A Study on the Loop Behavior of Embedded Programs

Jason Villarreal, Roman Lysecky, Susan Cotterell, and Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside
Technical Report UCR-CSE-01-03
December 2001

ABSTRACT

Software executing on a microprocessor contributes to much of
the overall power and performance of an embedded system. A
general rule-of-thumb for the behavior of both desktop and
embedded systems has been that most execution timeis spent in a
small fraction of the software. We studied the behavior of 16
embedded system programs from the Powerstone benchmarks,
with a focus specifically on those programs' loop behavior. We
examined such behavior for a popular 32-bit embedded
microprocessor (MIPS) as wdl as a popular 8-bit
mmicroprocessor (8051).

Keywords

Embedded software, dynamic loop behavior, loop cache, loop
analysis, hardware/software partitioning, architecture synthesis.

1. Introduction

A common aspect of numerous research efforts in low power and
high performance embedded systems focus on the most
frequently-executed software regions. Those regions may be
translated into custom instructions, partitioned for execution on a
coprocessor, compressed, or cached. A general rule-of-thumb is
that software tends to spend most of its time in a smal
percentage of code. The desktop software community has utilized
this rule to develop profile-guided compilers [5][16] that focus
their optimization efforts on the most critical software regions.
Even hardware-assisted runtime optimization has been proposed
[1]. Most profile-guided efforts from the software community
have focused on high performance. Recently, however, embedded
system design automation has begun looking at the power
savings as well [4].

The most critical software regions tend to exist within loops.
Thus, previous researchers working in the desktop computing
domain have investigated the dynamic behavior of loops.
Kobayashi performed an early study of dynamic loop behavior for
IBM System/370 applications, showing that more than half of a
program’s executed instructions lie within loops [12]. Several
recent efforts focus on dynamic loop detection for use in
speculative execution, in particular, on exposing more
instruction-level or thread-level parallelism to a superscalar or
multi-threaded processor (e.g., [18]).

Embedded software is generaly thought to have different
behavior than desktop applications. The software tends to be
written in a leaner manner, and may spend more time in very
small loops [14]. Furthermore, embedded microprocessors tend
to focus on low power rather than just high performance,
meaning their architectures do not support the large scae
instruction-level parallelism of today's popular desktop
processors, which in turn means that the compilers for embedded
processors may emit code quite different than those for desktop
processors. An anaysis of MediaBench, a benchmark suite
focusing on multimedia and communication applications was
performed recently [3]. The results from this analysis focused on
the instruction mix, branch prediction accuracy, cache hits,
memory use, and integer bit utilization, but not on loops.

Motivated by the need for a better understanding of the loop
behavior of embedded software, we decided to conduct a study
on such loop behavior. We present the results of that study in this
report.

2. Method

2.1 Benchmarks

For this study we sought to contrast the results for a popular 32-
bit processor with those for a popular 8-bit processor. We used
Motorola's PowerStone benchmark suite as our set of software
applications [15]. Table 1 shows the benchmarks we used, a
short description of each, and their code size in lines of C code
excluding comments and whitespace.

There are severa additional programs included in the
PowerStone benchmarks. However, we excluded some due to
their small size or small dynamic instruction count. Additionally,
we did not include a few because they would not execute on one
of our simulators, for reasons we are investigating. Initially, we
were also considering investigating the loop behavior of
MediaBench, but we chose PowerStone for these experiments
because most benchmarks from the former do not apply to small
embedded processors. These benchmarks can be viewed as either
small embedded programs or computation kernels that might be
found in larger embedded programs.

Each PowerStone benchmark comes with its own example
input and expected output. For instance, g3fax contains sample
fax data within the benchmark. In addition, each program has a
main loop that has an iteration number that can be set to 1 or
more. For our analysis, we set the iteration number to 1.

Table 1: Benchmark Description and Code Size.
Benchmark Linesof Description
C Code
adpem* 501 Voice Encoding
bent 90 Bit Manipulation
binary 67 Binary Insertion
blit 94 Graphics Application
brev 72 Shifting and Or Operations
compress* 943 Data Compression Program
cre 84 Cyclic Redundancy Check
des* 745 Data Encryption Standard
engine* 276 Engine Controller
fir* 173 FIR Filtering
g3fax 639 Group Three Fax Decode
jpeg* 540 JPEG Compression
matmul 42 Matrix Multiplication
summin 74 Handwriting Recognition
uchgsort 209 U.C.B Quick Sort
v42* 553 Modem Encoding/Decoding
* MIPS benchmark only

2.2 LOOAN Tool

The benchmarks were compiled for the MIPS 32-bit
microprocessor using LCC [7]. For the 8051 8-bit
microcontroller, the Keill C compiler was used with the
NOOVERLAY flag, which assures that data segments and code
segments remain separate. We ran the MIPS programs on a
MIPS simulator that we modified to emit assembly code with
addresses, a map file, and an instruction trace. The map file
simply provides a listing of the functions in the program aong
with their start and end addresses. The 8051 programs were run
on an instruction set simulator also modified to output an
instruction address trace. The map files for the 8051 assembly
code were generated by the Keil compiler.

We implemented the loop analysis with a C++ program that
represents the loop structure of a given MIPS or 8051 program.
The program reads a benchmark’s assembly file, map file, and
instruction trace and creates a directed acyclic graph (DAG)
representation in which the root of the DAG has children that
correspond to al of the routines in the code, e.g., main, printf,
etc. Each routine node has children nodes that correspond to that
routine's loops, which are automatically numbered beginning
with 1. Likewise, each loop node has children nodes that
correspond to that loop’s sub-loops. Finally, when a node (loop
or routine) has a call to afunction, a special function call nodeis
created that links to the routine being called. This is done to
enable us the keep track of statistics for both the individual links
to function calls as well as statistics for all cals to the function.

After the DAG is created, the loop analysis program will
parse the instruction trace and update each node with the
required information. After we have processed the entire
instruction trace, we calculate certain statistical data and output
the information to afile. We will discuss these statistics later.

Collectively, we refer to this set of tools as LOOAN (LOOp
ANalysis).

We chose the above approach over a binary instrumentation
approach for several reasons. One was that we could easily
update our analysis program to keep additional statistics. A
second is because the above approach yields no change in
program behavior. The disadvantages compared to
instrumentation are the slower execution and the need to
generate large trace files.

The MIPS simulator and the Keil compiler run under
Windows NT. The other tools we created were run on a
Pentium-based Linux workstation but were written in standard
C++ which could easily be ported to other platforms.

2.3 Generating Loop Behavior Data using
LOOAN

When using the LOOAN environment, to generate data for an
8051 program, we first compile it with the Keil compiler setting
the NOOVERLAY flag and generate both the assembly file (in
HEX format) and the map file (which is created by the Keil
compiler during linking). Then, the compiled program is
simulated using the 8051 instruction set simulator to generate a
trace file. This usually takes less than two seconds for small
programs. However, the trace file generated can be very large
(the 8051 summin trace file was 256 MB). Finally, to generate
the loop analysis data, the assembly file, map file, and trace file
are run through our loop analysis tool.

In order to generate data for the MIPS processor, we first use
LCC coupled with the modified MIPS simulator to generate an
assembly file, atrace file, and a map file. These outputs are then
used by the loop analysis tool to generate the loop analysis
results. Executing the jpeg benchmark on the MIPS simulator
took 49 seconds on a 400 MHz Pentium Il processor and
generated a 36 MB tracefile.

3. MIPS Results

Figure 3 and Figure 4 present the loop analysis results for
benchmarks run on the MIPS processor. In the figures, Region is
the name of the loop, which begins with the name of the
subroutine in which the loop is found. Loops are numbered in the
static order they appear in the assembly code of that subroutine.
A nested loop creates another level of numbering. Thus, a loop
named main.5 corresponds to the fifth loop encountered in the
main routine of a program. A loop named main.5.1 corresponds
to main.5’'s first sub-loop. For conciseness, we only list loops
that contribute to at least 5% of the overall dynamic instruction
count, thus you may notice gaps in the numbering of loops in the
table. Sze indicates the static size of each loop computed as the
end address minus the start address plus 1.

We also show subroutines themselves in the table. They
appear as a name without a loop number following them. The
entire programisreflected by *.".

We define a single iteration of a loop as a pass through the
body of the loop followed by a jump to the loop beginning. We
define an execution of aloop as the situation of entering the loop
from outside the loop, during which the loop may iterate many
times before it finally exits. A subroutine, on the other hand,
always iterates exactly once during each execution. In the table,
dynamic instructions per iteration indicates how many

Figure 1: Percentage of time spent in small loops.

Figure 2: Percentage of time spent in highly-iterating loops.

£ 100% £ 100%
> >
o 80% o 8%
a a
T 60% WMIPS T 60% mMIPS
o o
5 40% - 5 40% - 08051
T 20% T 20%
(8] (8]
o 9]
o 0% - o 0% -
8 16 32 64 128 256 5 10 50 100 500
Loops with Maximum Size Loops with Minimum
(instructions) Iterations
instructions are executed for a single iteration of the loop. 4. 8051 Results

Iterations per execution indicates the number of iterations each
time we enter the loop. Number of executions indicates the total
executions of this loop or subroutine after a complete run of the
benchmark. Total dynamic instructions indicates the total
number of instructions executed by this loop during the complete
run of the benchmark. Finally, % represents the percentage of
total dynamic instructions that this loop or subroutine accounts
for. For convenience of readability, we indent the % depending
on the loop’s nesting level. We sum % for each example. So the
first % column represents time spent in subroutines, the second
in first level loops, the third column in second level loops, etc.

The first observation we can make from the data gathered is
that the time spent in loops by these programs, as seen at the
bottom of the % data of each example, is large. Some of the
programs spend over 90% of its time in loops. The average
across al the examples is roughly 66%. The average is computed
from the total percentage from each example. Thus, by not
combining the raw numbers first, all examples are weighted
equally. The number is actually about 70% if we include loops
that contribute to less than 5% of the total dynamic instructions.

Another observation we can make is that in many examples,
a significant percentage of time is spent in rather small loops. To
illustrate this concept, Figure 1 plots the percentage of time spent
in loops of size 8 or less, 16 or less, 32 or less, 64 or less, 128 or
less, and 256 or less, averaged across al the examples. In
obtaining the values for this plot, care was taken not to double-
count nested loops. Nearly all time spent in loops (66% of total
time) is spent in loops of size 256 or less. However, aso note
that most of this time (77% of it) is spent in loops of size 32 or
less, accounting for 51% of the total time. In other words, half of
the time is spent in what many would consider very small loops.

We aso look at the percentage of time spent in highly
iterating loops. Figure 2 shows the percentage of time spent in
loops with at least 5, 10, 50, 100, and 500 iterations. 53% of the
time is spent in loops that iterate at least 5 times. Notice that this
is a significant drop from the 66% for all loops. This means that
many loops iterate only once or just a few times. However, 41%
of timeis spent in loops that iterate at least 10 times.

Figure 5 and Figure 6 shows the loop analysis data for the
benchmarks run on the 8051. The data is presented in the same
manner as the MIPS data.

From the loop analysis data, we can see that many of the
8051 benchmark applications spend over 90% of their execution
time in loops, with an average across all the examples of roughly
77%. Furthermore, as seen in figure Figure 1, on average 74% of
total time is spent in loops of maximum size 256. However, of
this time 64% is spent in loops of size 64 or less, accounting for
47% of the total execution time. This indicates that
approximately half of the programs execution time is spent
within small loops.

We aso look at the percentage of time spent in highly
iterating loops. Figure 2 shows the percentage of time spent in
loops with at least 5, 10, 50, 100, and 500 iterations. For the
8051 benchmarks, almost half of the time (46%) is spent in loops
that iterate at least 5 times. Furthermore, 36% of al loops iterate
at least 10 times, and account for 28% of total execution time.
Another interesting observation is that almost al loops that
iterate at least 50 times actually iterate for more than 100 times,
and roughly one third of these loops iterate greater than 500
times.

5. Further Analysis
While some of the results for the 8051 are quite similar to those
of the MIPS, there are certain aspects that mark some notable
differences. As seen in Figure 1, most of the execution time for
the 8051 programs was spent within loops of no greater than 256
instructions (74%). Compared with the MIPS applications, it is
approximately 12% more of the total time. Additionally, the
MIPS spent 50% of it time in loops of no greater than 32
instructions, while the 8051 only spends 32% in the loops of the
same size. This difference can be accounted for by observing that
in order to achieve the same task more code will be required on
the 8051. This is mainly due to the fact that the 8051 is an 8-bit
processor and lacks the ability to perform native 32-bit integer
operations and native floating point operations. Thus, the size of
the loops will contain more instructions then the equivalent
MIPS code.

Furthermore, as seen in Figure 2, in general both MIPS and
8051 applications follow the same trend with regard to the

number of iterations a loop executes. However, the 8051
applications have a large percentage of loops that execute greater
then 100 times. As mentioned earlier, almost all loops that
executed 50 iterations also executed 100 iterations. To determine
the cause for this behavior we looked at which loops executed at
least 100 iterations and determined that they mainly correspond
to the 8051's startup code.

6. Conclusions

Studying the loop behavior of programs can yield many insights
as to what architectural features and optimization techniques can
be utilized in a system architecture. We presented the LOOAN
environment for performing loop analysis and provided details of
a study on the loop and subroutine behavior of a set of embedded
programs.

7. References

[1] Bala, V., E. Duesterwald, and S. Banerjia. Dynamo: A
Transparent Dynamic Optimization System. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2000.

[2] Bellas, N.; Hajj, I.; Polychronopoulos, C.; Stamoulis, G.
Energy and Performance Improvements in Microprocessor
Design Using a Loop Cache. International Conference on
Computer Design, pp. 378-383, 1999.

[3] Bishop, B., T.P. Kelliher, and M.J. Irwin. A Detailed
Analysis of MediaBench. IEEE Workshop on Signal
Processing Systems, pp.448-455, 1999.

[4 Chung, EY., L. Benini and G. De Micheli. Automatic
Source Code Specialization for Energy Reduction.
International Symposium on Low Power Electronics and
Design, 2001.

[5] Diniz, P. and M. Rinard. Dynamic Feedback: An Effective
Technique for Adaptive Computing. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 1997.

[6] Fisher, J. Customized Instruction Sets for Embedded
Processors. Design Automation Conf. (DAC), 1999.

[7] Fraser, Christopher. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley, January 1995.

[8] Gajski, D., F. Vahid, S. Narayan and J. Gong. Specification
and Design of Embedded Systems. Prentice Hall, 1994.

[9] Govindargian, S.C., G. Ramaswamy, and M. Mehendale.
Area and Power Reduction of Embedded DSP Systems using

Instruction Compression and Re-configurable Encoding.
International Conference on Computer Aided Design, 2001.

[10] Henkel, J. A Low Power Hardware/Software Partitioning
Approach for Core-Based Embedded Systems. Design
Automation Conference, pp. 122-127, 1999.

[11] Ishihara, T., H. Yasuura A Power Reduction Technique
with Object Code Merging for Application Specific
Embedded Processors. Design Automation and Test in
Europe, March 2000.

[12] Kobayashi, M. Dynamic Characteristics of Loops. |IEEE
Transactions on Computers, vol C-33 (no. 2), Feb 1984, pp.
125-132.

[13] Lakshminarayana, G., A. Raghunathan, K.S. Khouri,
N.K.Jha, and S. Dey. Common-Case Computation: A High-
Level Technique for Power and Performance Optimization.
Design Automation Conference (DAC), pp. 1-5, 1999.

[14] Lee, L.H., B. Moyer and J. Arends. Instruction Fetch Energy
Reduction Using Loop Caches For Embedded Applications
with Small Tight Loops. International Symposium on Low-
Power Electronics and Design, San Diego CA, 1999, pp.
267-2609.

[15] Malik, A.; Moyer B.; Cermak D. A Lower power unified
cache architecture providing power and performance
flexibility. International Symposium on Low Power
Electronics and Design. June. 2000.

[16] Pettis, K. and R.C. Hansen. Profile Guided Code
Positioning. ACM SIGPLAN 90 Conference on
Programming Language Design and Implementation (PLDI),
June 1990.

[17] Semiconductor Industry ~ Association. Internationa
Technology Roadmap for Semiconductors: 1999 edition.
Austin, TX: International SEMATECH, 1999.

[18] Tubella, J and A. Gonzalez. Control Speculation in
Multithreaded Processors through Dynamic Loop Detection.
High Performance Computer Architecture, Las Vegas, 1998.

[19] Vahid, F. and A. Gordon-Ross. A Self-Optimizing
Microprocessor Using a Loop Table for Low Power,
International Symposium on Low Power Electronics and
Design, 2001.

[20] Virtua Socket
Document, 1997.

Interface Association, Architecture

Figure 3: Loop statistics for MIPS (adpcm, blit, compress, crc, des, engine, fir, and g3fax).

Total
Static Total Dynamic
Region Start End Size Dynamic Instrs per Iteration Iter per Exec. Execs Instrs %
avg min max stddev avg min max stddev
adpcm
. 2 1911 1910 63891 63891 63891 0 1 1 1 0 1 63891 100%
..decode 1236 1489 254 1237.38 1237 1238 0.49 1 1 1 0 50 29800 47%
..upzero 1710 1766 57 122.5 93 152 295 1 1 1 0 100 12250 19%
..decode.1 1414 1435 22 220 220 220 0 10 10 10 0 50 11000 17%
.filtez 1571 1600 30 82 82 82 0 1 1 1 0 100 8200 13%
..decode.2 1459 1474 16 160 160 160 0 10 10 10 0 50 8000 13%
..upzero.2 1730 1752 23 132 132 132 0 6 6 6 0 50 6600 10%
filtez.1 1583 1595 13 65 65 65 0 5 5 5 0 100 6500 10%
..uppol2 1767 1806 40 36 36 36 0 1 1 1 0 100 3600 6%
..upzero.1l 1716 1727 12 72 72 72 0 6 6 6 0 50 3600 6%
84% 56%
blit
. 2 1044 1043 22845 22845 22845 0 1 1 1 0 1 22845 100%
..blit 867 1016 150 11062.5 11062 11063 0.5 1 1 1 0 2 22125 97%
.blit.1 906 916 11 11003 11003 11003 0 1001 1001 1001 0 1 11003 48%
..blit.2 945 955 11 11003 11003 11003 0 1001 1001 1001 0 1 11003 48%
97% 96%
compress
. 2 1869 1868 138573 138573 138573 0 1 1 1 0 1 138573 100%
..getcode 1620 1748 129 85.3 52 332 84.02 1 1 1 0 465 39665 29%
..compress 1162 1361 200 71810 71810 71810 0 1 1 1 0 1 35863 26%
..compress.2 1244 1327 84 64882 64882 64882 0 800 800 800 0 1 35738 26%
..output 1362 1503 142 63.06 28 157 315 1 1 1 0 465 29323 21%
..decompress 1504 1619 116 65677 65677 65677 0 1 1 1 0 1 26012 19%
..decompress.2 1543 1610 68 63805 63805 63805 0 464 464 464 0 1 24436 18%
..getcode.1 1668 1694 27 236 17 254 31 10 2 11 1 59 13949 10%
94% 53%
cre
. 2 1061 1060 37650 37650 37650 0 1 1 1 0 1 37650 100%
.icrcl 867 898 32 111 95 127 6 1 1 1 0 256 28416 75%
.icrcl.l 876 892 17 96 80 112 6 8 8 8 0 256 24576 65%
.icrc 899 1030 132 18484 1095 35873 17389 1 1 1 0 2 8552 23%
.icrc.l 923 947 25 34820 34820 34820 0 257 257 257 0 1 6404 17%
98% 82%
des
. 2 1530 1529 122214 122214 122214 0 1 1 1 0 1 122214 100%
..des_set_key 867 1072 206 1456 1456 1456 0 1 1 1 0 47 68432 56%
..des_set_key.1 974 1063 90 1340 1340 1340 0 16 16 16 0 47 62980 52%
..des_encrypt 1176 1476 301 913 913 913 0 1 1 1 0 47 42911 35%
..des_encrypt.1 1225 1326 102 816 816 816 0 8 8 8 0 47 38352 31%
91% 83%
engine
. 2 1109 1108 410607 410607 410607 0 1 1 1 0 1 410607 100%
..interpolate 932 1045 114 138 68 199 35 1 1 1 0 1742 240876 59%
..engine 867 931 65 409812 409812 409812 0 1 1 1 0 1 71384 17%
..engine.1l 874 924 51 409798 409798 409798 0 26 26 26 0 1 71370 17%
..engine.1.1 877 910 34 15744 11063 18950 2263 68 68 68 0 26 70928 17%
..interpolate.2 973 980 8 33 5 61 16 4 1 8 2 1742 57358 14%
..interpolate.1 935 942 8 32 5 61 16 4 1 8 2 1742 56102 14%
..edge_to_rpm 1046 1073 28 56 56 56 0 1 1 1 0 1742 48776 12%
.fdiv_func 1074 1087 14 14 14 14 0 1 1 1 0 3484 48776 12%
.engine.1.1.1 886 889 4 17 7 31 8 4 2 8 2 1742 29042
100% 45% 17%
fir
. 2 1057 1056 16211 16211 16211 0 1 1 1 0 1 16211 100%
fir_filter 869 915 47 529 529 529 0 1 1 1 0 10 5290 33%
fir_filter.1 889 903 15 497 497 497 0 34 34 34 0 10 4970 31%
..sqrtd 548 597 50 561 561 561 0 1 1 1 0 10 3520 22%
..sqrtd.1 568 586 19 532 532 532 0 19 19 19 0 10 3230 20%
.fabsd 395 406 12 11 10 11 0 1 1 1 0 284 3082 19%
..sind 407 468 62 161 55 227 53 1 1 1 0 20 2232 14%
87% 51%
g3fax
. 2 1095 1094 1128023 1128023 1128023 0 1 1 1 0 1 1128023 100%
..main 932 1095 164 1127913 1127913 1127913 0 1 1 1 0 1 550587 49%
..main.1 956 1075 120 1126855 1126855 1126855 0 35 35 35 0 1 550546 49%
.main.1.1 975 1068 94 22680 4780 32124 8675 238 12 447 168 34 549660 49%
.main.1.1.1 1028 1033 6 135 10 10372 684 23 2 1729 114 2622 354534
..rowout 912 931 20 10384 10384 10384 0 1 1 1 0 34 353056 31%
..rowout.1 920 925 6 10370 10370 10370 0 1729 1729 1729 0 34 352580 31%
..getbit 867 895 29 15 14 25 4 1 1 1 0 14337 220438 20%
100% 80% 49%

Figure 4: Loop statistics for MIPS (jpeg, summin, ucbgsort, and v42).

Total
Static Total Dynamic
Region Start End Size Dynamic Instrs per Iteration Iter per Exec. Execs Instrs %
avg min max stddev avg min max stddev
ipeg
. 2 1491 1490 4594721 4594721 4594721 0 1 1 1 0 1 4594721 100%
.fast_idct_8 1115 1331 217 217 217 217 0 1 1 1 0 9600 2083200 45%
..huff_ac_dec 963 1114 152 2337 1544 4658 725 1 1 1 0 600 1081601 24%
..huff_ac_dec.1 977 1068 92 1435 642 3756 725 6 2 19 4 600 540401 12%
..main 1379 1491 113 4594611 4594611 4594611 0 1 1 1 0 1 476963 10%
..main.5 1445 1473 29 452922 452922 452922 0 21 21 21 0 1 452922 10%
..main.5.1 1446 1468 23 22640 22640 22640 0 8 8 8 0 20 452800 10%
..main.5.1.1 1448 1464 17 2824 2824 2824 0 31 31 31 0 160 451840
..dquantz_lum 1362 1378 17 710 710 710 0 1 1 1 0 600 426000 9%
..dquantz_lum.1 1365 1375 11 704 704 704 0 64 64 64 0 600 422400 9%
.main5.1.1.1 1449 1459 11 88 88 88 0 8 8 8 0 4800 422400
..getbit 867 900 34 20 19 31 2 1 1 1 0 19228 381749 8%
..huff_ac_dec.3 1085 1100 16 498 498 498 0 32 32 32 0 600 298800 7%
..huff_ac_dec.1.6 1058 1065 8 437 226 506 65 55 29 64 8 600 261960 6%
97% 37% 16%
summin
. 2 1035 1034 1909787 1909787 1909787 0 1 1 1 0 1 1909787 100%
..summation 927 987 61 44118 44118 44118 0 1 1 1 0 24 813120 43%
..argmin 905 926 22 79 79 79 0 1 1 1 0 10000 790000 41%
..argmin.1 910 921 12 69 69 69 0 7 7 7 0 10000 690000 36%
..summation.2 951 978 28 27850 27850 27850 0 50 50 50 0 24 668400 35%
..summation.2.1 952 974 23 552 552 552 0 24 24 24 0 1200 662400 35%
.init_2d 883 904 22 9779 9779 9779 0 1 1 1 0 24 234696 12%
.init_2d.1 888 900 13 9770 9770 9770 0 25 25 25 0 24 234480 12%
.init_2d.1.1 890 897 8 402 402 402 0 51 51 51 0 576 231552 12%
..summation.1 945 949 5 6002 6002 6002 0 1201 1201 1201 0 24 144048 8%
96% 91% 47%
uchgsort
. 2 1211 1210 219978 219978 219978 0 1 1 1 0 1 219978 100%
..gst 1034 1211 178 12 9 90 8 1 1 2 0 11097 134628 61%
.gst.1 1051 1199 149 12 9 51 3 1 1 2 0 11353 130887 60%
.gst.1.3 1119 1169 51 11 7 36 2 1 1 2 0 7037 76297 35%
.gst.1.3.1 1128 1148 21 11 2 11 1 2 1 2 0 7055 75028
..compare 867 870 4 4 4 4 0 1 1 1 0 12098 48392 22%
.gst.1.2 1117 1126 10 9 2 10 1 2 1 2 0 4058 38364 17%
.QSORT 907 1033 127 19 11 75 2 1 1 1 0 1004 19085 9%
..QSORT.3 985 1023 39 19 12 19 0 2 1 2 0 1000 18987 9%
92% 68% 52%
v42
. 2 1598 1597 2442551 2442551 2442551 0 1 1 1 0 1 2442551 100%
..search_dict 1049 1079 31 62 10 503 72 1 1 1 0 11074 687013 28%
..add_dict 1080 1203 124 97 75 349 31 1 1 1 0 6922 674028 28%
..search_dict.1 1061 1075 15 50 1 492 72 5 1 39 6 11071 558280 23%
..decode 1399 1554 156 1040386 1040386 1040386 0 1 1 1 0 1 294901 12%
..decode.1 1409 1544 136 1040366 1040366 1040366 0 3526 3526 3526 0 1 294881 12%
..encode 1223 1398 176 1348598 1348598 1348598 0 1 1 1 0 1 252529 10%
..encode.1 1237 1388 152 1348574 1348574 1348574 0 7557 7557 7557 0 1 252505 10%
78% 45%
Average: 93% 66%
Figure 5: Loop statistics for 8051 (bent and binary).
Total
Static Total Dynamic
Region Start End Size Dynamic Instrs per Iteration Iter per Exec. Execs Instrs %
avg min max stddev avg min max stddev
bent
. 0 5466 5467 131146 131146 131146 0 1 1 1 0 1 131146 100%
.?C_C51STARTUP 5150 5289 140 131145 131145 131145 0 1 1 1 0 1 131145 60%
..?C_C51STARTUP.5 5224 5288 65 78394 78394 78394 0 3 3 3 0 1 78394 60%
.?C_C51STARTUP.5.1 5263 5286 24 39176.5 4609 73744 345675 2176 256 4096 1920 2 78353 60%
..2C?LIB_CODE 5290 5574 285 137.35 16 339 124.13 1 1 1 0 337 46288 35%
..2C?LIB_CODE.1 5293 5306 14 224 112 336 91.45 16 8 24 653 192 43008 33%
95% 93% 60%
binary
. 0 400 401 1016 1016 1016 0 1 1 1 0 1 1016 100%
.?C_C51STARTUP 262 401 140 1015 1015 1015 0 1 1 1 0 1 1015 76%
.?C_C51STARTUP.3 277 363 87 504 504 504 0 2 2 2 0 1 504 50%
..?PR?_BINARY_SEARCH?BINARY 53 197 145 238 238 238 0 1 1 1 0 1 238 23%
..?PR?_BINARY_SEARCH?BINARY.1 71 191 121 225 225 225 0 5 5 5 0 1 225 22%
99% 97%

Figure 6: Loop statistics for 8051 (blit, brev, crc, g3fax, matmul, summin, and ucbgsort).

Total
Static Total Dynamic
Region Start End Size Dynamic Instrs per Iteration Iter per Exec. Execs Instrs %
avg min max stddev avg min max stddev
blit
. 0 5824 5825 1229154 1229154 1229154 0 1 1 1 0 1 1229154 100%
..?C?LIB_CODE 5682 5968 287 99.8 13 619 109.91 1 1 1 0 10023 1000323 81%
..?C?LIB_CODE.2 5721 5734 14 22427 42 616 57.44 16.02 3 44 41 2005 449652 37%
..?C?LIB_CODE.1 5702 5715 14 223.66 70 280 56.36 15.98 5 20 4.03 2005 448448 36%
..?PR?_BLIT?BLIT 3 1338 1336 577538 575651 579425 1887 1 1 1 0 2 1155076 13%
..?PR?_BLIT?BLIT .4 693 845 153 578025 578025 578025 0 1001 1001 1001 0 1 578025 6%
..?PR?_BLIT?BLIT.2 330 471 142 574024 574024 574024 0 1001 1001 1001 0 1 574024 6%
..?C_C51STARTUP 5542 5681 140 1229153 1229153 1229153 0 1 1 1 0 1 1229153 6%
..?C_C51STARTUP.5 5616 5680 65 73757 73757 73757 0 2 2 2 0 1 73757 6%
..?C_C51STARTUP.5.1 5655 5678 24 73744 73744 73744 0 4096 4096 4096 0 1 73744 6%
100% 92% 6%
brev
. 0 2405 2406 82516 82516 82516 0 1 1 1 0 1 82516 100%
..?C?LIB_CODE 2229 2496 268 77.92 16 227 74.53 1 1 1 0 769 59920 73%
..?C?LIB_CODE.1 2232 2245 14 86.8 14 224 7637 6.2 1 16 5.46 320 27776 34%
..?C?LIB_CODE.2 2251 2264 14 86.8 14 224 7637 6.2 1 16 5.46 320 27776 34%
..?PR?MAIN?BREV 3 1763 1761 76460 76460 76460 0 1 1 1 0 1 76460 20%
..?PR?MAIN?BREV.1 8 1754 1747 76455 76455 76455 0 1 1 1 0 1 76455 20%
..?PR?MAIN?BREV.1.1 26 1735 1710 76442 76442 76442 0 17 17 17 0 1 76442 20%
..?C_C51STARTUP 2089 2228 140 82515 82515 82515 0 1 1 1 0 1 82515 7%
..?C_C51STARTUP.5 2163 2227 65 5775 5775 5775 0 2 2 2 0 1 5775 7%
.?C_C51STARTUP.5.1 2202 2225 24 5762 5762 5762 0 320 320 320 0 1 5762 7%
100% 94% 27%
cre
. 0 809 810 72799 72799 72799 0 1 1 1 0 1 72799 100%
..?PR?_ICRC1?CRC 3 80 78 189 125 253 22.63 1 1 1 0 256 48384 66%
..?PR?_ICRC1?CRC.1 17 74 58 176 112 240 22.63 8 8 8 0 256 45056 62%
..?PR?_ICRC?CRC 81 474 394 35877 2393 69361 33484 1 1 1 0 2 71754 31%
..?PR?_ICRC?CRC.1 116 230 115 67073 67073 67073 0 256 256 256 0 1 67073 26%
..?PR?_ICRC1?CRC.1.1 30 35 6 7 7 7 0 2 2 2 0 1024 7168 10%
..?PR?_ICRC?CRC.2 297 419 123 2302 2246 2358 56 42 41 43 1 2 4604 6%
98% 93% 10%
g3fax
. 0 8269 8270 4918854 4918854 4918854 0 1 1 1 0 1 4918854 100%
..?PR?_ROWOUT?G3FAX 144 255 112 79521 79521 79521 0 1 1 1 0 34 2703714 49%
..?PR?_ROWOUT?G3FAX.1 171 241 71 79504 79504 79504 0 1729 1729 1729 0 34 2703136 49%
..?PR?MAIN?G3FAX 256 866 611 585 3 116975 6189 1 1 1 0 8063 4716620 33%
..?PR?MAIN?G3FAX.1 261 831 571 585 55 116975 6189 1 1 1 0 8062 4716604 33%
..?PR?MAIN?G3FAX.1.1 303 807 505 585 55 116975 6189 1 1 2 0 8062 4715836 33%
..?PR?MAIN?G3FAX.1.1.1 368 777 410 248 22 37282 1417 2 1 2 0 8095 2007554
..?PR?MAIN?G3FAX.1.1.1.2 615 656 42 469 31 36310 2393 23 2 1729 114 2622 1230659
..?C?LIB_CODE 8221 8307 87 5 5 13 1 1 1 1 0 68606 375282 8%
..?PR?GETBIT?G3FAX 3 100 98 26 23 50 9 1 1 1 0 14337 376365 7%
97% 82% 33%
matmul
. 0 835 836 29855 29855 29855 0 1 1 1 0 1 29855 100%
..?C?LIB_CODE 671 842 172 15 8 19 4 1 1 1 0 925 13500 45%
..?PR?_MATMUL?MATMUL 3 315 313 26922 26922 26922 0 1 1 1 0 1 26922 45%
..?PR?_MATMUL?MATMUL.2 101 312 212 25394 25394 25394 0 5 5 5 0 1 25394 42%
..?PR?_MATMUL?MATMUL.2.1 107 293 187 5069 5069 5069 0 5 5 5 0 5 25345 42%
..?PR?_MATMUL?MATMUL.2.1.1 113 274 162 1004 1004 1004 0 5 5 5 0 25 25100
..?C_C51STARTUP 531 670 140 29854 29854 29854 0 1 1 1 0 1 29854 10%
..?C_C51STARTUP.5 605 669 65 2636 2636 2636 0 3 3 3 0 1 2636 9%
.?C_C51STARTUP.5.1 644 667 24 1297 1297 1297 0 72 72 72 0 2 2504 9%
100% 51% 50%
summin
. 0 1592 1593 27455473 27455473 27455473 0 1 1 1 0 1 27455473 100%
..?C?LIB_CODE 1160 1647 488 30 7 86 24 1 1 1 0 546400 16193200 59%
..?PR?SUMMATION?SUMMIN 444 824 381 37 18 5919 78 1 1 1 0 144048 5367960 19%
..?PR?SUMMATION?SUMMIN.2 572 815 244 39 14 62 17 1 1 2 0 115224 4533576 17%
..?PR?SUMMATION?SUMMIN.2.1 577 796 220 39 7 62 17 1 1 2 0 116400 4520400 16%
..?PR?_ARGMIN?SUMMIN 274 443 170 11 4 30 9 1 1 1 0 350000 3880000 14%
..?PR?_ARGMIN?SUMMIN.1 303 432 130 11 1 30 9 1 1 2 0 340000 3710000 14%
..?PR?_INIT_2D?SUMMIN 124 273 150 30 2 38 8 1 1 1 0 58800 1777560 6%
..?PR?_INIT_2D?SUMMIN.1 143 270 128 30 1 38 8 1 1 2 0 58800 1777296 6%
..?PR?_INIT_2D?SUMMIN.1.1 172 260 89 30 1 38 8 1 1 2 1 58752 1764864 6%
99% 36% 23%
uchgsort
. 0 3062 3063 13430476 13430476 13430476 0 1 1 1 0 1 13430476 100%
..?PR?_QSORT?UCBQSORT 133 765 633 3321588 7 13286268 5753111 1 1 1 0 4 13286350 56%
..?PR?_QSORT?UCBQSORT.5 643 763 121 5805 97 25519 5708 2 2 2 0 974 5654147 31%
..?PR?_QSORT?UCBQSORT.5.1 695 750 56 5765 57 25479 5708 152 2 671 150 974 5615184 31%
..?PR?_QSORT?UCBQSORT.4 504 669 166 7827 27 34291 7659 1 1 9 0 975 7631790 25%
..?PR?_QSORT?UCBQSORT.4.1 547 587 41 7570 51 34221 7659 148 1 671 150 999 7562280 24%
..?C?LIB_CODE 2864 3065 202 5 5 108 0 1 1 1 0 596886 2984751 22%
..?PR?_COMPARE?UCBQSORT 3 35 33 29 29 29 0 1 1 1 0 149612 4338748 21%

9% 56% 55%

Average: 99% 77%

