axes are used to enclose the tissue clusters [15], thereby 

segmenting the blood vasculature from the background.  



 

 

46 

 

 

The method [15] assumes color invariance in immunohistochemical slides and 

proceeds to use a fixed 3-D area in the 3-D histogram projections as the foreground 

regions. The method is useful for images that have separate, well-defined clusters that 

represent a particular region in the image, either the regions of interest (ROIs) or the 

background.  

Most manual immunohistochemical staining methods results in the antibody (ROI) 

reacting with the protein to produce a different color as compared to the rest of the 

background tissue. As a result, different staining runs produce slight differences in stain 

retention by the ROIs. Consequently, the region clusters in the 3-D histogram are also 

different for each staining run, making it difficult to segment the ROIs. When the ROIs 

retain only a small amount of the stain, the clusters overlap each other, thereby making 

the segmentation process extremely difficult. This is especially true in cancerous-tissue 

images, where the ROIs (blood vessels, tumors, etc.) appear as multitudes of small 

circular cells interspersed within background tissue, as seen in Fig. 1. 

The original images also have very high intra-slice resolution, 3200 × 1600 pixels, 

corresponding to 20X magnification. The thickness of the slices limits the inter-slice 

resolution, so we have to rely on a 2-D approach to segmentation. 

4.6 Pulse Coupled Neural Network method (PCNN) 

Stewart et al. [16] explain a method for automated segmentation using region 

growing with pulse-coupled neural networks. In image processing applications, the 
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typical network topology for the PCNN is a 2-D planar lattice with a one-to-one pixel to 

neuron correspondence and for image segmentation, synchronization of a connected set 

of neurons corresponds to region labeling. In discrete time, connected neurons pulsing at 

the same time are associated with a unique label while groups pulsing at different times 

are given distinct labels. However, due to the dynamics of the PCNN, multiple connected 

groups of neurons will often pulse at the same time, calling for further processing to 

identify distinct regions. By adopting a novel region growing approach and introducing 

statistical control, the PCNN can be made to automatically identify a single connected 

region at each time step without the benefit of predetermined seed locations [16]. 

PCNN neurons feature feeding F and linking L input channels are combined in a 

multiplicative, excitatory fashion to form an internal activation signal U, which is 

compared with a dynamic threshold T to form output pulses Y.  

In the linking field model (LFM) F, L and T are all instantiated as leaky capacitors. 

The feeding input at time t is reduced to the corresponding pixel intensity Fx[t] =Gx and 

linking input Lx is given by 

[ ] [ ]∑
∈

−=
)(xNx

zx dtYtL        (4.6.1) 

 where the first term sums over the output of the nearest 8 neighbors and the second 

term d is a positive constant which is the preferred method of inhibition. Along with other 

modifications, the simplified feeding and linking inputs arguably compromise biological 

plausibility in search of improved efficiency and segmentation performance. 
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The change introduced by this method is temporal independence where each time 

step of the PCNN is treated as an independent process. The excitatory signal is given by 

[ ] [ ]{ }tLGtU xtxx β+= 1        (4.6.2) 

Output values are given by a simple step function comparing Ux with a dynamic 

threshold Tx 

[ ] [ ] [ ]


 >

=
otherwise

tTtU
tY

xx

x
,0

,1
       (4.6.3) 

Since the equations are visited in sequence, at the beginning of each time step there 

will be no linking input, and the initial pulsing activity is given by 

  [ ] [ ]


 >

=
otherwise

tTG
tY

xx

x
,0

,1
       (4.6.4) 

Eqs. (4.6.1) – (4.6.3) are iterated until the output Y converges to a fixed state with 

convergence guaranteed because the value of Ux never falls during a time step while Tx[t] 

is constant.  

Algorithmic termination is resolved by applying the single-pass stopping condition 

where each neuron in the network is allowed to pulse: change state from zero to one, 

once and only once [16]. Time of pulsing is used as a region label and these times are 

stored in the matrix P with initial values of zero at all locations. 
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  [ ] [ ]
[ ]




−

=
=

otherwisetP

tYt
tP

x

x

x
,1

1,
      (4.6.5) 

By temporal independence threshold decay is abandoned in favor of explicit working 

thresholds wt1 for all neurons yet to pulse. These neurons and the corresponding pixels 

are referred to as active. The threshold for other neurons is set to a large constant value 

Ω  to prevent repeated pulsing at the same location. 

  [ ] [ ]




Ω

=−
=

otherwise

tPwt
tT

x

x
,

01,1
      (4.6.6) 

The algorithm is as follows 

1. Set d and Ω  

2. Repeat 

a. [ ] [ ] 01|max1 =−∀= tPyGwt yy  

b. [ ] [ ]




Ω

=−
=

otherwise

tPwt
tT

x

x
,

01,1
 

c. [ ] [ ]


 >

=
otherwise

tTG
tY

xx

x
,0

,1
 

3. Set tβ sufficient for initial spread 

4. While statistical termination condition not met 

a. While there is any change in pulsing activity 

i. [ ] [ ]∑
∈

−=
)(xNx

zx dtYtL  
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ii. [ ] [ ]{ }tLGtU xtxx β+= 1  

iii. [ ] [ ] [ ]


 >

=
otherwise

tTtU
tY

xx

x
,0

,1
 

End 

  δβββ += tt  

  End 

 5. [ ] [ ]
[ ]




−

=
=

otherwisetP

tYt
tP

x

x

x
,1

1,
 

 6.   t = t + 1  

The time or iteration of pulsing is used as a region label; all neurons pulsing at a 

particular iteration are considered to be one region type, and all neurons pulsing at a 

different iteration are considered to be part of a different region type [16].  

4.7 k-means Clustering method 

The k-means clustering method described in [17] and [18] segments the image into n 

clusters depending on the Mahalanobis distance of each pixel to the centroid of the 

cluster. The number of clusters n is chosen depending upon the expected number of 

clusters corresponding to different biological components and consequently different 

color retention in the images. An image that has been segmented into 12 clusters by using 
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the k-means algorithm [18] is shown in Fig. 23.  A cursory observation of the 

segmentation shows the different clusters, with a major portion of our ROIs 

corresponding to a particular cluster, and small regions inside the ROIs corresponding to 

a cluster that also includes a number of background pixels. 

 

Figure 23: A k-means cluster showing 12 clusters. 

The clustered image is then thresholded to extract the cluster that corresponds to the 

ROIs, as shown in Fig. 24. The failure of k-means to accurately classify the ROIs into 

one or more clusters necessitates the use of a region-based segmentation scheme to 

accurately segment the ROIs from the background.  
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Figure 24: A thresholded k-means cluster segmentation. 

 

4.8 Integrated Color Edges method 

Fan et al. [14] explain a method for automatic image segmentation that integrates 

color edges and seeded region growing [8]. The image is transformed into YUV (luma 

and color difference) color space, and the pixels are classified into two opposite classes, 

edge and non-edge, based on the local maximum edge strength of the pixel being greater 

(or lesser, respectively) than a threshold determined by the fast entropic thresholding 

technique. The union of the set of Y, U and V edge pixels forms the color edges [14]. The 

obtained color edges are useful for providing the candidate seed pixels of the image. The 

number of seed pixels produced by this method is still high on average, thereby making it 

computationally intensive for high-resolution images. 
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4.9 Histogram Peak Selection method 

Silva et al. [19] explain a method for seed pixel selection, wherein the seed pixels and 

the homogeneity criteria for the region growing algorithm [8] are selected based on the 

image histogram. The main contribution of this scheme is the method of seed pixels 

selection.  

The method involves the implementation of a new peak detection algorithm based on 

the image histogram. This algorithm provides the seed pixels and the homogeneity 

criteria to the region growing algorithm.   

The algorithm is as follows 

1. Build the image histogram. 

2. Determine all the peaks (P) of the histogram. 

3. Select, in sequence, some or all the peaks P between the ones that were 

determined in step. 2, following the rule 

a. For each P calculate ( )ipg  

( ) 2

iii distfreqpg ×=       (4.9.1) 

where pi is the peak i of the histogram, freqi is the height of the 

peak and disti = 1 if pi is the first peak, or the horizontal distance to 

the nearest selected pi, otherwise  
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b. The peak pi which maximizes the function g(pi) is selected. 

4. All the pixels in the image with gray level of the selected peaks pi from P are 

chosen as seed pixels. 

If f (x,y) is the gray level of the pixel (x,y), the homogeneity criteria (Hpi) is defined 

as 

( ) ( )


 ≤≤

= +

otherwiseFalse

vyxfvTrue
yxH

ii

pi
,

,,
,

1
     (4.9.2) 

where the peak pi being tested is located between one valley on the left vi and one 

valley on the right vi+1. The computation of the gray level of the valleys is presented in 

Eq. (4.9.3) below.  

For each peak pi select a gray level I between pi and pi+1 that minimize the 

function hi(I) as defined in Eq. (4.9.3) below. 

( ) ( )
|

2
| 1++
−×= ii

ii

II
IfreqIh       (4.9.3) 

( )( )IhMinv i
i

i =        (4.9.4) 

 where I is a gray level between the gray levels of two selected peaks pi and pi+1; 

freqi is the frequency of I; 
( )

2

1++ ii II
 is the middle value between pi and pi+1, and; 

( )
|

2
| 1++
− ii II

I  is the distance of I to the middle point between pi and pi+1. 
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 The peaks of the histogram are determined [19], and an appropriate number of these 

peaks are selected based on the frequency of pixels that have the intensity represented by 

the peak, and based on the distance of the peak from other previously selected peaks. All 

the peaks that satisfy the given conditions are selected, and all the pixels whose intensity 

equals the intensities represented by these peaks are chosen as candidate seed pixels [19]. 

The number of seed pixels produced by all selected peaks [19] is extremely high, 

making it unfeasible for high-resolution images. Restricting the number of candidate seed 

pixels, by restricting the number of histogram peaks chosen, results in inaccurate 

segmentations. Thus, an alternative method for accurate selection of seed pixels, resulting 

in accurate segmentations, is needed. 
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Chapter 5 

5. PRINCIPAL COMPONENT ANALYSIS 

This chapter explains principal component analysis, which is used as an initial step to 

convert the 3-D color images to a 1-D grayscale intensity image.  

Principal component analysis is mathematically defined [20] as an orthogonal linear 

transformation that transforms the data to a new coordinate system such that the greatest 

variance by any projection of the data comes to lie on the first coordinate (called the first 

principal component), the second greatest variance on the second coordinate, and so on.  

The principal components of the RGB color images are obtained using the covariance 

method [20] explained below. 

One approach to coping with the problem of excessive dimensionality is to reduce the 

dimensionality by combining features. Linear combinations are particularly attractive 

because they are simple to compute and analytically tractable. In effect, linear methods 

project the high-dimensional data onto a lower dimensional space. The principal 

component analysis approach seeks a projection that best represents the data in a least-

squares sense. 

The problem consists of representing all of the vectors in a set of n d-dimensional 

samples x1,..., xn by a single vector x0 [20]. To be more specific, suppose that we want to 
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find a vector x0 such that the sum of the squared distances between x0 and the various xk 

is as small as possible. The squared-error criterion function J0(x0) is defined by 

( ) ∑
=

−=
n

k

kxxxJ
1

2

000 ||||         (5.1) 

and seek the value of x0 that minimizes J0. It is simple to show that the solution to this 

problem is given by x0 = m, where m is the sample mean 

∑
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m
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1
          (5.2) 

This can be easily verified by writing 
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where the second sum is independent of x0. This expression is obviously minimized 

by the choice of x0 = m. 
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The sample mean is a zero-dimensional representation of the data set. It is simple, but 

it does not reveal any of the variability in the data. We can obtain a more interesting, one-

dimensional representation by projecting the data onto a line running through the sample 

mean [20]. Let e be a unit vector in the direction of the line. Then the equation of the line 

can be written as 

emx α+=           (5.4) 

where the scalar α (which takes on any real value) corresponds to the distance of any 

point x from the mean m. If we represent xk by em kα+ we can find an “optimal” set of 

coefficients kα by minimizing the squared-error criterion function. 
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recognizing that ||e|| =1, partially differentiating with respect to kα and setting the 

derivative to zero, we obtain 

( )mxe k

t

k −=α            (5.6) 
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Geometrically, this result merely says that we obtain a least-squares solution by 

projecting the vector xk onto the line in the direction of e that passes through the sample 

mean [20]. 

This brings us to the more interesting problem of finding the best direction e for the 

line. The solution to this problem involves the so-called scatter matrix S defined by 

( )( )∑
=

−−=
n

k

t

kk mxmxS
1

        (5.7) 

The scatter matrix should look familiar – it is merely n – 1 times the sample co-

variance matrix. It arises here when we substitute kα  found in Eq. (5.6) into Eq. (5.5) to 

obtain 
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Clearly, the vector e that minimizes J1 also maximizes Seet . The method of Lagrange 

multipliers described in [20] is used to maximize Seet  subject to the constraint that 

1|||| =e . Letting λ be the undetermined multiplier, we differentiate 

( )1−−= eeSeeu tt λ          (5.9) 

with respect to e to obtain 

  eSe
e

u
λ22 −=

∂
∂

       (5.10) 

Setting this gradient vector equal to zero, we see that e must be an eigenvector of the 

scatter matrix 

  eSe λ=         (5.11) 

In particular because λλ == eeSee tt , it follows that to maximize Seet , we want to 

select the eigenvector corresponding to the largest eigenvalue of the scatter matrix. In 

other words, to find the best one-dimensional projection of the data (best in the least-

sum-of-squared-error sense), we project the data onto a line through the sample mean in 

the direction of the eigenvector of the scatter matrix having the largest eigenvalue [20]. 

This result can be readily extended from a one-dimensional projection to a d ′ -

dimensional projection. In place of Eq. (5.4) we write, 
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is minimized when the vectors dee ′,...,1 are the d ′  eigenvectors of the scatter matrix 

having the largest eigenvalues. Because the scatter matrix is real and symmetric, these 

eigenvectors are orthogonal. They form a natural set of basis vectors for representing any 

feature vector x. The coefficients iα  in Eq. (5.12) are the components of x in that basis, 

and are called the principal components. Geometrically, if we picture the data points 

x1,…,xn as forming a d-dimensional, hyperellipsoidally shaped cloud, then the 

eigenvectors of the scatter matrix are the principal axes of that hyperellipsoid [20]. 

Principal component analysis reduces the dimensionality of feature space by restricting 

attention to those directions along which the scatter of the cloud is greatest [20]. 

In our case, the RGB color image has three dimensions and the features are combined 

to form a reduced dimension grayscale image. Thus principal component analysis is used 

to reduce the dimensionality of the data from a color image into a grayscale image. The 

RGB images are transformed into three grayscale images, each representing the three 

principal components in the original image. Deveaux et al. [21] explain that the major 

advantage of using principal component analysis is that, theoretically the information on 
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the three axes is completely decorrelated [21], and therefore the transformed images can 

be independently and separately processed. Another major factor that influences the use 

of the principal component analysis is that, theoretically the luminance information is 

concentrated on theλ 1 axis, and the chrominance information is contained on the λ 2 and 

λ 3 axes [21]. The major information distinguishing the ROIs from the background is the 

chrominance information, and this is retained in the second principal component. 

The second advantage of the principal component analysis is the conservation of 

energy through coordinate transformation. The total energy contained in the transformed 

image is the sum of the individual energies of each principal component image 

( %100)( 321 =++= λλλKEnergy ), and the energy of each axis is given by its associated 

eigenvalue [21]. Since the transformed data is arranged in descending order of 

eigenvalues, and therefore by definition 321 λλλ >> the λ 1 axis contains more energy 

than the λ 2 axis, and the λ 3 axis is weak in energy. To measure the importance of 

energy on the λ 3 axis, the representation quality factor Q [21] is calculated as 

321

21

λλλ
λλ
++

+
=Q        (5.14) 

Q measures the fraction of energy preserved when the λ 3 axis is removed. In this 

application, we need to perform image segmentation primarily on the chrominance 

information, so the λ 1 and λ 3 axes can be removed without significant loss of 

information. Therefore, the RGB images are transformed into the grayscale λ 2 image, 

which represents the significant chrominance information. 
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  The resulting second principal component image is thresholded (Section 9.5.1), and 

these thresholded pixels are selected as the candidate seed pixels for region growing.  

The principal component analysis threshold yields about 237220 seed pixels for each 

image, on an average over the entire dataset. Growing the regions using these 237220 

seed pixels results in two problems: (a) some of these pixels (especially ROI border 

pixels) may result in an inaccurate segmentation of the ROIs, with extra background 

surrounding the ROI being classified as a part of it, and (b) some of the seed pixels may 

even grow into a region identical to one grown from a previous seed pixel, resulting in a 

reduction in efficiency and an unnecessary increase in computation time. 

Therefore, there is a need to prune the seed pixels down to a more feasible number, 

eliminating seed pixels yielding inaccurate segmentation, and minimizing the number of 

seed pixels growing into identical regions. This is achieved by the seed pruning algorithm 

discussed in the following chapter. 
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Chapter 6 

6. SEED PRUNING ALGORITHM 

For each second-principal-component image, we use thresholding (Section 9.5.1) to 

locate candidate seed pixels, and then prune those seed pixels before performing region 

growing. The proposed seed-pruning algorithm involves the creation of a Gaussian multi-

resolution pyramid [22] by local averaging, and down sampling during which the 

resolution is halved at each level. We define three categories of seed pixels for a given 

multi-resolution pyramid: 

(a) Candidate seed pixels – the set of all pixels that fall within the threshold (Section 

9.5.1), at each resolution level, starting at the lowest resolution.  

(b) Potential seed pixels – the set of all pixels, at each resolution level greater than 

one, obtained by extrapolating the locations (row and column are multiplied by two) of 

the fixed seed pixels at the next lower resolution level. 

(c) Fixed seed pixels – the set of all potential seed pixels that survive the seed 

pruning algorithm at each level greater than one and the set of all candidate seed pixels at 

level one. 

(d) Final seed pixels – the set of all fixed seed pixels that survive the seed pruning 

algorithm at the highest resolution level.  
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Figure 25: Flowchart showing the working of the Seed Pruning Algorithm with number 

of each class of pixels for a specific case highlighted at each step. 
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Considering the specific case of the original image imaged at 20X resolution, we 

create lower-resolution images at 10X, 5X, and 2.5X to form a four-level pyramid. The 

major ROIs are still prominently visible at 2.5X, whereas noisy pixels are not so 

prominent. The number of candidate seed pixels at this level is around 3600, which if 

extrapolated directly to 20X is still large.  

The seed pruning algorithm concentrates on minimizing this number as we move 

through the multi-resolution pyramid. It is analyzed in the following discrete steps. 

(1) Create an m-level multi-resolution pyramid [22] from the second principal 

component of the original image, where each image in the pyramid has half the resolution 

of the image at the previous level. 

(2) Threshold (Section 9.5.1) each image in the pyramid and select the set of all 

pixels falling within the threshold as the set of candidate seed pixels at that level. 

(3) At the lowest resolution level (level 1), set the fixed seed pixels set to be equal to 

the set of candidate seed pixels at that level. 

(4) The locations of all fixed seed pixels at level k (k=1,2….m) are extrapolated (row 

and column are multiplied by two) to yield potential seed pixels at level k+1. 

(5) For each potential seed pixel at level k (k=2,3…m) count the number of candidate 

seed pixels  in its (2k-1) × (2k-1) neighborhood. 

(6) If the count size is greater than 50% (Section 9.5.2) of the window size, then the 

potential seed pixel becomes a fixed seed pixel at level k, else it is discarded. 
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(7) Repeat steps 4 through 6 until the fixed seed pixels at the level m (the full 

resolution) are obtained. 

To determine whether a potential seed pixel becomes a fixed seed pixel, we examine 

the number of candidate seed pixels appearing in a local neighborhood (step 5). The 

number of candidate seed pixels in this window will be high for potential seed pixels that 

are in the middle of an ROI, and will be low for the potential seed pixels that are on the 

borders of the ROIs. By requiring that at least 50% (Section 9.5.2) of pixels in the 

window are candidate seed pixels, we can eliminate ROI border seed pixels, which often 

result in inaccurate segmentations. 

After this pruning step, we obtain the fixed seed pixels at resolution level k, which are 

called final seed pixels which are much fewer than the number of candidate seed pixels at 

this level, and also lesser than the number of fixed seed pixels at level k-1. 

Next, the fixed seed pixels at level k are extrapolated to obtain potential seed pixel 

locations at level k+1. The neighborhood window size, (2k-1) × (2k-1), increases as k 

increases, which is appropriate due to the increase in resolution. The larger window size 

is necessary for further elimination of any surviving border pixels. The process is 

repeated until we reach the full-resolution level of the pyramid. Each time, the condition 

for validating a potential seed pixel to a fixed seed pixel is the presence of more than 50% 

(Section 9.5.2) candidate seed pixels in its neighborhood.  
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Chapter 7 

7. REGION GROWING 

The region growing scheme implemented as the final step of the segmentation 

process is described by Adams and Bischof [8]. The algorithm is used for the 

segmentation of intensity images and is robust, rapid and free of tuning parameters. 

However it requires the input of a number of seeds, either individual pixels or regions, 

which will control the formation of regions into which the image will be segmented. 

Region based methods rely on the postulate that neighboring pixels within a region 

have a similar value. The procedure is to compare one pixel to its neighbor(s). If a 

criterion of homogeneity is satisfied, the pixel is said to belong to the same class as one 

or more of its neighbors.  

Seeded region growing [8] performs a segmentation of an image with respect to a set 

of points, known as seeds. We start with a number of seeds which have been grouped into 

n sets, say, A1, A2, … , An. sometimes, individual sets will consist of single points. It is in 

the choice of seeds that the decision of what is a feature of interest and what is irrelevant 

or noise is embedded. This is the most important step of the region growing process, and 

the seed pruning algorithm in Chapter 6., is responsible for selecting the seed pixels that 

provide accurate segmentations. 
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Given the seeds, the algorithm then finds a tessellation of the image into regions with 

the property that each connected component of a region meets (non-empty intersection 

with) exactly one of the Ai  and, subject to this constraint the regions are chosen to be as 

homogenous as possible. Though the method described is applicable to grayscale images, 

the extension to color or multispectral images is straightforward and involves the choice 

of a suitable metric in color or multispectral space, or a suitable conversion into the 

grayscale space. This is accomplished using the principal component analysis mentioned 

in Chapter 5. 

The process evolves inductively from the seeds, namely the initial state of the sets, 

A1, A2, … , An. Each step of the algorithm involves the addition of one pixel to one of the 

above sets. The state of the sets Ai after m steps is considered. The set T of all as-yet 

unallocated pixels which border at least one of the regions is given by 
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where N(x) is the set of immediate neighbors of the pixel x. The neighbors of the 

pixel are defined by a rectangular grid with immediate neighbors being those which are 

8-connected to the pixel x. 
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Figure 26: 8-connected neighbor pixels of pixel x. 

If, for Tx∈ we have that N(x) meets just one of the Ai then { }nxi ,...,2,1)( ∈  is defined 

to be that index such that φ≠∩ )()( xiAxN  and )(xδ is defined to be a measure of how 

different x is from the region it adjoins and is given by 
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ygmeanxgx
∈

−=δ       (7.2) 

where g(x) is the gray value of the image point x. If N(x) meets two or more of the Ai, 

we take i(x) to be a value of i such that N(x) meets Ai and )(xδ  is minimized. 

Alternatively, we can classify x as a boundary pixel and append it to the set B of already 

found boundary pixels. Flagging such boundary pixels is useful for display purposes or 

for use with a semi-interactive corrective procedure if needed. A Tz∈ is then taken such 

that, 

{ })(min)( xz
Tx
δδ

∈
=        (7.3) 

and the z  is appended to Ai(z). This completes step m +1. The process [8] is repeated 

until all pixels have been allocated. The process commences with each Ai being just one 

of the seed sets. The definitions in (8.2) and (8.3) ensure that the final segmentation is 

into regions as homogenous as possible given the connectivity constraint [8].  
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While programming the region growing algorithm [8] a sequentially sorted list (SSL) 

is used. The SSL is a linked list of objects, in this case pixel addresses, which are ordered 

according to some attribute. When considering a new pixel, for example, at the beginning 

of each step, the one at the beginning of the list is taken. When adding a pixel to the list, 

it is placed according to its value of the ordering attribute, in this case according toδ . 

The algorithm for implementing seeded region growing [8] is given below 

1) Label seed points according to their initial grouping 

2) Put neighbors of seed points (the initial T) into the SSL. 

3) While the SSL is not empty 

i. Remove first point y from SSL 

ii. Test the neighbors of this point 

1. If all neighbors of y which are already labeled (other than 

with boundary label)  have the same label 

a. Set y to this label 

b. Update running mean of corresponding region 

c. Add neighbors of  neighbors of y which are neither 

already set nor already in the SSL to the SSL 

according to their value of δ . 

2. Else  

a. Flag y with the boundary label 
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In executing the algorithm each pixel is visited just once, although at each visit each 

of the neighbors are viewed and tested. This makes for a very rapid program. 

The final seed pixels obtained by the seed pruning algorithm in Chapter 6., are used 

as the inputs to the region growing scheme [8], along with the grayscale image which is 

the second principal component image of the original high resolution color image.  

Each of these final seed pixel locations is used as a starting point Ai in the principal 

component image to create an outward iterative growth of a region, which is expected to 

be a ROI. The seeded region growing algorithm explained above is then implemented to 

generate the final segmented region ROIs.  

The homogeneity criterion used in this method is the second principal component 

intensity of the pixel under test. If this value falls within a threshold (Section 9.5.3), the 

pixel under test is classified as a region pixel. 

The goals of the seed pruning algorithm are to provide the fewest number of final 

seed pixels that will result in the growth of a number of segmented regions that 

correspond exactly to the number of ROIs present in the image, and to select the seed 

pixels that only produce accurately segmented regions, in the seeded region growing step.    

Repeating the process for all the final seed pixels obtained by the seed pruning 

algorithm, results in the formation of a corresponding number of grown regions that 

ideally should represent the ROIs. A check is also performed within the region growing 

scheme to determine whether the seed pixel currently being tested is part of a region 
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already obtained from an earlier seed pixel. This minimizes the unnecessary duplication 

of identical region obtained from multiple seed pixels. 

Due to the inherent complexities in the manual segmentation (namely small non-ROI 

hole pixels appearing as ROIs due to inabilities to accurately manually segment the 

images, a post processing step that involves morphological closing operation [3] with a 

11 ×  11 window (Section 9.5.4) to smooth the holes present in the ROIs, is used before 

accuracy and false negative and false positive ratio calculations. 
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Chapter 8 

8. RESULTS – SEGMENTATED IMAGES 

 

Figure 27: Automated segmentation using our approach. 

 

 
Figure 28: Manual segmentation. 
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Figure 29: Automated segmentation using our approach. 

 

 

Figure 30: Manual segmentation. 
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Figure 31: Automated segmentation using our approach. 

 

 

 

Figure 32: Manual segmentation. 
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Figure 33: Automated segmentation using our approach. 

 

 

 

Figure 34: Manual segmentation. 
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Figure 35: Automated segmentation using our approach. 

 

 

Figure 36: Manual segmentation. 
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Figure 37: Automated segmentation using our approach. 

 

 

 

Figure 38: Manual segmentation. 
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Chapter 9 

9. RESULTS – ANALYSIS AND DISCUSSION 

The original images are high-resolution (3200 × 1600 pixels, corresponding to 20X 

magnification) 24 bits per pixel digital color images of histological slides digitized using 

a DMetrix scanner. The histological slides contain slices of breast cancer tissue that has 

been stained with a coloring agent (Cd-31 coloring stain). The regions of interest (tumors, 

blood vessels, etc.) retain the stain, and have a difference in color with respect to the 

background tissue. 

9.1 Segmentation Accuracy 

Segmentation accuracy is based on the area of mutual overlap [3]. If P1 is the number 

of segmented region pixels obtained using our approach, and P2 is the number of region 

pixels in the manually segmented regions, and MO is the mutual overlap between 

automatically segmented regions and manually segmented regions, then the performance 

metric for accuracy [3] is given by 

21

2

PP

MO
acc

+
=         (9.1) 

The mean area of mutual overlap over a sample set of eight images each containing 

about twenty-four ROIs was found to be 85.2% with a standard deviation of 5.7 

percentage points.  
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9.2 Efficiency in reducing number of seed pixels 

We also measured the efficiency of the algorithm in terms of percentage reduction in 

the number of seed pixels as compared with (a) the integrated color edge method [14], (b) 

using the histogram method [19] for finding the seed pixels, (c) using all the candidate 

seed pixels present in the lowest-resolution image extrapolated to the original resolution 

level (multiplying row and column by 2
m-1
), and (d) using all of the candidate seed pixels 

of the highest-resolution image (too many seeds to perform region growing) and (e) the 

k-means clustering method [18] (too many seeds to perform region growing). The 

accuracy of our seed pruning algorithm was also compared with these techniques, and 

also the (f) pulse-coupled neural network method [16] (the pulse-coupled neural network 

method does not generate seeds and does not use region growing). 

Table 1: NUMBER OF SEED PIXELS AND SEGMENTATION ACCURACY 

 

Method No. of Seeds Accuracy (%) 

Seed pruning 602 85.2 

Color edges [14] 883 73.9 

Histogram peaks  [19] 1102 80.6 

k-means Clustering [18] 122303 - 

Pulse-coupled NN [16] - 45.9 
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Table 1. shows the number of seed pixels generated by our seed pruning algorithm 

compared with various existing algorithms and their corresponding segmentation 

accuracies.     

Our proposed seed pruning algorithm achieves a 31% reduction in number of seed 

pixels selected, compared to the integrated color edge method [14], a 45% reduction 

compared to the histogram peaks method [19], and a 99% reduction in candidate seed 

pixels compared to the k-means clustering method [18]. The accuracy is also higher than 

all the other methods that could be feasibly implemented. 

9.3 Effect of number of resolution levels on efficiency and accuracy 

We measured the effect of the seed pruning algorithm in pruning the seeds at different 

resolutions levels in the multi-resolution pyramid, and computed the accuracy of the 

segmentation each time. The results are shown in Table. 2.  

Table 2: NUMBER OF SEED PIXELS AND SEGMENTATION ACCURACY OF THE SEED PRUNING 

METHOD BY VARYING RESOLUTION LEVELS 

 

Seed Pruning Resolution No. of Seeds Accuracy (%) 

1.250X 73 23.7 

2.500X 602 85.2 

       5X 4232 85.2 

     10X 25512 - 

     20X 237220 - 
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The number of resolution levels that the seed pruning algorithm uses to prune the 

number of seed pixels depends on various image factors, like initial resolution level, 

image size etc.  

By using lower resolution levels, the number of seed pixels selected by the seed 

pruning algorithm reduces each time as expected. But, below the fourth resolution level 

the seed pixels selected produce inaccurate segmentations. This is largely due to smaller 

ROIs being completely invisible at 1.25X. Thus 2.5X has been selected as the lowest 

resolution level, for the seed pruning algorithm to select seed pixels for region growing 

segmentation.  

9.4 False Negative Ratio and False Positive Ratio 

We also measured the accuracy of segmentation in terms of the false negative ratio 

(FNR) and false positive ratio (FPR) [23]. The false positive error [23] is defined as the 

number of non ROI pixels in the manually segmented image that are misclassified as ROI 

pixels in the automated segmentation. The false positive ratio (FPR) [23] is then 

computed relative to the number of ROI pixels found in the manually segmented data.  

 ( )
PixelsROITotal

PixelsPositiveFalse
FPRRatioPositiveFalse

__

__
__ =    (9.2) 

The false negative error [23] is defined as the number of ROI pixels in the manually 

segmented image that are misclassified as non ROI pixels in the automated segmentation. 
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The false negative ratio (FNR) [23] is then computed relative to the number of ROI 

pixels found in the manually segmented data.  

( )
PixelsROITotal

PixelsNegativeFalse
FPRRatioNegativeFalse

__

__
__ =    (9.3) 

Table 3: FALSE NEGATIVE AND FALSE POSITIVE RATIOS 

 

Method FNR (%) FPR (%) 

Seed pruning 15.94 12.74 

Color edges [14] 26.11 21.06 

Histogram peaks  [19] 22.72 11.53 

 

Table 3. shows the false positive and false negative ratios for the various methods of 

segmentation. The pulse coupled neural network and k-means clustering segmentation 

methods failed considerably and therefore are not considered in the above table. In 

addition to better segmentation accuracy the seed pruning algorithm also has better false 

negative and false positive ratios compared to the other methods. 

9.5 Region of Convergence curves based on varying thresholds 

We also conducted experiments to determine the appropriate thresholds used in the 

major steps – a) determining Candidate seed pixels at each resolution level in the multi-

resolution pyramid, b) the percentage of candidate seed neighbors required for a potential 
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seed pixel to survive the pruning step, c) the homogeneity criterion in the region growing 

scheme [8] and d) the closing window size for the post-processing step. 

9.5.1 Candidate Seed Pixel Selection Threshold 

  

 The second step in the seed pruning algorithm (Chapter. 6.) describes the 

selection of Candidate seed pixels using a threshold. This threshold is varied and the 

number of final seed pixels selected as a result of the seed pruning algorithm is plotted 

against the threshold values. The graph shown in Fig.39. uses the logarithmic scale. Also 

the effect of various thresholds on segmentation accuracy [3] and false negative and false 

positive ratios [23] is plotted and is seen in Fig. 40.  

 The threshold which gives us the best possible accuracy while also limiting the 

number of seed pixels inputs to a feasible number is 160. This is chosen as the threshold 

for this step. As evident from Fig. 39, the number of seeds is zero for lower values of 

threshold, for all the images, or most. In cases, where the seeds are zero, no segmentation 

occurs, and consequently accuracy is 0%, FNR is 100%, and FPR is 0%. In cases, where 

few images showed seeds, a reliable measure across all images couldn’t be established 

and hence the values for the few images are shown, but since it is not a reliable measure, 

it is shown by the dotted lines in Fig. 40.  

 The solid lines of the graph in Fig. 40, represent accurate values of accuracy, FNR 

and FPR averaged over all images. The dotted lines for higher threshold values, are 

estimated values due to unfeasibly high number of seed pixels surviving, making it 

virtually impossible to perform region growing. 
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Figure 39: Number of Final seed pixels Vs. Candidate seed pixel selection threshold. 

 

 

 
 

 

Figure 40: Accuracy, FNR and FPR Vs. Candidate seed pixel selection threshold. 
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9.5.2 Percentage of Candidate seed pixel neighbors  

  

 
 

Figure 41: Number of Final seed pixels Vs. Candidate seed pixel neighbor percentage. 

 

 
 

Figure 42: Accuracy, FNR and FPR Vs. Candidate seed pixel neighbor percentage. 
 

 

In step 6. of the seed pruning algorithm (Chapter 6.), the percentage of candidate 

seed pixel neighbors of a potential seed pixel determines whether it survives the pruning 



 

 

88 

 

 

step and becomes a fixed seed pixel. Accordingly these values were varied and plots of 

number of final seed pixels selected by the seed pruning algorithm and segmentation 

accuracy, FNR and FPR values are shown in Figs. 41 and 42 respectively. The value of 

50% is chosen. Intuitively, a value of 50% implies a higher probability of candidate seed 

pixel neighbors being present in at least two directions surrounding the potential seed 

pixel increasing the possibility of selection of seed pixels closer to the center of the ROI, 

eliminating border pixels which may give rise to inaccurate segmentations. 

The value of 50% is also the lowest at which all images showed a set of final seed 

pixels selected, resulting in segmentations. Values below 50% are values from fewer 

images. 

   Segmentation accuracy drops as the percentage increase, as it damps the seed 

pruning algorithm to prune larger numbers of seeds resulting in pruning of accurate seed 

pixels too. Consequently FNR and FPR are also affected. 

9.5.3 Homogeneity Criterion  

 

 The homogeneity criterion threshold of the region growing segmentation scheme 

is also varied and the accuracy, FNR and FPR values are studied in Fig. 43. The 

homogeneity criterion imposes a bi-level threshold obtained at ten percent on either side 

of the homogeneity criterion threshold value varied here. Pixels satisfying the 

homogeneity criterion are expected to be part of an accurate ROI. Consequently, this is 

an important parameter on which accuracy is dependant.  
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Since this is not a seed selection parameter, the number of seeds selected remain 

constant across the threshold range, and is dependant only on the parameters discussed in 

Section 9.5.2 and Section 9.5.3. 

 

Figure 43: Accuracy, FNR and FPR Vs. Homogeneity criterion. 

9.5.3 Morphological closing window size 

  

 Due to the inherent complexities in the manual segmentation (namely small non-

ROI hole pixels appearing as ROIs due to inabilities to accurately manually segment the 

images, a post processing step that involves a morphological closing operation [3] to 
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smooth the holes present in the ROIs, is used before accuracy and false negative and false 

positive ratio calculations. The size of the window is varied, and the accuracy, FNR and 

FPR values are plotted against it in Fig. 44. 

 

Figure 44: Accuracy, FNR and FPR Vs. Closing Window size. 

 

 

 

 The closing window size selected is 11 ×  11. Even though this may seem too 

large, on high-resolution images of 1600 ×  3200 pixels, the window size is appropriate. 

Increasing window size, increases accuracy by reducing the FNR introduced by the non-

ROI hole pixels within the manual segmentation, but does so at the expense of FPR 

values.  
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Chapter 10 

10. IMAGE REGISTRATION 

Chapters 10. and 11. describe additional work done in order to complete the project, 

namely registration of the images and the creation of a 3-D model for visualization 

purposes.  

Image registration is the process of overlaying two or more images of the same scene 

taken at different times, from different viewpoints, and/or by two sensors. It 

geometrically aligns two images – the reference and sensed images. The present 

differences between images are introduced due to different imaging conditions, in our 

project, through different slices in breast cancer tissue. The intra-slice resolution is 

extremely small (of the order of microns) thereby ensuring that there is not vast 

differences in the data across slices. 

Zitova and Flusser [24] have given us a survey of different image registration 

methods. The majority of the registration methods consist of the following four steps: 

a) Feature Detection: Salient and distinctive objects (closed-boundary regions, edges, 

contours, line intersections, corners etc.) are manually, or preferably, automatically 

detected. For further processing, these features can be represented by their point 

representatives (centers of gravity, line endings, distinctive points) which are called 

control points in the literature. 
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b) Feature Matching: In this step, the correspondence between the features detected 

in the sensed image and those detected in the reference image is established. Various 

feature descriptors and similarity measures along with spatial relationships among the 

features are used for that purpose. 

c)  Transform Model Estimation: The type and parameters of the so-called mapping 

functions, aligning the sensed image with the reference image, are estimated. The 

parameters of the mapping functions are computed by means of the established feature 

correspondence. 

d) Image Resampling and Transformation: The sensed image is transformed by 

means of the mapping functions. Image values in non-integer coordinates are computed 

by the appropriate interpolation technique. 

There are three major types of difference transformations between reference and 

sensed images. They are, scaling differences, translational differences, and rotational 

differences [24]. Since the images involved in our project are slices through breast cancer 

tissue, the major transformations are translational and rotational. Any scaling differences 

that occur between slices are actual changes in the tissue structure and we must not 

attempt to correct them while performing the registration. 

We used an area-based method for feature detection and feature matching [24]. These 

methods deal with the images without attempting to detect salient objects. While a 

disadvantage of using an area-based method for registration purposes is that there is a 
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high probability that a window containing a smooth area without any prominent details 

will be matched incorrectly with other smooth areas in the reference image due to its non-

saliency, it is perfect for our problem of simple rotational and translational registration. 

10.1 Cross Correlation 

 

One of the simplest pixel/voxel similarity measures is the sum of squared intensity 

differences between images (SSD), which is minimized during registration [24]. SSD is 

an optimum measure when two images only differ by Gaussian noise which is mostly the 

case for monomodality registrations. This assumption will not be invalid for 

multimodality images because of the intrinsic differences in the pixel/voxel intensities 

obtained using the two modalities. 
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     (10.1.1) 

 

Where N gives the number of pixels in the image, T(x) represents the sensed image, 

S(x) represents the reference image which has to be registered with the sensed images 

and t(x) gives the transformation applied on the reference image. 

 

The SSD measure is very sensitive to a small number of pixels/voxels that have very 

large intensity differences between images A and B. The effects due to large intensity 
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differences can be reduced by using the sum of absolute differences, SAD rather than 

SSD. SAD is given by: 
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     (10.1.2) 

     

The SSD measure makes the implicit assumption that after registration, the images 

differ only by Gaussian noise [24]. A slightly less strict assumption would be that, at 

registration, there is a linear relationship between the intensity values in the images. In 

this case, the optimum similarity measures is the correlation coefficient, CC. 
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Here T and S gives the average intensity values in the sensed and reference image 

respectively. This measure of similarity is generally computed for window pairs from the 

reference and the sensed images and its maximum is searched. The window pairs for 

which the maximum is achieved are set as the corresponding ones. Although the CC 

based registration can exactly align mutually translated images only, it can also be 

successfully applied when slight rotation and scaling are present. Classical intensity 

based methods like sum of squared differences (SSD) and cross-correlation (CC) exploit 
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for matching directly image intensities, without any structural analysis. Consequently, 

they are sensitive to the intensity changes, introduced for instance by noise, varying 

illumination, and/or by using different sensor types. 

 

 

 

Figure 45: Reference Image. 

 

 

Figure 46: Sensed Image before registration. 
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Figure 47: Sensed Image registered to Reference Image. 
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Chapter 11 

11. 3-D MODEL CREATION 

The final part of the thesis deals with the ultimate goal of the research project – 

the creation of the 3-D model of the vasculature from individual tissue slices that have 

been segmented using the Seed Pruning algorithm described in chapter 6. This is 

accomplished using commercially available software called Slicer Dicer. The registered 

images are arranged in order of slices and converted into a data matrix format such as 

.hdf and .netcdf which is read by the Slicer Dicer software and the 3-D model is 

presented for visualization purposes. The software then allows us to visualize the 

segmented vasculature in individual breast cancer tissue slices as a single 3-D object (as 

shown in Fig. 48).    
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Figure 48: 3-D model of segmented data viewed using Slicer Dicer. 

 

It also enables us to view the 3-D model from various angles and rotations and as 

individual slices in all three dimensions as well as oblique slices. Transparency, rotations 

and scaling can also be performed as shown in Fig. 49. 
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Figure 49: Oblique slice passing through an oblique plane, showing data components. 
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Chapter 12 

12. CONTRIBUTIONS AND FUTURE WORK 

 

12.1 Contributions 

 The principal goal of this thesis was to automate the manual segmentation of 

ROIs (vasculature) from high-resolution digitized images of immunohistochemically 

stained breast cancer tissue images. 

Various segmentation models were implemented but their irreproducibility across 

datasets comprising of poorer stains due to different staining ‘runs’ (stained at different 

times) resulting in differences in stain retention by the ROIs necessitated research to 

develop a segmentation scheme to automatically segment these datasets. Many state of 

the art segmentation schemes like color profiling [1], 3-D histograms [15] and pulse 

coupled neural networks [16] were implemented, and the region growing scheme [8] was 

found to work best in segmenting the ROIs with an acceptable level of accuracy. 

However, due to the very high resolution of these images, the number of seed pixels 

needed for the region growing algorithm was extremely high, and using the region 

growing scheme as such was extremely time consuming and computationally complex. 

This necessitated the implementation of a scheme that would select fewer number of seed 

pixels to be used as the initial inputs for the region growing scheme. Even though many 

state of the art seed selection schemes like the integrated color edge method [14] and the 

histogram peak selection method [19] were found to minimize the number of seed pixels, 
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they either didn’t achieve a feasible minimization in the number or did so at the expense 

of segmentation accuracy or both. 

The major contribution of this research is the seed pruning algorithm which is a 

method for optimal selection of a minimal number of seed pixels which, when used as 

inputs to a region growing segmentation algorithm results in accurate automated 

segmentations of digitized high-resolution images of immunohistochemically stained 

breast cancer tissue vasculature, showing poorer stain retention. 

The proposed seed pruning algorithm used principal component analysis [20] to 

generate a grayscale image retaining the important feature distinguishing chrominance 

information, and created a Gaussian multi-resolution pyramid [22], comprising n levels. 

A simple neighbor pixel search method was employed to finally prune the number of 

seed pixels in the original resolution image (20X) down to a feasible number starting 

from the base of the pyramid (2.5X) and moving upwards through the n=4 resolution 

levels, reducing the number of surviving seed pixels at each resolution level.  

The final number of seed pixels obtained at the original resolution level (20X) is 

much smaller than other seed pixel selection methods and still yields acceptable 

segmentations. The seed pruning algorithm facilitates region growing in high-resolution 

images where there is an inherent need to reduce the number of seed pixels used. 

The automated segmentation was compared to the manual segmentation, and a mutual 

overlap performance metric was used to quantify the segmentation accuracy. 

The seed pruning algorithm was compared with a pulse-coupled neural network 

scheme in terms of accuracy, and with a color edge based scheme and a histogram-based 
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peak selection algorithm in terms of accuracy and percentage reduction in number of seed 

pixels selected, and was found to be significantly better. 

The effect of changing resolution levels at the base of the multi-resolution pyramid on 

number of seed pixels selected by the seed pruning algorithm and accuracy of 

corresponding segmentations has been discussed. 

The false positive and false negative ratios [23] of the seed pruning segmentation was 

computed and was also found to be significantly better compared with the other methods. 

12.2 Future Work 

While the seed pruning algorithm achieves appreciable minimizations in the number 

of seed pixels over other methods, there is always scope for improvement. Depending on 

the nature of the high resolution images involved in the project, the number of seed pixels 

selected may still be too high, and it can be further reduced by implementing a scheme 

were pixels at a higher resolution level is added to the set of potential seed pixels at that 

resolution level, and could be used in actively reducing the set of fixed seed pixels at that 

level.  

The accuracy cross-correlation method involved in the registration step, currently 

depends on the image parameters, and is time consuming depending on the confidence 

interval window chosen. Algorithms capable of registering the images using non-window 

parameters could be applied to this area.  

 



 

 

103 

 

 

Chapter 13 

13. REFERENCES 

[1] N. Duffy, J. Crowley, and G. Lacey, “Object detection using colour,” IEEE Conf. on 

Pattern Recognition,vol. 1, pp. 700-703, Sep. 2000.  

 

[2] S.J. Sangwine and R.E.N. Horne, The Colour Image Processing Handbook, 1st ed. 

Chapman & Hall, 1998. 

 

[3] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, 

2nd ed. Thomson, Brooks/Cole, 2001. 

 

[4] P.K. Sahoo, S. Soltani, and A.K.C. Wong, “A survey of thresholding techniques,” 

Comput. Vis. Graph. Image Process., vol. 41, pp. 233-260, 1988. 

 

[5] N. Pal and S. Pal, “A review on image segmentation techniques,” Pattern Recognit. , 

vol.26, pp. 1277-1294, 1993. 

 

[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” in Proc. 

1
st
 ICCV, 1987, pp. 259-267. 

 

[7] C. Xu and J.L. Prince,  “Snakes, shapes and gradient vector flow,” IEEE Trans. on 

Image Processing, vol. 7, no. 3, pp. 359-369, Mar. 1998. 

 

[8] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. on Pattern Analysis 

and Machine Intelligence, vol. 16, no. 6, pp. 641-647, Jun. 1994. 

 

[9] R. M. Haralick and L.G. Shapiro, “Survey: Image segmentation techniques,” Comput. 

Vis. Graph. Image Process., vol. 29, pp. 100-132, 1985. 

 



 

 

104 

 

 

[10] S.A. Hojjatoleslami and J. Kittler, “Region growing: A new approach,” IEEE Trans. 

Image Processing, vol. 7, pp. 1079-1084, 1998. 

 

[11] T. Pavlidis and Y. T. Liow, “Integrating region growing and edge detection,” IEEE 

Trans. on Pattern Analysis and Machine Intelligence, vol. 12, pp. 225-233, 1990. 

 

[12] J. Haddon and J. Boyce, “Image segmentation by unifying region and boundary 

information,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, pp. 

929-948, 1990. 

 

[13] S.C. Zhu, T.S. Lee and A.L. Yuille, “Region competition: Unifying snakes, region 

growing, Energy/Bayes/MDL for multi-band segmentation,” IEEE Trans. on Pattern 

Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884-900, Sep. 1996. 

 

[14] J. Fan, D.K.Y. Yau, A.K. Elmagarmid and W.G. Aref,  “Automatic image 

segmentation by integrating color-edge extraction and seeded region growing,” IEEE 

Trans. on Image Processing, vol. 10, no. 10, pp. 1454-1466, Oct. 2001. 

 

[15] A. Gaddipati, J.F. Cornhill, E. Herderick and R. Yagel, “An efficient method for 

automated segmentation of histochemically stained slides,” IEEE Conf. on Engineering 

in Medicine and Biology Society, vol. 1, pp. 487-498, Sep. 1995. 

 

[16]  R.D. Stewart, I. Fermin, and M. Opper, “Region growing with pulse-coupled neural 

networks: an alternative to seeded region growing,” IEEE Trans. on Neural Networks, 

vol. 13, no. 6, pp. 1557-1562, Nov. 2002. 

 

[17]  T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. 

Wu, “An efficient k-means clustering algorithm: analysis and implementation,” IEEE 

Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881-892, Jul. 

2002. 

 

[18] A.K. Jain, and R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988. 

 



 

 

105 

 

 

[19] A.O. Silva, J.F.C. Wanderley, A.N. Freitas, H.D.F Bassani, R.A. de Vasconcelos 

and F.M.O. Freitas, “Watershed transform for automatic segmentation of the human 

pelvis area,” IEEE Intl. Conf. on Acoustics, Speech and Signal Processing, 2004, vol. 5 –

pp. 597-600. 

 

[20] R.O. Duda, P.E. Hart, and D.G.Stork, Pattern Classification, 2nd ed. Wiley 

Interscience, 2001. 

 

 [21] J.-C. Devaux, P. Gouton and F.Truchetet, “Aerial colour image segmentation by 

Karhunen-Loeve Transform,” IEEE Intl. Conf. on Pattern Recognition, 2000, vol. 1 –pp. 

309-312. 

 

 [22]  P.J. Burt and E.H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” 

IEEE Trans. on Communications, vol. COM-31, no. 4, pp. 532-540, Apr. 1983. 

  

[23] T. Liang and J.J. Rodríguez, “MR cranial image segmentation-a morphological and 

clustering approach,” Proc. of the IEEE Southwest Symp. On Image Analysis and 

Interpretation, 1996, pp. 184-189. 

 

[24] B.Zitova and J. Flusser, “Image registration methods: a survey”, Elsevier Image and 

Vision Computing, vol. 21, pp. 977-1000, 2003. 

 

 

 


