

A Technical Report on Design Space Exploration and CLB
Customization for Application-Specific FPGAs

Mark Hammerquist, Roman Lysecky
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ
{hansolo, rlysecky}@ece.arizona.edu

Abstract
The inclusion of field programmable gate arrays (FPGAs) within
a system-on-a-chip (SOC) design offers programmability,
flexibility, and reconfigurability not possible with application-
specific integrated circuits (ASIC) or full-custom
implementations. However, these benefits come at the expense of
significant area, performance, and power consumption overheads
compared to ASIC or full-custom circuits. As a typical SOC
design will require fabrication of the final integrated circuit,
rather than rely on a generic FPGA architecture, an FPGA
integrated within an SOC design can be optimized for the specific
intended application by tailoring an FPGA’s architectural
features for a specific hardware circuit to improve the area,
delay, or energy consumption compared to traditional FPGA
designs. Such an application-specific FPGA (ASFPGA) would
have reduced overheads compared to ASIC and full custom
implementations. We present two methodologies for creating
ASFPGAs including a design space exploration framework for
customizing FPGA architectural elements and a configurable
logic block (CLB) customization algorithm intended to reduce
area requirements. The resulting ASFPGA generation methods
can be utilized to create various ASFPGAs ranging from a
customized, yet flexible, FPGA architecture to a fully customized
FPGA architecture with significant area savings over traditional
FPGAs.

Keywords
Application-specific FPGAs, reconfigurable computing, design
space exploration.

1. INTRODUCTION
The inclusion of field programmable gate arrays (FPGAs) within
a system-on-a-chip (SOC) design offers many advantages over
purely application-specific integrated circuits (ASIC) or full-
custom implementations. Figure 1 presents a basic SOC
architecture incorporating ASIC and FPGA alternatives for
implementing custom hardware circuits. FPGAs can implement
any hardware circuit simply by downloading bits for that
hardware circuit, much in the same way that microprocessors can
execute any software program simply by downloading an
application binary. In this manner, FPGAs extend the flexibility of
software design to hardware circuits, allowing hardware
modifications, corrections, upgrades, etc. throughout the
development cycle and even after device fabrication. For example,
often costly hardware design errors that would require a respin in
a traditional ASIC implementation can be fixed in hardware
within the FPGA by downloading the corrected hardware circuit.
Similarly, FPGAs enable rapid development efforts in which the
hardware implementation does not need to be finalized before
fabrication. Instead, the physical SOC hardware incorporating an
FPGA can be fabricated earlier in the design process, as designers
need not finalize the hardware design for those elements
implemented within the FPGA before manufacturing.

An FPGA can also be reconfigured at runtime to implement
multiple hardware circuits throughout an application’s execution
using the same physical resources. Hardware/software codesign
approaches targeting FPGAs can also provide significant
performance benefits and/or power savings compared to software
only implementations.

However, the reconfigurability and flexibility of FPGAs
comes at the costs of significant area, performance, and power
consumption overheads compared to ASIC circuits. Research has
demonstrated that FPGAs require 10-40X greater area, 5-12X
greater power consumption, and 3-4X greater critical path delays
compared to their equivalent ASIC counterparts [Kuon and Rose
2005]. While rapid increases in IC capacities may alleviate the
area concern, the power and performance overheads may present
significant hurdles for allowing FPGAs to be integrated within
hardware designs.

While many platform-based SOC design options exist, typical
SOC designs require the fabrication of an ASIC or full-custom
design, and provide an opportunity to tailor the design of the
FPGA itself to the specific target application. Rather than rely on
a generic FPGA architecture – typically optimized to perform well
for a large variety of applications – an FPGA can be optimized for
the intended application, thereby requiring less area with greater
performance and lower energy consumption.

In this paper, we present a two new methods for creating such
application-specific FPGAs (ASFPGAs). An ASFPGA can be
created for the specific hardware circuit to be implemented within
an SOC. The ASFPGA generation process outputs an architectural
description of the FPGA needed to fabricate the SOC as well as a
bitstream to program the resulting ASFPGA after fabrication. We
present both a design space exploration framework – originally
presented in [Hammerquist and Lysecky 2008] – along with a
configurable logic bock (CLB) customization algorithm for
generating an ASFPGA by tailoring several FPGA architectural
features for a specific hardware circuit to improve the area, delay,
or energy consumption compared to traditional FPGA designs.
Section 2 provides an overview of related work in creating
customized FPGA architectures and complementary techniques
for creating a physical layout from an FPGA architectural
description. In Section 3, we present a detailed description of a
generic FPGA architecture and specifically highlights the
configurable attributes of an FPGA that can be customized. In
Section 4, we present our design space exploration framework for
ASFPGA generation with experimental results highlighting the
area, delay, and power benefits of ASFPGA compared to
traditional FPGA architectures. In Section 5, we present an
algorithm for customizing the architecture of the CLBs within an
FPGA specifically intended to further reduce area requirements
compared to our design pace exploration methodology. Finally, in
Section 8 we conclude and discusses several directions for future
work.

Fig. 1: Basic System-on-a-chip (SOC) architecture incorporating

2. RELATED WORK
Significant research has focused on providing automated methods
for creating reconfigurable devices as either standard cell
technologies or custom physical layouts.

Several research and development efforts have focused on
efficiently implementing FPGAs – or similar reconfigurable
devices – using standard cell technologies. eASIC has developed a
technology which consists of coarse-grained reconfigurable logic
cells that create a structured reconfigurable array [Levinthal and
Herveille 2005]. The structured array has the ease of use and
prototype cost of an FPGA, with the speed, density, power
consumption, and production cost similar to a standard cell
design. The reconfigurable logic cells consist of two 3-input LUTs
connected to a flip-flop through a multiplexer. A two-input
NAND gate drives one input of each of the LUTs, allowing the
LUT to perform a subset of four-input functions in addition to
being able to perform any three-input function. Custom
interconnect is used inside the logic cells and fixed metal routing
is used for cell-to-cell connections. While such fixed routing
channels provide significant area advantages over the flexible
routing resources in traditional FPGAs, the lack of configurable
routing can have impacts on the ability to implement alternative
hardware designs within the reconfigurable array.

In [Buch 2005], eASIC structured reconfigurable array can be
utilized to create flexible SOC designs that incorporate IP blocks
including microprocessors, peripherals, and DSP functions with
embedded blocks for SRAMs, traditional FPGA fabrics, high-
speed I/O, and clock management. By incorporating both eASIC’s
reconfigurable logic cells with traditional FPGA fabric, varying
degrees of flexibility can be achieved. For example, IP cores that
require high-performance and are intended to be utilized across
many designs can be implemented within the eASIC’s
reconfigurable logic cells, whereas IP cores only required for a
single can be implemented within the traditional FPGA. This
methodology provides designers with more options for supporting
flexible design elements.

In [Aken’ova et al. 2005], FPGA specific standard cells are
proposed to enable more efficient implementation of FPGAs
within standard cell technologies by imposing structure specific to
the FPGA. However, these tailored FPGAs may not have
sufficient logic resources to implement additional design
elements. A designer must thus choose a larger tailored FPGA if
future modifications or additions are anticipated.

 In [Padalia et al. 2003; Kuon et al. 2005], researchers present
a method for automatically generating a transistor-level
implementation of an FPGA starting from an architectural
description of the FPGA. The input to this system is similar to the
FPGA architectural description file input of VPR [Betz et al.

1999]. The resulting FPGA layouts were verified through the
successful fabrication of the resulting FPGA implementation and
were shown to incur a 36% area overhead compared to similar
commercial FPGAs. We anticipate that these automated FPGA
layout generation can be utilized to fabricate the resulting
ASFPGA architectures proposed within our approach.

In [Holland and Hauck 2005; Holland and Hauck 2006], an
automated tool flow is presented for creating domain-specific
PLAs, PALs, and CPLDs in order to reduce design time. Within
this proposed approach, a domain can be loosely defined as a set
of similar applications, such as sequential, combinational, floating
point, arithmetic or encryptions domains. By analyzing the netlists
of a set of applications within the target domain, a simulated
annealing approach is used to optimize the reconfigurable device
in terms of inputs, product terms, and outputs. Optimizing these
parameters allowed for the reduction of programmable
connections needed in the crossbar interconnect. Through the
utilization of automatic layout generation tools, the final output is
a physical layout for the domain-specific reconfigurable device.
Using area-delay product as the performance metric, the resulting
domain-specific CPLDs outperformed fixed-architecture CPLDs
even when the fixed-architecture was handpicked for the domain.

Further research has been conducted in developing domain-
specific CPLDs [Holland and Hauck 2006] that replace the full
crossbar interconnect with a sparse crossbar along with
incorporating additional CPLD resources needed to provide
support for future unknown circuits that exist in the target domain.
Additional, early work on extending this approach to support
domain-specific FPGAs was presented in [Phillips 2004].
Whereas a domain-specific reconfigurable device is optimized for
a particular domain, our proposed application-specific FPGA will
be optimized for one specific hardware application, which
provides an opportunity to further optimize a FPGA architecture
beyond a set of applications that define a domain.

The availability of tools for automatically creating a standard
cell or full-custom FPGA implementation is essential for enabling
the proposed integration of ASFPGAs within a hardware design.
As such, our proposed approach focuses on the optimization of
the FPGA architecture for the intended hardware application and
not on the physical generation of the resulting ASFPGA.

A typical FPGA routing architecture uses about 70-90% of the
total transistors on an FPGA [Dehon 1996], thus using most of the
area, delay and power. Therefore, in [Sivaswamy et al. 2005], the
authors propose forming hardwired junctions between horizontal
and vertical wire segments inside switch boxes. The junctions are
in the shapes of T’s, L’s, +’s and their rotated versions. As a result
of hardwiring connections, some programmable switches are
eliminated, decreasing delay, area and power dissipation.

Fig. 2: Basic System-on-a-chip (SOC) architecture incorporating (a) ASIC and (b) FPGA alternatives for custom hardware circuits.

(a) (b)

µ P
I$
D$

ASI
C

µ P
I$
D$

ASIC UART/
VGA

µ P
I$
D$

ASI
C

µ P
I$
D$

FPGA UART/
VGA

However, the reduction in programmable switches could severely
affect the routing flexibility. Therefore a careful analysis of
routing profiles was conducted using a number of circuits placed
and routed on a traditional FPGA architecture. The resulting
routes of each circuits are analyzed to extract the frequency of
hardwired patterns. This analysis is used to create a new
architecture with a mix of traditional and hardwired switches. By
hardwiring some of the junctions in the routing switches, a 24%
reduction in delay, 34% reduction in energy, and a 7% reduction
in area were achieved. While this research focuses on improving
the routing, it does so trying to maintain routability for any
hardware circuit, which leaves room for further optimization such
that routability can traded off with further reduction in area, delay,
and energy consumption.

Although not directly related to the proposed ASFPGAs, it is
interesting to mention Xilinx’s EasyPath FPGA design option
[Krishnan 2005]. In contrast to a standard FPGA that is
guaranteed to work for all hardware designs, an EasyPath FPGA
is a low cost design option that is only guaranteed to work a few
hardware designs. In [Campregher et al. 2006], an analysis of the
yield advantages of using an EasyPath FPGA found that the
improvement in yield from such devices is due to the ability to
avoid routing paths that have defects significant enough to cause
faults.

3. FPGA CONFIGURABILITY
In general, an FPGA consists of an array of combinational logic
blocks (CLBs) organized into rows ands columns, routing
channels running vertically and horizontally between the CLBs,
connection blocks connecting the inputs and outputs of CLBs to
routing channels, and switch matrices, located at the intersections
of vertical and horizontal routing channels, for connecting routing
channels together.

Each CLB consists of multiple lookup tables (LUTs), flip-
flops, and multiplexors for internal routing among the LUTs and
flip-flops within the CLB. The basic configurable logic element
within an FPGA is an M-input LUT capable of implementing any
combinational logic function with M inputs. To support sequential
logic, LUT table outputs can optionally be connected to a flip-flop
within the CLB. Thus, the basic configurability of a CLB is
controlled by the size of the LUTs and the number of LUTs within
the CLB.

While a CLB may have multiple LUTs, the inputs/outputs of a
CLB typically do not provide direct access to every input/output
of each LUT. Instead, internal routing in the form of multiplexors
is provided to allow a smaller number of inputs to connect to the
LUTs, as well as connecting the outputs from one LUT to the
input of another. Thus, the number of inputs and outputs to and
from a CLB can also be configured. For example, a CLB with two
3-input LUTs may have only four inputs – instead of the six
necessary to have a unique input for each LUT input.

While CLBs provide the basic configurable resources for
implementing combinational and sequential logic, the routing
resources of the FPGA are needed to connect the CLBs together
to achieve the final circuit implementation. Routing resources
include routing channels, connection blocks, and switch matrices.
Routing channels are physical wires within the FPGA that run

vertically and horizontally between the columns and rows of
CLBs. The number of routing channels, often referred to as the
channel width, is a configurable parameter that specifies the total
number of wires that will run in parallel within the routing
channels. In addition, the lengths of the wires – or routing
segments – within the routing channels can also be configured.
For example, an FPGA may include multiple different routing
segments ranging from segments spanning a single CLB to
segments spanning an entire row or column. The lengths and
frequency at which these routing segments are provided can also
be configured.

Connection blocks are utilized to connect the inputs and
outputs of CLBs to the routing channels, which can be configured
to specify the percentage of routing channels to which each
input/output can connect. For example, whereas a connectivity of
100% would allow an input/output of a CLB to connect to any
routing channel, a connectivity of 50% would only allow that
input/output to connect to half of the available routing channels,
where different inputs/outputs within a connection block can
connect to different subsets of the available routing channels.

Finally, switch matrices provide the mechanism for
connecting the various routing segments within the routing
channels together and are incorporated at the intersection of
horizontal and vertical routing channels. In addition to connecting
routing segments within a single channel, switch matrices also
connect routing segments between the horizontal and vertical
routing channels. The connectivity of a switch matrix can be
configured to determine how many and what type of connections
are allowed. For example, a full crossbar switch matrix would
allow any routing segment to connect to any other routing
segment.

In designing an ASFPGA that will be integrated within a
hardware design, the vast configurability of an FPGA design
provides an excellent opportunity to tune the configurable
architectural features to achieve a smaller, faster, or more energy
efficient FPGA architecture.

4. DESIGN SPACE EXPLORATION FOR
APPLICATION-SPECIFIC FPGA
GENERATION
Figure 2 presents our design space exploration environment for
application-specific FPGAs originally presented in [Hammerquist
and Lysecky 2008]. The input to the design space exploration
process is a hardware circuit – specified using the BLIF format –
and a set of configurable FPGA architecture features to be
considered during the design space exploration. The final output is
an optimized ASFPGA architecture and hardware bitstream for
the specific hardware circuit. In addition, the resulting ASPFGA
can be optimized for area, delay, or energy consumption as
specified by the designer. The current ASFPGA design space
exploration environment provides an automated exploration
framework leveraging existing FPGA CAD tools and supports the
following configurable FPGA architectural options:

 LUT Size: 3-input, 4-input, or 5-input LUTs
 CLB Size: 2 or 4 LUTs per CLB

 Connection Block Connectivity: CLB to routing channel
connectivity of 100%, 90%, 80%, 70%, or 60%

 FPGA Size: NxN fixed aspect array of CLBs
 Channel Width: 100% to 130% of the minimum channel

width needed to route input hardware circuit
The ASFPGA design space exploration framework will

evaluate the area, delay, and energy consumption of each FPGA
architecture alternative to determine the best design given the
designers specified optimization criteria. First, for each LUT size,
FlowMap [Cong and Ding 2004] is utilized to map the input
hardware circuit into the corresponding LUTs. Then we take the
mapped hardware and a correction script to add a clock input so
that circuits with latches will run through T-VPack properly [Betz
et al. 1999]. Next, for each CLB size, T-VPack is used to pack the
LUTs into CLBs within the current FPGA architecture
configuration. Additionally, Power Model [Poon et al. 2005] is
utilized to estimate the switching activity of the mapped and
packed hardware circuit needed to estimate the overall energy
consumption of the FPGA architecture and hardware circuit.
Power Model is an FPGA power estimation model that utilizes
activity estimation and transistor level power estimation to
estimate the static, logic, routing, and clock power of an FPGA.
Next, for each connection block connectivity, each channel width,
and each FPGA size, VPR [3] and Power Model are utilized to
place and route the hardware circuit onto each FPGA architecture
and provide an estimate of the area, delay, and energy
consumption of the hardware circuit implemented within the
specific FPGA architecture. After evaluating all FPGA

architecture alternatives, the final ASFPGA architecture and
hardware bitstream are created.

4.1 Experimental Results
To evaluate the benefits of ASFPGAs, we consider ten MCNC
[Yang 1991] hardware benchmark circuits, including alu4, apex6,
bigkey, cordic, des, dsip, misex1, mult32a, s1423, and s298. For
each hardware circuit, we utilized the ASFPGA design space
exploration framework to select the three best ASFPGA
architectures for each design criteria, namely area, delay, and
energy consumption.

The total area is estimated as the sum of the routing area and
combinational logic area for the given FPGA architecture and is
reported in minimum sized transistors. While the routing area is
directly provided by VPR, VPR does not provide a method for
accurately estimating the number of transistors needed to
implement the CLBs. Thus, we developed a transistor-level model
for CLBs that determines the number of transistors needed to
implement LUTs, flip-flops, multiplexers, and configuration
SRAM needed within the CLB given the CLB size, LUT size, and
inputs/outputs per CLB. The total CLB area is calculated as:

€

AreaCLB = AreaMUXi + AreaLUT + AreaMUXo + AreaFF ,
where AreaMUXi is the area of an input multiplexer, AreaLUT is the
area of all the LUTs in a CLB, AreaMUXo is the area of the output
multiplexer, and AreaFF is the area of a flip-flop.
The area for an input multiplexor can be estimated as:

€

AreaMUXi = 20 ∗NLUT ∗NCins ∗ log 2 SizeMUXi()⎡ ⎤()+ 6∗NLUT ∗NCins ∗ SizeMUXi −1()(),
where NLUT is the number of LUTs in the CLB, NCins is the
number of inputs to the CLB, and SizeMUXi is the number of inputs
to the input multiplexer.

The area for a LUT, is estimated as:

€

AreaLUT = NLUT ∗ 20 ∗ 2
Size LUT()+ 6∗ 2 Size LUT −1()() ,

where AreaLUT is the area of all the LUTs in a CLB, NLUT is the
number of LUTs in the CLB, and SizeLUT is the number of inputs
to each LUT.

Circuit delay for a hardware circuit implemented within a
specific FPGA architecture is the critical path as reported by VPR.

Finally, energy consumption is estimated as the total power
consumption reported by Power Model – including static, routing,
logic, and clock power consumption – for the hardware circuit
implemented within the specific FPGA architecture multiplied by
the critical path. We evaluate the FPGA architectural alternatives
in terms of energy consumption because the reported power
consumption from Power Model is estimated for a hardware
circuit executing at the maximum achievable operating frequency,
even though the maximum operating frequency may not be
needed. Instead, the energy consumption reports the average total
energy needed during each clock cycle, which combines the
interrelated effects of delay and power consumption.

Application-Specific versus Area/Delay/Energy-Optimized
FPGA: While ASFPGAs are optimized for one particular
hardware application, commercially available FPGAs must
perform well across a broad set of possible hardware circuits. At
the same time, many FPGA vendors offer several alternative
FPGA devices targeted for specific design criteria, including logic
density, speed, and low power consumption. Thus, we compared
the area, delay, and energy benefits of an ASFPGA compared to a
general area-optimized, delay-optimized, and energy-optimized
FPGA architecture. For each hardware circuit, the ASFPGA
design space exploration determined the three best FPGA

Fig. 3: Design space exploration framework for application-
specific FPGAs (ASFPGAs)

HW Circuit
(BLIF)

Tech. Mapping
(FlowMap)

Mapped Circuit
(BLIF)

Design Space
Exploration

for ASFPGAs

Packing/Activity Est.
(T-VPack)

Packed Circuit
(Netlist)

Switching
Activity

Placement/Routing/Power Est.
(VPR with Power Model)

HW Bitstream Design Metrics
(Area, Delay,

Energy)

LUT Size

CLB Size

C
onnectivity/C

hannel
W

idth/FP
G

A
 S

ize

FPGA Arch.
& Bitstream

architectures in terms of area, delay, and energy consumption. In
contrast, the general area-optimized, delay-optimized, and energy-
optimized FPGA architectures represent the FPGA architecture
with the best average area, delay, and energy consumption across
all hardware circuits considered. The area-optimized FPGA
architecture has 3-input LUTs, 2 LUTs per CLB, and a connection
block connectivity of 90%. Both the delay-optimized and energy-
optimized FPGA architectures have 5-input LUTs, 4 LUTs per
CLB, and a connection block connectivity of 80%.

Figure 3 presents the percentage reduction in area, delay, and
energy consumption of ASFPGAs compared to the area-
optimized, delay-optimized, and energy-optimized FPGA
architectures for several MCNC hardware benchmark circuits. On
average, an ASFPGA is 5% faster than the delay-optimized FPGA
architecture, 17% smaller than the area-optimized FPGA
architecture, or 10% more energy efficient than the energy-
optimized FPGA architecture. However, for some applications,
the benefits of ASFPGA are much greater. For the hardware
circuit bigkey, the area, delay, and energy consumption of an
ASFPGA is 32%, 26%, and 67% better compared to the area-,
delay-, and energy-optimized FPGA architectures, respectively. In
addition, the reduction in area of ASFPGAs is greater than 30%
for the circuits misex1 and s298. As expected, an ASFPGA
performs better that a general FPGA architecture – even when the
general FPGA architecture is optimized for the same design
metric.

Application-Specific versus Balance-Optimized FPGA:
Alternatively, many FPGAs are designed to provide a good
balance between area, delay, and energy consumption. Thus, we
further compare the three ASFPGA architectures for each
hardware circuit to a general balance-optimized FPGA
architecture. To determine the general balance-optimized FPGA
architecture, we calculated the average area/delay/energy (ADE)
cost for each FPGA architecture alternative as the average of the
area cost, critical path cost, and energy cost. The ADE cost for
each hardware circuit implemented within a specific FPGA
architecture is calculated as the ADE for that FPGA architecture
divided by the maximum ADE for any FPGA architecture for the
current hardware circuit. Thus, the final balance-optimized FPGA
architecture is the FPGA with the best average ADE cost across
all hardware circuits considered. The resulting balance-optimized
FPGA architecture has 5-input LUTs, 2 LUTs per CLB, and a
connection block connectivity of 60%. We note that the balanced-
optimized FPGA architecture is partially tailored to each hardware

circuit, as the resulting FPGA design is the smallest FPGA needed
to implement each circuit.

Figure 4 presents the percentage reduction in area, delay, and
energy consumption of ASFPGA compared to the balance-
optimized FPGA architecture for several MCNC hardware
benchmark circuits. On average, the ASFPGAs are 25% faster,
28% smaller, or 36% more energy efficient compared to the
balance-optimized FPGA architecture, with a maximum reduction
of 75%, 99%, and 99%, respectively. The largest improvements
provided by an ASFPGA are a 73% and 62% reduction in energy
consumption for the circuits bigkey and misex1, respectively.
Furthermore, for eight of the ten hardware circuits, an ASFPGA
provides an improvement greater than 40% for at least one design
metric.

Application-Specific versus Fixed-Size Balance-Optimized
FPGA: As off-the-shelf FPGAs are only available with limited
fixed sizes, we further consider a fixed-size balance optimized
FPGA architecture. Using the balance-optimized FPGA
architecture, the fixed FPGA size was determined as the minimum
size needed to support all hardware benchmarks circuit
considered. For the ten MCNC hardware circuits, a 63x63 fixed-
sized balance-optimized FPGA is needed.

Figure 5 presents the percentage reduction in area, delay, and
energy consumption of an ASFPGA compared to the fixed-size
balance-optimized FPGA architecture for several MCNC
hardware benchmark circuits. Overall, an ASFPGA is on average
50% faster, 82% smaller, or 75% more energy efficient compared
to fixed-size balance-optimized FPGA architecture. Compared to

Fig. 4: Comparison of percentage reduction in area, delay, and
energy consumption of ASFPGAs versus area-optimized, delay-
optimized, and energy-optimized FPGA architectures for several

MCNC hardware benchmark circuits.

Fig. 5: Comparison of percentage reduction in area, delay, and
energy consumption ASFPGAs versus a balance-optimized FPGA

architecture for several MCNC hardware benchmark circuits.

Fig. 6: Comparison of percentage reduction in area, delay, and
energy consumption of ASFPGAs versus a fixed-size balance-

optimized FPGA architecture for several MCNC hardware
benchmark circuits.

a fixed-size FPGA, greater savings in area requirements are
achieved for those circuits much smaller than the FPGA. At the
same time, as the balance-optimized FPGA must be able to
balance all design criteria, the ASFPGAs provide area savings of
more than 40% for all hardware circuits. In addition, ASFPGAs
improve the delay, area, or energy consumption by at least 21%,
27%, and 40%, respectively.

5. APPLICATION-SPECIFIC
CONFIGURABLE LOGIC BLOCK
CUSTOMIZATION
While design space exploration for ASFPGAs provides
substantial area, power, and performance benefits, additional
opportunities exist for optimizing an FPGA for a specific
application. To accommodate an architecture that would further
reduce area and enhance the previous design space exploration,
we present a configurable logic block customization methodology
for ASFPGAs that tailors each CLB within an FPGA to the logic
resources of the target application while preserving the traditional
routing architecture.
Within a customizable FPGA architecture, a designer can specify
the number of LUTs per CLB, the number of CLB inputs, and the
connectivity of those inputs to the routing channels. The number
of outputs from the CLB is typically equal to the number of LUTs
because each CLB can support several independent logic
functions implemented within a LUT. With this structure, the
number of LUTs per CLB is the defining parameter that directly
affects the inputs and outputs to and from a CLB. Thus, a
traditional prefabricated FPGA consists of a predefined number of
LUTs per CLB. While existing CLB clustering algorithms are
able to efficiently pack LUTs into these predefined CLBs, many
CLBs will remain unused or underutilized.

The structure of each CLB within an FPGA can also be
customized to the required logic components of the target
hardware circuit. We present a methodology for generating a
highly customized CLB structure in which the number of LUTs
per CLB is defined by the application and is only limited by the
number of inputs and outputs to and from the CLB. This allows

for – and even encourages – grouping together LUTs with shared
inputs and grouping together dependent LUTs, in which the
output from one LUT is the input to another LUT in the same
CLB. The resulting application-specific CLB customization
produces a customized FPGA architecture in which unnecessary
LUTs and/or CLBs are eliminated. At the same time, the resulting
FPGA architecture still adheres to an array style layout that can
utilize existing FPGA routing architectures and existing
placement and routing algorithms for those architectures. While
performance and power benefits may be gained from this
methodology, we currently focus on reducing area requirements
of the FPGA architecture.

Figure 6 presents the pseudocode of the proposed simulated
annealing based CLBCustomization algorithm for ASFPGAs. The
inputs to the CLB customization algorithm are the number of
CLBs in the original clustering, an array of CLBs, and an array of
all LUTs. Before executing the CLB customization, an initial
valid clustering is created. A valid clustering is a clustering in
which the number of inputs to all CLBs is less than the maximum
number of inputs allowed and the number of outputs from all
CLBs is less than the maximum number of outputs allowed.

Simulated annealing is an optimization scheme that can be
used to solve many different types of problems [Fleischer 1995].
The general approach is to start with an initial problem and then
transition from one solution state to another, trying to reach a
global optimum. Since simulated annealing is analogous to the
concept of annealing in thermal dynamics, a temperature
parameter is used to decide how long to anneal and how to accept
new solution states. An initial temperature value is chosen and
then that value is lowered to decrease the probability of
transitioning to a new state. Many such cooling schedules exist,
including linear, quadratic and exponential versions. The idea is to
freely allow changes to the solution state in the beginning even if
the new state results in an inferior solution so as to avoid getting
caught in a local minimum.

Our simulated annealing approach starts with an initial
temperature that is lowered exponentially using a cooling
schedule defined as:

Fig. 7: Pseudocode for simulated annealing based application-specific CLB customization.

CLBCustomization (cluster_count, clusters[], luts[]):

1. while(temp > temp_min) {
2. if(temp < temp_i*0.25) near_end = true;
3. prev_cluster_count = cluster_count;
4. for(i in 0 to MovesPerIterations) {
5. RandomizedLUTMove(cluster_count, clusters[],

 luts[], near_end);

6. }
7. if(cluster_count <= prev_cluster_count && ValidClustering()) {
8. AcceptNewClustering();
9. }
10. else if(cluster_count > prev_cluster_count &&

 ValidClustering()) {

11. if (Rand() < temp) AcceptNewClustering();
12. }
13. else {
14. RejectNewClustering()
15. }
16. UpdateClustering()
17. UpdateTemp()
18. }

€

T = TInit
TMin
TInit

⎛

⎝
⎜

⎞

⎠
⎟

Iteri
IterTotal

where T is the current temperature, TInit is the initial temperature,
TMin is the minimum temperature at which the algorithm
terminates, Iteri is the current simulated annealing iteration, and
IterTotal is the total number of iterations we want to update the
temperature before terminating.

As our CLB customization algorithm is focused on creating
CLB customized for the logic components of the input hardware
circuit with the only restriction of the number of inputs and output
to and from a CLB, during each simulated annealing iteration a
number of randomized moves are utilized to move LUTs between
CLBs, specifically including moving a LUT forward to another
CLB, moving a LUT backwards to another CLB, and creating a
new CLB into which the randomly selected LUT is moved. Figure
7 presents the pseudocode for the RandomizedLUTMove
operation.

The input to the RandomizedLUTMove operation are the
number of CLBs in the current clustering, the current array of
CLBs, an array of all LUTs, and a flag indicating whether or not
the algorithm is nearing the end of execution. One of three
different move operations, ForwardMove, BackwardMove, or
MoveToNewCLB, is randomly selected, where each move has a
specific probability of being executed. First, a random number is
utilized to select between three different possible moves, where
each move has a different probability of being selected. For all
operations, a single randomly selected LUT will be chosen to
move.

For the ForwardMove operation, the selected LUT’s inputs
and outputs are utilized to find a CLB farther along in the
clustering array that contains a LUT that it is dependent on or that
has a LUT dependent on the LUT being moved. The randomly
selected LUT will be moved to the first CLB that contains a
dependent LUT. For the BackwardMove, a similar procedure is
followed except that the algorithm looks backwards in the
clustering array. The ForwardMove and BackwardMove operation
focus on an arbitrary number of LUTs within CLBs as long as
some dependency between the LUTs within a CLB is maintained
such that either a decrease in CLB inputs and output can be
achieved or any potential increase in the number of inputs and
outputs is minimized.

If the MoveToNewCLB operation is selected, the randomly
selected LUT will be moved to that CLB. The MoveToNewCLB
operation helps to ensure that the simulated annealing approach
does not get caught within local minimum. By allowing new
CLBs to be created, the algorithm ensures that the simulated
annealing continues to explore new clusterings. However, creating
new CLBs is a less desirable operation compared to moving
LUTs between existing CLBs – as it results in increased area
resources. As such, the probability of creating a new CLB is much
lower than the probability of the other LUT moves. The
probability of executing the ForwardMove and BackwardMove
operations are equal, whereas the MoveToNewCLB operation is 20
times less likely to be executed. Furthermore, to avoid creating
additional CLBs near the end of the simulated annealing process,
the near end flag is used to indicate the end of the annealing
process and further reduces the probability of executing the
MoveToNewCLB operation by 20%.

During the simulated annealing process, if the new clustering
has fewer CLBs than the previous iteration and all CLBs are valid,
the new clustering is automatically accepted. Additionally, if the

new clustering has the same number of CLBs compared to the
previous iteration and all CLBs are valid, the new clustering is
again accepted. While keeping the original clustering is also an
option, or randomly selecting among the two alternative, we
found that always selecting the new clustering achieved better
overall results, as the algorithm is allowed to continue exploring
new clustering alternatives that may help to avoid a local
minimum. If the number of CLBs is greater than the previous
iteration and the clustering is still valid, the new clustering will be
selected with a probability proportional to the temperature, which
decreases exponentially. If the new clustering contains any invalid
CLBs – i.e. a CLB with that requires too many inputs or outputs –
the new clustering is always rejected.

5.1 Experimental Results
To evaluate the benefits of CLB customization for ASFPGAs, we
consider five MCNC [Yang 1991] hardware benchmark circuits,
including alu4, apex6, cordic, des and misex. For all hardware
circuits, our CLB customization algorithm was executed for
250,000 iterations. We note that for the hardware circuits cordic,
des, and misex1 no further improvements were achieved after the
first 10,000 iterations.

While the base LUT structure for which an application is
mapped can be tuned within our design space exploration
framework for ASFPGAs, we currently assume 2-input LUTs
provide the basic configurable component within the target FPGA
architecture. FlowMap is utilized to map each hardware
benchmark circuits to the corresponding 2-input LUT
implementation that is provided as the input to our CLB
customization algorithm. After creating an initial, valid clustering
using T-VPack, our simulated annealing based CLB
customization algorithm was utilized to create a customized CLB
architecture for each CLB within the resulting FPGA architecture.

We consider both a flexible-optimized and fully-optimized
CLB customization. As highlighted in Figure 8 (a), a flexible-
optimized CLB customization produces a CLB structure in which
the traditional input multiplexers, flip-flops, and output
multiplexers are included. Alternatively, by eliminating all
components that are not needed to implement a specific hardware
circuit, a fully-optimized CLB structure as highlighted in Figure 8
(b) can be further tailored by eliminating these components and
using dedicated wires for all connection within the CLB. These
two alternatives present the worst case and best case scenarios,

Fig. 8: Pseudocode for Randomized LUT Move operation
employed within the simulated annealing based CLB

customization algorithm.

RandomizedLUTMove (cluster_count, clusters[],
 luts[], near_end):
1. move = Rand();
2. lut = ChooseRandomLUT();
3. if(move == ForwardMove){
4. clb = FindCLBFromLut(lut);
5. MoveLUT(lut, clb);
6. }
7. else if(move == BackwardMove) {
8. clb = FindCLBToLut(lut);
9. MoveLUT(lut, clb);
10. }
11. else (move == MoveToNewCLB) {
12. clb = CreateCLB();
13. MoveLUT(lut, clb);
14. }

respectively, for application-specific CLB customization. Note the
absence of input multiplexers in the fully-optimized CLB
structure. While the fully-optimized CLB customization can
greatly reduce area requirements, the flexibility of the resulting
ASFPGA to implement any changes in the hardware design is
significantly reduced.

Figure 9 compares the percentage area savings of application-
specific CLB customization compared to an area-optimized
ASFPGA incorporating CLBs with four 3-input LUT for both a
flexible-optimized and fully-optimized CLB customization with a
CLB constrained to six inputs and fours outputs. Thus, the number
of inputs and outputs for each CLB is equivalent for both the CLB
customized ASFPGA architecture and the area-optimized
ASFPGA architecture. For the hardware circuits considered, the
flexible-optimized application-specific CLB customization
achieves an average area savings of 55% over an area-optimized
ASFPGA. On the other hand, the flexible-optimized CLB
customization achieves a maximum reduction of 94% for the
hardware circuit apex6.

Because the application-specific CLB customization is not
required to follow the regular structure imposed by traditional
FPGA architectures, we can eliminate CLBs that are not being
used to implement the application as well as eliminate unused
inputs and outputs from each CLB. Furthermore, instead of
requiring a flip-flop and output multiplexer for each LUT, the
resulting ASFPGA only requires one flip-flop and output
multiplexer for each output. For the circuit cordic, while the
resulting CLB customized ASFPGA has more CLBs compared to
the area-optimized ASFPGA, the total CLB area is 20% smaller,
which is the smallest savings in area achieved by the CLB
customization algorithm.

Alternatively, by eliminating all unnecessary configurable
elements within all CLBs throughout the resulting FPGA fabric,
fully-optimized application-specific CLB customization achieves
an average area savings of 91% with a maximum reduction in area
of 98% for the hardware circuit apex6. The largest difference
between a flexible-optimized and fully-optimized CLB
customization is exhibited for the hardware circuit cordic, in
which the fully-optimized CLB architecture achieved an
additional area savings of 67% over the flexible-optimized CLB
architecture.

Overall, our application-specific CLB customization produces
a smaller FPGA compared to the design space exploration
framework. However, we note that design space exploration and
application-specific CLB customization are complementary
approaches that can be combined to further optimize the ASFPGA
architecture.

6. CONCLUSIONS AND FUTURE WORK
By tailoring the architecture of an FPGA to be integrated within a
specific hardware application, significant improvements in area,
delay, or energy consumption can be achieved. The proposed
design space exploration environment for ASFPGAs provides an
initial implementation and analysis of these benefits compared to
traditional FPGA design alternatives. On average, an ASFPGA
optimized for a particular design metric provides a 70%
improvement compared to a fixed-size balance-optimized FPGA
architecture, with a minimum and maximum improvement of 20%
and 99% for specific hardware circuits.

Further reductions in area can be made by customizing the
CLBs within an FPGA to the specific needs of the target hardware
circuit. The presented application-specific CLB customization
achieves further improvements in reducing area requirements,
yielding an ASFPGA that is 19% to 94% smaller for a flexible-
optimized CLB architecture and 85% to 98% smaller for a fully-
optimized CLB architecture.

While this data shows great improvement over standard
FPGAs, much future work remains in further exploring the
possibilities of application-specific FPGAs. While some
automated layout generation tools are available, efficient and
robust automated tools are needed to create the physical
implementation for the ASFPGA architecture, such that it can be
integrated within the target design. In addition, our current
approach does not consider fixed functional units, such as adders,
multipliers, etc., that can provide significant performance, area,
and energy benefits compared to purely logic based FPGA
architectures. Additional future work includes exploring the
effects of adjusting the number of inputs and outputs for our
custom CLB architecture. This exploration would consider a

Fig. 9: (a) Flexible-optimized CLB architecture customization and (b) fully-optimized CLB architecture customization.

Fig. 10: Percentage reduction in area of flexible-optimized
(Flexible Opt.) and fully-optimized (Fully Opt.) CLB customized
ASFPGA versus an area-optimized ASFPGA for several MCNC

hardware benchmark circuits.

LUT	

(a)

LUT	

LUT	

LUT	

LUT	

(b)

LUT	

LUT	

LUT	

LUT	

LUT	

greatly expanded design space, potentially allowing for greater
improvements in area, delay, and energy. Furthermore, as the
number of configurable FPGA architectural options continues to
grow, the need for efficient design space exploration heuristics
becomes increasingly imperative.

7. REFERENCES
[1] AKEN'OVA, V., G. LEMIEUX, AND R. SALEH. 2005. An Improved

"Soft" eFPGA Design and Implementation Strategy. Proceedings of
the IEEE Custom Integrated Circuits Conference, pp. 179-182.

[2] BETZ, V., ROSE, J., AND MARQUARDT, A. Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers.

[3] BUCH, K. 2005. Application Specific Programmable Platform Using
eASICore. http://www.easic.com.

[4] CAMPREGHER, N., CHEUNG, P., CONSTANTINIDES, G., AND VASILKO,
M. 2006. Yield Enhancements of Design-Specific FPGAs.
Proceedings of the International Symposium on Field-Programmable
Gate Arrays (FPGA), pp. 93-100.

[5] CONG, J., AND DING, Y. 1994. FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 31(1), pp. 1-12.

[6] DEHON, A. 1996. Reconfigurable Architectures for General-Purpose
Computing. Ph.D. Dissertation, Massachusetts Institute of
Technology.

[7] FLEISCHER, M. 1995. Simulated Annealing: Past, Present, and
Future. Proceedings of Winter Simulation Conference, pp. 155-161.

[8] HAMMERQUIST, M. AND LYSECKY, R. 2008. Design Space
Exploration for Application-Specific FPGAs in System-on-a-Chip
Designs. Proceedings of the IEEE International SOC Conference
(SOCC), pp. 279-282.

[9] HOLLAND, M. AND HAUCK, S. 2004. Automatic Creation of
Reconfigurable PALs/PLAs for SoC. Field-Programmable Logic and
Applications (FPL), pp. 536-545.

[10] HOLLAND, M., AND HAUCK, S. 2005. Automatic Creation of
Domain-Specific Reconfigurable CPLDs for SOC. Proceedings of

International Conference on Field Programmable Logic and
Applications (FPL), pp. 95-100.

[11] HOLLAND, M., AND HAUCK, S. 2006. Improving Performance and
Robustness of Domain-Specific CPLDs. Proceedings of the
International Symposium on Field Programmable Gate Arrays,
(FPGA), pp. 50-59.

[12] KRISHNAN, G. 2005. Flexibility with EasyPath FPGAs. XCell
Journal, Fourth Quarter 2005, pp. 96-98.

[13] KUON, I., EGIER, A., ROSE, J. 2005. Design, Layout and Verification
of an FPGA using Automated Tools. Proceedings of the
International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 215-226.

[14] KUON, I., AND ROSE, J. 2006. Measuring the Gap between FPGAs
and ASICs. Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), pp. 21-30.

[15] LEVINTHAL, A., AND HERVEILLE, R. 2005. FlexASIC Structured
Array: A Solution to the DSM Challenge. DesignCon.

[16] PADALIA, K., FUNG, R., BOURGEAULT, M, EGIER, A., AND ROSE, J.
2003. Automatic Transistor and Physical Design of FPGA Tiles from
an Architectural Specification. Proceedings of International
Symposium on Field Programmable Gate Arrays (FPGA), pp. 164-
172.

[17] PHILLIPS, S. 2004. Automating Layout of Reconfigurable
Subsystems for Systems-on-a-Chip. Ph.D. Thesis, University of
Washington, 2004.

[18] POON, K., WILTON, S., AND YAN, A. 2005. A Detailed Power model
for Field-Programmable Gate Arrays. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 10 (2), pp. 279-302.

[19] SIVASWAMY, S., WANG, G., ABABEI, C., BAZARGAN, K., KASTNER,
R., BOZORGZADEH, E. 2005. HARP: Hard-Wired Routing Pattern
FPGAs. Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 21-29.

[20] S. YANG. 1991. Logic Synthesis and Optimization Benchmarks,
Version 3.0. Technical Report, Microelectronics Centre of North
Carolina.

