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Abstract 
The inclusion of field programmable gate arrays (FPGAs) within 
a system-on-a-chip (SOC) design offers programmability, 
flexibility, and reconfigurability not possible with application-
specific integrated circuits (ASIC) or full-custom 
implementations. However, these benefits come at the expense of 
significant area, performance, and power consumption overheads 
compared to ASIC or full-custom circuits. As a typical SOC 
design will require fabrication of the final integrated circuit, 
rather than rely on a generic FPGA architecture, an FPGA 
integrated within an SOC design can be optimized for the specific 
intended application by tailoring an FPGA’s architectural 
features for a specific hardware circuit to improve the area, 
delay, or energy consumption compared to traditional FPGA 
designs. Such an application-specific FPGA (ASFPGA) would 
have reduced overheads compared to ASIC and full custom 
implementations. We present two methodologies for creating 
ASFPGAs including a design space exploration framework for 
customizing FPGA architectural elements and a configurable 
logic block (CLB) customization algorithm intended to reduce 
area requirements. The resulting ASFPGA generation methods 
can be utilized to create various ASFPGAs ranging from a 
customized, yet flexible, FPGA architecture to a fully customized 
FPGA architecture with significant area savings over traditional 
FPGAs. 
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1. INTRODUCTION    
The inclusion of field programmable gate arrays (FPGAs) within 
a system-on-a-chip (SOC) design offers many advantages over 
purely application-specific integrated circuits (ASIC) or full-
custom implementations. Figure 1 presents a basic SOC 
architecture incorporating ASIC and FPGA alternatives for 
implementing custom hardware circuits. FPGAs can implement 
any hardware circuit simply by downloading bits for that 
hardware circuit, much in the same way that microprocessors can 
execute any software program simply by downloading an 
application binary. In this manner, FPGAs extend the flexibility of 
software design to hardware circuits, allowing hardware 
modifications, corrections, upgrades, etc. throughout the 
development cycle and even after device fabrication. For example, 
often costly hardware design errors that would require a respin in 
a traditional ASIC implementation can be fixed in hardware 
within the FPGA by downloading the corrected hardware circuit. 
Similarly, FPGAs enable rapid development efforts in which the 
hardware implementation does not need to be finalized before 
fabrication. Instead, the physical SOC hardware incorporating an 
FPGA can be fabricated earlier in the design process, as designers 
need not finalize the hardware design for those elements 
implemented within the FPGA before manufacturing.  

An FPGA can also be reconfigured at runtime to implement 
multiple hardware circuits throughout an application’s execution 
using the same physical resources. Hardware/software codesign 
approaches targeting FPGAs can also provide significant 
performance benefits and/or power savings compared to software 
only implementations.  

However, the reconfigurability and flexibility of FPGAs 
comes at the costs of significant area, performance, and power 
consumption overheads compared to ASIC circuits. Research has 
demonstrated that FPGAs require 10-40X greater area, 5-12X 
greater power consumption, and 3-4X greater critical path delays 
compared to their equivalent ASIC counterparts [Kuon and Rose 
2005]. While rapid increases in IC capacities may alleviate the 
area concern, the power and performance overheads may present 
significant hurdles for allowing FPGAs to be integrated within 
hardware designs. 

While many platform-based SOC design options exist, typical 
SOC designs require the fabrication of an ASIC or full-custom 
design, and provide an opportunity to tailor the design of the 
FPGA itself to the specific target application. Rather than rely on 
a generic FPGA architecture – typically optimized to perform well 
for a large variety of applications – an FPGA can be optimized for 
the intended application, thereby requiring less area with greater 
performance and lower energy consumption. 

In this paper, we present a two new methods for creating such 
application-specific FPGAs (ASFPGAs). An ASFPGA can be 
created for the specific hardware circuit to be implemented within 
an SOC. The ASFPGA generation process outputs an architectural 
description of the FPGA needed to fabricate the SOC as well as a 
bitstream to program the resulting ASFPGA after fabrication. We 
present both a design space exploration framework – originally 
presented in [Hammerquist and Lysecky 2008] – along with a 
configurable logic bock (CLB) customization algorithm for 
generating an ASFPGA by tailoring several FPGA architectural 
features for a specific hardware circuit to improve the area, delay, 
or energy consumption compared to traditional FPGA designs. 
Section 2 provides an overview of related work in creating 
customized FPGA architectures and complementary techniques 
for creating a physical layout from an FPGA architectural 
description. In Section 3, we present a detailed description of a 
generic FPGA architecture and specifically highlights the 
configurable attributes of an FPGA that can be customized. In 
Section 4, we present our design space exploration framework for 
ASFPGA generation with experimental results highlighting the 
area, delay, and power benefits of ASFPGA compared to 
traditional FPGA architectures. In Section 5, we present an 
algorithm for customizing the architecture of the CLBs within an 
FPGA specifically intended to further reduce area requirements 
compared to our design pace exploration methodology. Finally, in 
Section 8 we conclude and discusses several directions for future 
work. 

Fig. 1: Basic System-on-a-chip (SOC) architecture incorporating 



 
 

2. RELATED WORK 
Significant research has focused on providing automated methods 
for creating reconfigurable devices as either standard cell 
technologies or custom physical layouts.  

Several research and development efforts have focused on 
efficiently implementing FPGAs – or similar reconfigurable 
devices – using standard cell technologies. eASIC has developed a 
technology which consists of coarse-grained reconfigurable logic 
cells that create a structured reconfigurable array [Levinthal and 
Herveille 2005]. The structured array has the ease of use and 
prototype cost of an FPGA, with the speed, density, power 
consumption, and production cost similar to a standard cell 
design. The reconfigurable logic cells consist of two 3-input LUTs 
connected to a flip-flop through a multiplexer. A two-input 
NAND gate drives one input of each of the LUTs, allowing the 
LUT to perform a subset of four-input functions in addition to 
being able to perform any three-input function. Custom 
interconnect is used inside the logic cells and fixed metal routing 
is used for cell-to-cell connections. While such fixed routing 
channels provide significant area advantages over the flexible 
routing resources in traditional FPGAs, the lack of configurable 
routing can have impacts on the ability to implement alternative 
hardware designs within the reconfigurable array.  

In [Buch 2005], eASIC structured reconfigurable array can be 
utilized to create flexible SOC designs that incorporate IP blocks 
including microprocessors, peripherals, and DSP functions with 
embedded blocks for SRAMs, traditional FPGA fabrics, high-
speed I/O, and clock management. By incorporating both eASIC’s 
reconfigurable logic cells with traditional FPGA fabric, varying 
degrees of flexibility can be achieved. For example, IP cores that 
require high-performance and are intended to be utilized across 
many designs can be implemented within the eASIC’s 
reconfigurable logic cells, whereas IP cores only required for a 
single can be implemented within the traditional FPGA. This 
methodology provides designers with more options for supporting 
flexible design elements.  

In [Aken’ova et al. 2005], FPGA specific standard cells are 
proposed to enable more efficient implementation of FPGAs 
within standard cell technologies by imposing structure specific to 
the FPGA. However, these tailored FPGAs may not have 
sufficient logic resources to implement additional design 
elements. A designer must thus choose a larger tailored FPGA if 
future modifications or additions are anticipated. 

 In [Padalia et al. 2003; Kuon et al. 2005], researchers present 
a method for automatically generating a transistor-level 
implementation of an FPGA starting from an architectural 
description of the FPGA. The input to this system is similar to the 
FPGA architectural description file input of VPR [Betz et al. 

1999]. The resulting FPGA layouts were verified through the 
successful fabrication of the resulting FPGA implementation and 
were shown to incur a 36% area overhead compared to similar 
commercial FPGAs. We anticipate that these automated FPGA 
layout generation can be utilized to fabricate the resulting 
ASFPGA architectures proposed within our approach. 

In [Holland and Hauck 2005; Holland and Hauck 2006], an 
automated tool flow is presented for creating domain-specific 
PLAs, PALs, and CPLDs in order to reduce design time. Within 
this proposed approach, a domain can be loosely defined as a set 
of similar applications, such as sequential, combinational, floating 
point, arithmetic or encryptions domains. By analyzing the netlists 
of a set of applications within the target domain, a simulated 
annealing approach is used to optimize the reconfigurable device 
in terms of inputs, product terms, and outputs. Optimizing these 
parameters allowed for the reduction of programmable 
connections needed in the crossbar interconnect. Through the 
utilization of automatic layout generation tools, the final output is 
a physical layout for the domain-specific reconfigurable device. 
Using area-delay product as the performance metric, the resulting 
domain-specific CPLDs outperformed fixed-architecture CPLDs 
even when the fixed-architecture was handpicked for the domain. 

Further research has been conducted in developing domain-
specific CPLDs [Holland and Hauck 2006] that replace the full 
crossbar interconnect with a sparse crossbar along with 
incorporating additional CPLD resources needed to provide 
support for future unknown circuits that exist in the target domain. 
Additional, early work on extending this approach to support 
domain-specific FPGAs was presented in [Phillips 2004]. 
Whereas a domain-specific reconfigurable device is optimized for 
a particular domain, our proposed application-specific FPGA will 
be optimized for one specific hardware application, which 
provides an opportunity to further optimize a FPGA architecture 
beyond a set of applications that define a domain. 

The availability of tools for automatically creating a standard 
cell or full-custom FPGA implementation is essential for enabling 
the proposed integration of ASFPGAs within a hardware design. 
As such, our proposed approach focuses on the optimization of 
the FPGA architecture for the intended hardware application and 
not on the physical generation of the resulting ASFPGA. 

A typical FPGA routing architecture uses about 70-90% of the 
total transistors on an FPGA [Dehon 1996], thus using most of the 
area, delay and power. Therefore, in [Sivaswamy et al. 2005], the 
authors propose forming hardwired junctions between horizontal 
and vertical wire segments inside switch boxes. The junctions are 
in the shapes of T’s, L’s, +’s and their rotated versions. As a result 
of hardwiring connections, some programmable switches are 
eliminated, decreasing delay, area and power dissipation. 

Fig. 2: Basic System-on-a-chip (SOC) architecture incorporating (a) ASIC and (b) FPGA alternatives for custom hardware circuits. 
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However, the reduction in programmable switches could severely 
affect the routing flexibility. Therefore a careful analysis of 
routing profiles was conducted using a number of circuits placed 
and routed on a traditional FPGA architecture. The resulting 
routes of each circuits are analyzed to extract the frequency of 
hardwired patterns. This analysis is used to create a new 
architecture with a mix of traditional and hardwired switches. By 
hardwiring some of the junctions in the routing switches, a 24% 
reduction in delay, 34% reduction in energy, and a 7% reduction 
in area were achieved. While this research focuses on improving 
the routing, it does so trying to maintain routability for any 
hardware circuit, which leaves room for further optimization such 
that routability can traded off with further reduction in area, delay, 
and energy consumption.  

Although not directly related to the proposed ASFPGAs, it is 
interesting to mention Xilinx’s EasyPath FPGA design option 
[Krishnan 2005]. In contrast to a standard FPGA that is 
guaranteed to work for all hardware designs, an EasyPath FPGA 
is a low cost design option that is only guaranteed to work a few 
hardware designs. In [Campregher et al. 2006], an analysis of the 
yield advantages of using an EasyPath FPGA found that the 
improvement in yield from such devices is due to the ability to 
avoid routing paths that have defects significant enough to cause 
faults. 

3. FPGA CONFIGURABILITY 
In general, an FPGA consists of an array of combinational logic 
blocks (CLBs) organized into rows ands columns, routing 
channels running vertically and horizontally between the CLBs, 
connection blocks connecting the inputs and outputs of CLBs to 
routing channels, and switch matrices, located at the intersections 
of vertical and horizontal routing channels, for connecting routing 
channels together. 

Each CLB consists of multiple lookup tables (LUTs), flip-
flops, and multiplexors for internal routing among the LUTs and 
flip-flops within the CLB. The basic configurable logic element 
within an FPGA is an M-input LUT capable of implementing any 
combinational logic function with M inputs. To support sequential 
logic, LUT table outputs can optionally be connected to a flip-flop 
within the CLB. Thus, the basic configurability of a CLB is 
controlled by the size of the LUTs and the number of LUTs within 
the CLB.  

While a CLB may have multiple LUTs, the inputs/outputs of a 
CLB typically do not provide direct access to every input/output 
of each LUT. Instead, internal routing in the form of multiplexors 
is provided to allow a smaller number of inputs to connect to the 
LUTs, as well as connecting the outputs from one LUT to the 
input of another. Thus, the number of inputs and outputs to and 
from a CLB can also be configured. For example, a CLB with two 
3-input LUTs may have only four inputs – instead of the six 
necessary to have a unique input for each LUT input. 

While CLBs provide the basic configurable resources for 
implementing combinational and sequential logic, the routing 
resources of the FPGA are needed to connect the CLBs together 
to achieve the final circuit implementation. Routing resources 
include routing channels, connection blocks, and switch matrices. 
Routing channels are physical wires within the FPGA that run 

vertically and horizontally between the columns and rows of 
CLBs. The number of routing channels, often referred to as the 
channel width, is a configurable parameter that specifies the total 
number of wires that will run in parallel within the routing 
channels. In addition, the lengths of the wires – or routing 
segments – within the routing channels can also be configured. 
For example, an FPGA may include multiple different routing 
segments ranging from segments spanning a single CLB to 
segments spanning an entire row or column. The lengths and 
frequency at which these routing segments are provided can also 
be configured.  

Connection blocks are utilized to connect the inputs and 
outputs of CLBs to the routing channels, which can be configured 
to specify the percentage of routing channels to which each 
input/output can connect. For example, whereas a connectivity of 
100% would allow an input/output of a CLB to connect to any 
routing channel, a connectivity of 50% would only allow that 
input/output to connect to half of the available routing channels, 
where different inputs/outputs within a connection block can 
connect to different subsets of the available routing channels.  

Finally, switch matrices provide the mechanism for 
connecting the various routing segments within the routing 
channels together and are incorporated at the intersection of 
horizontal and vertical routing channels. In addition to connecting 
routing segments within a single channel, switch matrices also 
connect routing segments between the horizontal and vertical 
routing channels. The connectivity of a switch matrix can be 
configured to determine how many and what type of connections 
are allowed. For example, a full crossbar switch matrix would 
allow any routing segment to connect to any other routing 
segment.  

In designing an ASFPGA that will be integrated within a 
hardware design, the vast configurability of an FPGA design 
provides an excellent opportunity to tune the configurable 
architectural features to achieve a smaller, faster, or more energy 
efficient FPGA architecture. 

4. DESIGN SPACE EXPLORATION FOR 
APPLICATION-SPECIFIC FPGA 
GENERATION 
Figure 2 presents our design space exploration environment for 
application-specific FPGAs originally presented in [Hammerquist 
and Lysecky 2008]. The input to the design space exploration 
process is a hardware circuit – specified using the BLIF format – 
and a set of configurable FPGA architecture features to be 
considered during the design space exploration. The final output is 
an optimized ASFPGA architecture and hardware bitstream for 
the specific hardware circuit. In addition, the resulting ASPFGA 
can be optimized for area, delay, or energy consumption as 
specified by the designer. The current ASFPGA design space 
exploration environment provides an automated exploration 
framework leveraging existing FPGA CAD tools and supports the 
following configurable FPGA architectural options: 

 LUT Size: 3-input, 4-input, or 5-input LUTs 
 CLB Size: 2 or 4 LUTs per CLB 



 
 

 Connection Block Connectivity: CLB to routing channel 
connectivity of 100%, 90%, 80%, 70%, or 60% 

 FPGA Size: NxN fixed aspect array of CLBs 
 Channel Width: 100% to 130% of the minimum channel 

width needed to route input hardware circuit 
The ASFPGA design space exploration framework will 

evaluate the area, delay, and energy consumption of each FPGA 
architecture alternative to determine the best design given the 
designers specified optimization criteria. First, for each LUT size, 
FlowMap [Cong and Ding 2004] is utilized to map the input 
hardware circuit into the corresponding LUTs. Then we take the 
mapped hardware and a correction script to add a clock input so 
that circuits with latches will run through T-VPack properly [Betz 
et al. 1999]. Next, for each CLB size, T-VPack is used to pack the 
LUTs into CLBs within the current FPGA architecture 
configuration. Additionally, Power Model [Poon et al. 2005] is 
utilized to estimate the switching activity of the mapped and 
packed hardware circuit needed to estimate the overall energy 
consumption of the FPGA architecture and hardware circuit. 
Power Model is an FPGA power estimation model that utilizes 
activity estimation and transistor level power estimation to 
estimate the static, logic, routing, and clock power of an FPGA. 
Next, for each connection block connectivity, each channel width, 
and each FPGA size, VPR [3] and Power Model are utilized to 
place and route the hardware circuit onto each FPGA architecture 
and provide an estimate of the area, delay, and energy 
consumption of the hardware circuit implemented within the 
specific FPGA architecture. After evaluating all FPGA 

architecture alternatives, the final ASFPGA architecture and 
hardware bitstream are created. 

4.1 Experimental Results 
To evaluate the benefits of ASFPGAs, we consider ten MCNC 
[Yang 1991] hardware benchmark circuits, including alu4, apex6, 
bigkey, cordic, des, dsip, misex1, mult32a, s1423, and s298. For 
each hardware circuit, we utilized the ASFPGA design space 
exploration framework to select the three best ASFPGA 
architectures for each design criteria, namely area, delay, and 
energy consumption.  

The total area is estimated as the sum of the routing area and 
combinational logic area for the given FPGA architecture and is 
reported in minimum sized transistors. While the routing area is 
directly provided by VPR, VPR does not provide a method for 
accurately estimating the number of transistors needed to 
implement the CLBs. Thus, we developed a transistor-level model 
for CLBs that determines the number of transistors needed to 
implement LUTs, flip-flops, multiplexers, and configuration 
SRAM needed within the CLB given the CLB size, LUT size, and 
inputs/outputs per CLB. The total CLB area is calculated as: 

€ 

AreaCLB = AreaMUXi + AreaLUT + AreaMUXo + AreaFF , 
where AreaMUXi is the area of an input multiplexer, AreaLUT is the 
area of all the LUTs in a CLB, AreaMUXo is the area of the output 
multiplexer, and AreaFF is the area of a flip-flop.  
The area for an input multiplexor can be estimated as: 

€ 

AreaMUXi = 20 ∗NLUT ∗NCins ∗ log 2 SizeMUXi( )⎡ ⎤( )+ 6∗NLUT ∗NCins ∗ SizeMUXi −1( )( ), 
where NLUT is the number of LUTs in the CLB, NCins is the 
number of inputs to the CLB, and SizeMUXi is the number of inputs 
to the input multiplexer.  

The area for a LUT, is estimated as: 

€ 

AreaLUT = NLUT ∗ 20 ∗ 2
Size LUT( )+ 6∗ 2 Size LUT −1( )( ) , 

where AreaLUT is the area of all the LUTs in a CLB, NLUT is the 
number of LUTs in the CLB, and SizeLUT is the number of inputs 
to each LUT.  

Circuit delay for a hardware circuit implemented within a 
specific FPGA architecture is the critical path as reported by VPR.  

Finally, energy consumption is estimated as the total power 
consumption reported by Power Model – including static, routing, 
logic, and clock power consumption – for the hardware circuit 
implemented within the specific FPGA architecture multiplied by 
the critical path. We evaluate the FPGA architectural alternatives 
in terms of energy consumption because the reported power 
consumption from Power Model is estimated for a hardware 
circuit executing at the maximum achievable operating frequency, 
even though the maximum operating frequency may not be 
needed. Instead, the energy consumption reports the average total 
energy needed during each clock cycle, which combines the 
interrelated effects of delay and power consumption. 

Application-Specific versus Area/Delay/Energy-Optimized 
FPGA: While ASFPGAs are optimized for one particular 
hardware application, commercially available FPGAs must 
perform well across a broad set of possible hardware circuits. At 
the same time, many FPGA vendors offer several alternative 
FPGA devices targeted for specific design criteria, including logic 
density, speed, and low power consumption. Thus, we compared 
the area, delay, and energy benefits of an ASFPGA compared to a 
general area-optimized, delay-optimized, and energy-optimized 
FPGA architecture. For each hardware circuit, the ASFPGA 
design space exploration determined the three best FPGA 

Fig. 3: Design space exploration framework for application-
specific FPGAs (ASFPGAs) 
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architectures in terms of area, delay, and energy consumption. In 
contrast, the general area-optimized, delay-optimized, and energy-
optimized FPGA architectures represent the FPGA architecture 
with the best average area, delay, and energy consumption across 
all hardware circuits considered. The area-optimized FPGA 
architecture has 3-input LUTs, 2 LUTs per CLB, and a connection 
block connectivity of 90%. Both the delay-optimized and energy-
optimized FPGA architectures have 5-input LUTs, 4 LUTs per 
CLB, and a connection block connectivity of 80%. 

Figure 3 presents the percentage reduction in area, delay, and 
energy consumption of ASFPGAs compared to the area-
optimized, delay-optimized, and energy-optimized FPGA 
architectures for several MCNC hardware benchmark circuits. On 
average, an ASFPGA is 5% faster than the delay-optimized FPGA 
architecture, 17% smaller than the area-optimized FPGA 
architecture, or 10% more energy efficient than the energy-
optimized FPGA architecture. However, for some applications, 
the benefits of ASFPGA are much greater. For the hardware 
circuit bigkey, the area, delay, and energy consumption of an 
ASFPGA is 32%, 26%, and 67% better compared to the area-, 
delay-, and energy-optimized FPGA architectures, respectively. In 
addition, the reduction in area of ASFPGAs is greater than 30% 
for the circuits misex1 and s298. As expected, an ASFPGA 
performs better that a general FPGA architecture – even when the 
general FPGA architecture is optimized for the same design 
metric. 

Application-Specific versus Balance-Optimized FPGA: 
Alternatively, many FPGAs are designed to provide a good 
balance between area, delay, and energy consumption. Thus, we 
further compare the three ASFPGA architectures for each 
hardware circuit to a general balance-optimized FPGA 
architecture. To determine the general balance-optimized FPGA 
architecture, we calculated the average area/delay/energy (ADE) 
cost for each FPGA architecture alternative as the average of the 
area cost, critical path cost, and energy cost. The ADE cost for 
each hardware circuit implemented within a specific FPGA 
architecture is calculated as the ADE for that FPGA architecture 
divided by the maximum ADE for any FPGA architecture for the 
current hardware circuit. Thus, the final balance-optimized FPGA 
architecture is the FPGA with the best average ADE cost across 
all hardware circuits considered. The resulting balance-optimized 
FPGA architecture has 5-input LUTs, 2 LUTs per CLB, and a 
connection block connectivity of 60%. We note that the balanced-
optimized FPGA architecture is partially tailored to each hardware 

circuit, as the resulting FPGA design is the smallest FPGA needed 
to implement each circuit. 

Figure 4 presents the percentage reduction in area, delay, and 
energy consumption of ASFPGA compared to the balance-
optimized FPGA architecture for several MCNC hardware 
benchmark circuits. On average, the ASFPGAs are 25% faster, 
28% smaller, or 36% more energy efficient compared to the 
balance-optimized FPGA architecture, with a maximum reduction 
of 75%, 99%, and 99%, respectively. The largest improvements 
provided by an ASFPGA are a 73% and 62% reduction in energy 
consumption for the circuits bigkey and misex1, respectively. 
Furthermore, for eight of the ten hardware circuits, an ASFPGA 
provides an improvement greater than 40% for at least one design 
metric. 

Application-Specific versus Fixed-Size Balance-Optimized 
FPGA: As off-the-shelf FPGAs are only available with limited 
fixed sizes, we further consider a fixed-size balance optimized 
FPGA architecture. Using the balance-optimized FPGA 
architecture, the fixed FPGA size was determined as the minimum 
size needed to support all hardware benchmarks circuit 
considered. For the ten MCNC hardware circuits, a 63x63 fixed-
sized balance-optimized FPGA is needed. 

Figure 5 presents the percentage reduction in area, delay, and 
energy consumption of an ASFPGA compared to the fixed-size 
balance-optimized FPGA architecture for several MCNC 
hardware benchmark circuits. Overall, an ASFPGA is on average 
50% faster, 82% smaller, or 75% more energy efficient compared 
to fixed-size balance-optimized FPGA architecture. Compared to 

Fig. 4: Comparison of percentage reduction in area, delay, and 
energy consumption of ASFPGAs versus area-optimized, delay-
optimized, and energy-optimized FPGA architectures for several 

MCNC hardware benchmark circuits.  

Fig. 5: Comparison of percentage reduction in area, delay, and 
energy consumption ASFPGAs versus a balance-optimized FPGA 

architecture for several MCNC hardware benchmark circuits.  

Fig. 6: Comparison of percentage reduction  in area, delay, and 
energy consumption of ASFPGAs versus a fixed-size balance-

optimized FPGA architecture for several MCNC hardware 
benchmark circuits.  



 
 

a fixed-size FPGA, greater savings in area requirements are 
achieved for those circuits much smaller than the FPGA. At the 
same time, as the balance-optimized FPGA must be able to 
balance all design criteria, the ASFPGAs provide area savings of 
more than 40% for all hardware circuits. In addition, ASFPGAs 
improve the delay, area, or energy consumption by at least 21%, 
27%, and 40%, respectively. 

5. APPLICATION-SPECIFIC 
CONFIGURABLE LOGIC BLOCK 
CUSTOMIZATION 
While design space exploration for ASFPGAs provides 
substantial area, power, and performance benefits, additional 
opportunities exist for optimizing an FPGA for a specific 
application. To accommodate an architecture that would further 
reduce area and enhance the previous design space exploration, 
we present a configurable logic block customization methodology 
for ASFPGAs that tailors each CLB within an FPGA to the logic 
resources of the target application while preserving the traditional 
routing architecture. 
Within a customizable FPGA architecture, a designer can specify 
the number of LUTs per CLB, the number of CLB inputs, and the 
connectivity of those inputs to the routing channels. The number 
of outputs from the CLB is typically equal to the number of LUTs 
because each CLB can support several independent logic 
functions implemented within a LUT. With this structure, the 
number of LUTs per CLB is the defining parameter that directly 
affects the inputs and outputs to and from a CLB. Thus, a 
traditional prefabricated FPGA consists of a predefined number of 
LUTs per CLB. While existing CLB clustering algorithms are 
able to efficiently pack LUTs into these predefined CLBs, many 
CLBs will remain unused or underutilized.  

The structure of each CLB within an FPGA can also be 
customized to the required logic components of the target 
hardware circuit. We present a methodology for generating a 
highly customized CLB structure in which the number of LUTs 
per CLB is defined by the application and is only limited by the 
number of inputs and outputs to and from the CLB. This allows 

for – and even encourages – grouping together LUTs with shared 
inputs and grouping together dependent LUTs, in which the 
output from one LUT is the input to another LUT in the same 
CLB. The resulting application-specific CLB customization 
produces a customized FPGA architecture in which unnecessary 
LUTs and/or CLBs are eliminated. At the same time, the resulting 
FPGA architecture still adheres to an array style layout that can 
utilize existing FPGA routing architectures and existing 
placement and routing algorithms for those architectures. While 
performance and power benefits may be gained from this 
methodology, we currently focus on reducing area requirements 
of the FPGA architecture.  

Figure 6 presents the pseudocode of the proposed simulated 
annealing based CLBCustomization algorithm for ASFPGAs. The 
inputs to the CLB customization algorithm are the number of 
CLBs in the original clustering, an array of CLBs, and an array of 
all LUTs. Before executing the CLB customization, an initial 
valid clustering is created. A valid clustering is a clustering in 
which the number of inputs to all CLBs is less than the maximum 
number of inputs allowed and the number of outputs from all 
CLBs is less than the maximum number of outputs allowed.  

Simulated annealing is an optimization scheme that can be 
used to solve many different types of problems [Fleischer 1995]. 
The general approach is to start with an initial problem and then 
transition from one solution state to another, trying to reach a 
global optimum. Since simulated annealing is analogous to the 
concept of annealing in thermal dynamics, a temperature 
parameter is used to decide how long to anneal and how to accept 
new solution states. An initial temperature value is chosen and 
then that value is lowered to decrease the probability of 
transitioning to a new state. Many such cooling schedules exist, 
including linear, quadratic and exponential versions. The idea is to 
freely allow changes to the solution state in the beginning even if 
the new state results in an inferior solution so as to avoid getting 
caught in a local minimum. 

Our simulated annealing approach starts with an initial 
temperature that is lowered exponentially using a cooling 
schedule defined as: 

Fig. 7: Pseudocode for simulated annealing based application-specific CLB customization. 

CLBCustomization ( cluster_count, clusters[], luts[] ): 
 

1. while( temp > temp_min ) { 
2.    if( temp < temp_i*0.25 ) near_end = true; 
3.    prev_cluster_count = cluster_count; 
4.    for( i in 0  to MovesPerIterations ) {  
5.       RandomizedLUTMove( cluster_count, clusters[],  

                         luts[], near_end ); 

6.    } 
7.    if( cluster_count <= prev_cluster_count && ValidClustering() ) { 
8.         AcceptNewClustering(); 
9.    } 
10.    else if( cluster_count > prev_cluster_count &&  

            ValidClustering() ) { 

11.       if ( Rand() < temp ) AcceptNewClustering(); 
12.    } 
13.    else { 
14.       RejectNewClustering() 
15.    } 
16.    UpdateClustering() 
17.    UpdateTemp() 
18. } 
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where T is the current temperature, TInit is the initial temperature, 
TMin is the minimum temperature at which the algorithm 
terminates, Iteri is the current simulated annealing iteration, and 
IterTotal is the total number of iterations we want to update the 
temperature before terminating. 

As our CLB customization algorithm is focused on creating 
CLB customized for the logic components of the input hardware 
circuit with the only restriction of the number of inputs and output 
to and from a CLB, during each simulated annealing iteration a 
number of randomized moves are utilized to move LUTs between 
CLBs, specifically including moving a LUT forward to another 
CLB, moving a LUT backwards to another CLB, and creating a 
new CLB into which the randomly selected LUT is moved. Figure 
7 presents the pseudocode for the RandomizedLUTMove 
operation.  

The input to the RandomizedLUTMove operation are the 
number of CLBs in the current clustering, the current array of 
CLBs, an array of all LUTs, and a flag indicating whether or not 
the algorithm is nearing the end of execution. One of three 
different move operations, ForwardMove, BackwardMove, or 
MoveToNewCLB, is randomly selected, where each move has a 
specific probability of being executed. First, a random number is 
utilized to select between three different possible moves, where 
each move has a different probability of being selected. For all 
operations, a single randomly selected LUT will be chosen to 
move.  

For the ForwardMove operation, the selected LUT’s inputs 
and outputs are utilized to find a CLB farther along in the 
clustering array that contains a LUT that it is dependent on or that 
has a LUT dependent on the LUT being moved. The randomly 
selected LUT will be moved to the first CLB that contains a 
dependent LUT. For the BackwardMove, a similar procedure is 
followed except that the algorithm looks backwards in the 
clustering array. The ForwardMove and BackwardMove operation 
focus on an arbitrary number of LUTs within CLBs as long as 
some dependency between the LUTs within a CLB is maintained 
such that either a decrease in CLB inputs and output can be 
achieved or any potential increase in the number of inputs and 
outputs is minimized.  

If the MoveToNewCLB operation is selected, the randomly 
selected LUT will be moved to that CLB. The MoveToNewCLB 
operation helps to ensure that the simulated annealing approach 
does not get caught within local minimum. By allowing new 
CLBs to be created, the algorithm ensures that the simulated 
annealing continues to explore new clusterings. However, creating 
new CLBs is a less desirable operation compared to  moving 
LUTs between existing CLBs – as it results in increased area 
resources. As such, the probability of creating a new CLB is much 
lower than the probability of the other LUT moves. The 
probability of executing the ForwardMove and BackwardMove 
operations are equal, whereas the MoveToNewCLB operation is 20 
times less likely to be executed. Furthermore, to avoid creating 
additional CLBs near the end of the simulated annealing process, 
the near end flag is used to indicate the end of the annealing 
process and further reduces the probability of executing the 
MoveToNewCLB operation by 20%. 

During the simulated annealing process, if the new clustering 
has fewer CLBs than the previous iteration and all CLBs are valid, 
the new clustering is automatically accepted. Additionally, if the 

new clustering has the same number of CLBs compared to the 
previous iteration and all CLBs are valid, the new clustering is 
again accepted. While keeping the original clustering is also an 
option, or randomly selecting among the two alternative, we 
found that always selecting the new clustering achieved better 
overall results, as the algorithm is allowed to continue exploring 
new clustering alternatives that may help to avoid a local 
minimum. If the number of CLBs is greater than the previous 
iteration and the clustering is still valid, the new clustering will be 
selected with a probability proportional to the temperature, which 
decreases exponentially. If the new clustering contains any invalid 
CLBs – i.e. a CLB with that requires too many inputs or outputs – 
the new clustering is always rejected.  

5.1 Experimental Results 
To evaluate the benefits of CLB customization for ASFPGAs, we 
consider five MCNC [Yang 1991] hardware benchmark circuits, 
including alu4, apex6, cordic, des and misex. For all hardware 
circuits, our CLB customization algorithm was executed for 
250,000 iterations. We note that for the hardware circuits cordic, 
des, and misex1 no further improvements were achieved after the 
first 10,000 iterations.  

While the base LUT structure for which an application is 
mapped can be tuned within our design space exploration 
framework for ASFPGAs, we currently assume 2-input LUTs 
provide the basic configurable component within the target FPGA 
architecture. FlowMap is utilized to map each hardware 
benchmark circuits to the corresponding 2-input LUT 
implementation that is provided as the input to our CLB 
customization algorithm. After creating an initial, valid clustering 
using T-VPack, our simulated annealing based CLB 
customization algorithm was utilized to create a customized CLB 
architecture for each CLB within the resulting FPGA architecture. 

We consider both a flexible-optimized and fully-optimized 
CLB customization. As highlighted in Figure 8 (a), a flexible-
optimized CLB customization produces a CLB structure in which 
the traditional input multiplexers, flip-flops, and output 
multiplexers are included. Alternatively, by eliminating all 
components that are not needed to implement a specific hardware 
circuit, a fully-optimized CLB structure as highlighted in Figure 8 
(b) can be further tailored by eliminating these components and 
using dedicated wires for all connection within the CLB. These 
two alternatives present the worst case and best case scenarios, 

Fig. 8: Pseudocode for Randomized LUT Move operation 
employed within the simulated annealing based CLB 

customization algorithm. 

RandomizedLUTMove ( cluster_count, clusters[],  
                                        luts[], near_end ): 
1. move = Rand(); 
2. lut = ChooseRandomLUT(); 
3. if( move == ForwardMove ){ 
4.    clb = FindCLBFromLut(lut);  
5.    MoveLUT(lut, clb); 
6. } 
7. else if( move == BackwardMove) { 
8.    clb = FindCLBToLut(lut);  
9.    MoveLUT(lut, clb); 
10. } 
11. else ( move == MoveToNewCLB ) { 
12.    clb = CreateCLB(); 
13.    MoveLUT(lut, clb); 
14. } 



 
 

respectively, for application-specific CLB customization. Note the 
absence of input multiplexers in the fully-optimized CLB 
structure. While the fully-optimized CLB customization can 
greatly reduce area requirements, the flexibility of the resulting 
ASFPGA to implement any changes in the hardware design is 
significantly reduced. 

Figure 9 compares the percentage area savings of application-
specific CLB customization compared to an area-optimized 
ASFPGA incorporating CLBs with four 3-input LUT for both a 
flexible-optimized and fully-optimized CLB customization with a 
CLB constrained to six inputs and fours outputs. Thus, the number 
of inputs and outputs for each CLB is equivalent for both the CLB 
customized ASFPGA architecture and the area-optimized 
ASFPGA architecture. For the hardware circuits considered, the 
flexible-optimized application-specific CLB customization 
achieves an average area savings of 55% over an area-optimized 
ASFPGA. On the other hand, the flexible-optimized CLB 
customization achieves a maximum reduction of 94% for the 
hardware circuit apex6. 

Because the application-specific CLB customization is not 
required to follow the regular structure imposed by traditional 
FPGA architectures, we can eliminate CLBs that are not being 
used to implement the application as well as eliminate unused 
inputs and outputs from each CLB. Furthermore, instead of 
requiring a flip-flop and output multiplexer for each LUT, the 
resulting ASFPGA only requires one flip-flop and output 
multiplexer for each output. For the circuit cordic, while the 
resulting CLB customized ASFPGA has more CLBs compared to 
the area-optimized ASFPGA, the total CLB area is 20% smaller, 
which is the smallest savings in area achieved by the CLB 
customization algorithm.  

Alternatively, by eliminating all unnecessary configurable 
elements within all CLBs throughout the resulting FPGA fabric, 
fully-optimized application-specific CLB customization achieves 
an average area savings of 91% with a maximum reduction in area 
of 98% for the hardware circuit apex6. The largest difference 
between a flexible-optimized and fully-optimized CLB 
customization is exhibited for the hardware circuit cordic, in 
which the fully-optimized CLB architecture achieved an 
additional area savings of 67% over the flexible-optimized CLB 
architecture. 

Overall, our application-specific CLB customization produces 
a smaller FPGA compared to the design space exploration 
framework. However, we note that design space exploration and 
application-specific CLB customization are complementary 
approaches that can be combined to further optimize the ASFPGA 
architecture. 

6. CONCLUSIONS AND FUTURE WORK 
By tailoring the architecture of an FPGA to be integrated within a 
specific hardware application, significant improvements in area, 
delay, or energy consumption can be achieved. The proposed 
design space exploration environment for ASFPGAs provides an 
initial implementation and analysis of these benefits compared to 
traditional FPGA design alternatives. On average, an ASFPGA 
optimized for a particular design metric provides a 70% 
improvement compared to a fixed-size balance-optimized FPGA 
architecture, with a minimum and maximum improvement of 20% 
and 99% for specific hardware circuits. 

Further reductions in area can be made by customizing the 
CLBs within an FPGA to the specific needs of the target hardware 
circuit. The presented application-specific CLB customization 
achieves further improvements in reducing area requirements, 
yielding an ASFPGA that is 19% to 94% smaller for a flexible-
optimized CLB architecture and 85% to 98% smaller for a fully-
optimized CLB architecture. 

While this data shows great improvement over standard 
FPGAs, much future work remains in further exploring the 
possibilities of application-specific FPGAs. While some 
automated layout generation tools are available, efficient and 
robust automated tools are needed to create the physical 
implementation for the ASFPGA architecture, such that it can be 
integrated within the target design. In addition, our current 
approach does not consider fixed functional units, such as adders, 
multipliers, etc., that can provide significant performance, area, 
and energy benefits compared to purely logic based FPGA 
architectures. Additional future work includes exploring the 
effects of adjusting the number of inputs and outputs for our 
custom CLB architecture. This exploration would consider a 

Fig. 9: (a) Flexible-optimized CLB architecture customization and (b) fully-optimized CLB architecture customization. 

Fig. 10: Percentage reduction in area of flexible-optimized 
(Flexible Opt.) and fully-optimized (Fully Opt.) CLB customized 
ASFPGA versus an area-optimized ASFPGA for several MCNC 

hardware benchmark circuits.  
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greatly expanded design space, potentially allowing for greater 
improvements in area, delay, and energy. Furthermore, as the 
number of configurable FPGA architectural options continues to 
grow, the need for efficient design space exploration heuristics 
becomes increasingly imperative. 
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