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Optimization and Tradeoffs 
Introduction 

  We now know how to build digital circuits 
  How can we build better circuits? 

  Let’s consider two important design criteria 
  Delay – the time from inputs changing to new correct stable output 
  Size – the number of transistors 
  For quick estimation, assume  

  Every gate has delay of “1 gate-delay” 
  Every gate input requires 2 transistors 
  Ignore inverters 

16 transistors 
2 gate-delays 

F1 

w x y 

w x y 
F1 = wxy + wxy’ 

(a) 

4 transistors 
1 gate-delay 

F2 

F2 = wx 
(b) 

w 
x 

= wx(y+y’)  =  wx 

Transforming F1 to F2 represents 
an optimization: Better in all 

criteria of interest 
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Optimization and Tradeoffs 
Introduction 

  Tradeoff 
  Improves some, but worsens other, criteria of interest 

Transforming G1 to G2 
represents a tradeoff: Some 
criteria better, others worse. 

14 transistors 
2 gate-delays 

12 transistors 
3 gate-delays 

G1 G2 
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Optimization and Tradeoffs 
Introduction 

  We obviously prefer optimizations, but often must accept 
tradeoffs 
  You can’t build a car that is the most comfortable, and has the best 

fuel efficiency, and is the fastest – you have to give up something 
to gain other things.  

del a y 

si 

del a y 
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Optimizations 
Tradeoffs 

All criteria of interest 
are improved (or at 

least kept the same) 

Some criteria of interest 
are improved, while 
others are worsened si

ze
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Optimization and Tradeoffs  
Combinational Logic Optimization and Tradeoffs 

  Two-level size optimization using 
algebraic methods 
  Goal: circuit with only two levels (ORed 

AND gates), with minimum transistors 
  Though transistors getting cheaper 

(Moore’s Law), they still cost something 

  Define problem algebraically 
  Sum-of-products yields two levels 

  F = abc + abc’ is sum-of-products; G = 
w(xy + z) is not.  

  Transform sum-of-products equation to 
have fewest literals and terms 

  Each literal and term translates to a gate 
input, each of which translates to about 
2 transistors (see Ch. 2) 

  Ignore inverters for simplicity 

6.2 

F = xyz + xyz’ + x’y’z’ + x’y’z 

F = xy(z + z’) + x’y’(z + z’) 

F = xy*1 + x’y’*1 

F = xy + x’y’ 
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4 literals + 2 
terms = 6 
gate inputs 

6 gate inputs = 
12 transistors 

Note: Assuming 4-transistor 2-input AND/OR circuits; 
in reality, only NAND/NOR are so efficient. 

Example 
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Optimization and Tradeoffs  
Algebraic Two-Level Size Minimization 

  Previous example showed common algebraic 
minimization method 
  (Multiply out to sum-of-products, then) 
  Apply following as much possible 

  ab + ab’ = a(b + b’) = a*1 = a 
  “Combining terms to eliminate a variable” 

  (Formally called the “Uniting theorem”) 

  Duplicating a term sometimes helps 
  Note that doesn’t change function 

  c + d = c + d + d = c + d + d + d + d ... 

  Sometimes after combining terms, can 
combine resulting terms 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

F = x’y’z’ + x’y’z + x’yz 
F = x’y’z’ + x’y’z + x’y’z + x’yz 
F = x’y’(z+z’) + x’z(y’+y) 
F = x’y’ + x’z 

G = xy’z’ + xy’z + xyz + xyz’ 
G = xy’(z’+z) + xy(z+z’) 
G = xy’ + xy     (now do again) 
G = x(y’+y) 
G = x 

a 

a 

a 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Easy to miss “seeing” possible opportunities to 
combine terms 

  Karnaugh Maps (K-maps) 
  Graphical method to help us find opportunities to 

combine terms 
  Minterms differing in one variable are adjacent in the 

map 
  Can clearly see opportunities to combine terms – 

look for adjacent 1s 
  For F, clearly two opportunities 
  Top left circle is shorthand for x’y’z’+x’y’z = x’y’(z’+z) = 

x’y’(1) = x’y’ 
  Draw circle, write term that has all the literals except 

the one that changes in the circle 
  Circle xy, x=1 & y=1 in both cells of the circle, but z 

changes (z=1 in one cell, 0 in the other) 

  Minimized function: OR the final terms 

F = x’y’z + xyz + xyz’ + x’y’z’ 

0 0 
0 0 

00 01 11 10 
0 
1 

F yz 
x 

1 

x ’ y ’ 

1 1 0 0 
00 01 11 10 

0 0 

0 

1 1 1 

F yz 
x 

x y 

x’y’z’ 
00 01 11 10 

0 
1 

x’y’z x’yz x’yz’ 
xy’z’ xy’z xyz xyz’ 

F yz 
x 

1 

Notice not in binary order 

Treat left & right as adjacent too 

1 1 

F = x’y’ + xy 

Easier than all that algebra: 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

K-map 

a 

a 

a 



3 

9 

Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four adjacent 1s means two 
variables can be eliminated 
  Makes intuitive sense – those two 

variables appear in all 
combinations, so one must be 
true  

  Draw one big circle – shorthand 
for the algebraic transformations 
above 

G = xy’z’ + xy’z + xyz + xyz’ 
G = x(y’z’+ y’z + yz + yz’) (must be true) 
G = x(y’(z’+z) + y(z+z’)) 
G = x(y’+y) 
G = x 

Draw the biggest 
circle possible, or 
you’ll have more terms 
than really needed 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four adjacent cells can be in shape of a 
square 

  OK to cover a 1 twice 
  Just like duplicating a term 

  Remember, c + d = c + d + d 

  No need to cover 1s more than once 
  Yields extra terms – not minimized 

H = x’y’z + x’yz + xy’z + xyz 
     (xy appears in all combinations) 

0 1 0 0 
00 01 11 10 

1 1 
0 
1 1 1 

I yz 
x 

x 

y ’ z 

The two circles are shorthand for: 
I = x’y’z + xy’z’ + xy’z + xyz + xyz’ 
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’ 
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’) 
I = (y’z) + (x) 

a 

a 

a 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Circles can cross left/right sides 
  Remember, edges are adjacent 

  Minterms differ in one variable only 

  Circles must have 1, 2, 4, or 8 
cells – 3, 5, or 7 not allowed 
  3/5/7 doesn’t correspond to 

algebraic transformations that 
combine terms to eliminate a 
variable 

  Circling all the cells is OK 
  Function just equals 1  
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four-variable K-map follows same 
principle 
  Adjacent cells differ in one variable 
  Left/right adjacent 
  Top/bottom also adjacent 

  5 and 6 variable maps exist 
  But hard to use  

  Two-variable maps exist 
  But not very useful – easy to do 

algebraically by hand 

0 1 
0 
1 

F z 
y 

G=z 

F=w’xy’+yz 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

General K-map method 
1.  Convert the function’s equation into 

sum-of-products form 

2.  Place 1s in the appropriate K-map 
cells for each term 

3.  Cover all 1s by drawing the fewest 
largest circles, with every 1 included 
at least once; write the 
corresponding term for each circle 

4.  OR all the resulting terms to create 
the minimized function. 

Example: Minimize: 
     G = a + a’b’c’ + b*(c’ + bc’) 

1. Convert to sum-of-products 
     G = a + a’b’c’ + bc’ + bc’ 

2. Place 1s in appropriate cells 

0 0 
00 01 11 10 

0 
1 

G bc 
a 

1 
bc’ 

1 a’b’c’ 
1 1 1 1 

a 

a 

3. Cover 1s 

1 0 0 1 
00 01 11 10 

1 1 
0 
1 1 1 

G bc 
a 

a 

c ’ 

4. OR terms: G = a + c’ 
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  Minimize: 
  H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + 

a’bd + a’bcd’ 

1. Convert to sum-of-products: 
  H = a’b’cd’ + a’b’c’d’ + ab’c’d’ + ab’cd’ + 

a’bd + a’bcd’ 

2. Place 1s in K-map cells 
3. Cover 1s 
4. OR resulting terms 

Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

1 1 
00 01 11 10 

00 
01 1 1 1 

1 
11 
10 

0 0 
0 
0 0 0 0 

0 0 1 

H c d 
ab 

a 

a ’ bd 
a ’ bc 
b ’ d ’ 

Funny-looking circle, but 
remember that left/right 
adjacent, and top/bottom 
adjacent 

a’b’c’d’ 
ab’c’d’ a’bd 

a’b’cd’ 

ab’cd’ 
a’bcd’ 

H = b’d’ + a’bc + a’bd 
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Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  What if particular input combinations 
can never occur? 
  e.g., Minimize F = xy’z’, given that 

x’y’z’ (xyz=000) can never be true, and 
that xy’z (xyz=101) can never be true	



  So it doesn’t matter what F outputs 
when x’y’z’ or xy’z is true, because 
those cases will never occur 

  Thus, make F be 1 or 0 for those 
cases in a way that best minimizes the 
equation 

  On K-map 
  Draw Xs for don’t care combinations 

  Include X in circle ONLY if minimizes 
equation 

  Don’t include other Xs 

Good use of don’t cares 

Unnecessary use of don’t 
cares; results in extra term 
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Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  Minimize: 
  F = a’bc’ + abc’ + a’b’c 
  Given don’t cares: a’bc, abc 

  Note: Use don’t cares with caution 
  Must be sure that we really don’t care 

what the function outputs for that 
input combination 

  If we do care, even the slightest, 
then it’s probably safer to set the 
output to 0 

00 01 11 10 
0 

0 0 

0 

1 

F bc 
a 

’ c a b 

a 

1 1 

1 

X 

X 

F = a’c + b 
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Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  Example: 
  Switch with 5 positions 
  3-bit value gives position in 

binary 

  Want circuit that  
  Outputs 1 when switch is in 

position 2, 3, or 4 
  Outputs 0 when switch is in 

position 1 or 5 
  Note that the 3-bit input can 

never output binary 0, 6, or 7 
  Treat as don’t care input 

combinations 

2,3,4, 
detector 

x 
y 
z 

1 2 3 4 5 

G 

Without 
don’t 
cares:  
F = x’y 
+ xy’z’ 

With don’t 
cares:  

F = y + z’ 

a 

a 
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Optimization and Tradeoffs  
Automating Two-Level Logic Size Minimization 

  Minimizing by hand  
  Is hard for functions with 5 or more 

variables 
  May not yield minimum cover 

depending on order we choose 
  Is error prone  

  Minimization thus typically done by 
automated tools 
  Exact algorithm: finds optimal 

solution 
  Heuristic: finds good solution, but 

not necessarily optimal 

1 1 1 0 
00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ y ’ yz 

( a ) 

( b ) 
1 1 1 0 
00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ z 

x y 
4 terms 

x y 
Only 3 terms 

a 

a 
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Optimization and Tradeoffs  
Basic Concepts Underlying Automated Two-Level Logic Minimization 

  Definitions 
  On-set: All minterms that define 

when F=1 
  Off-set: All minterms that define 

when F=0  
  Implicant: Any product term 

(minterm or other) that when 1 
causes F=1 

  On K-map, any legal (but not 
necessarily largest) circle 

  Cover: Implicant xy covers 
minterms xyz and xyz’ 

  Expanding a term: removing a 
variable  (like larger K-map circle) 

  xyz  xy is an expansion of xyz 

0 1 0 0 
00 01 11 10 

0 0 

0 

1 1 1 

F yz 
x 

x y 
x yz ’ 
x yz 

x ’ y ’ z 

4 implicants of F 
Note: We use K-maps here just for 
intuitive illustration of concepts; 
automated tools do not use K-maps. 

•  Prime implicant: Maximally 
expanded implicant – any 
expansion would cover 1s not in 
on-set 
•  x’y’z, and xy, above 
•  But not xyz or xyz’ – they can 

be expanded 
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Optimization and Tradeoffs  
Basic Concepts Underlying Automated Two-Level Logic Minimization 

  Definitions (cont) 
  Essential prime implicant: The 

only prime implicant that covers a 
particular minterm in a function’s 
on-set 

  Importance: We must include all 
essential PIs in a function’s cover 

  In contrast, some, but not all, non-
essential PIs will be included  

1 1 0 

0 

0 

00 01 11 10 

1 

0 

1 1 1 

G yz 
x 

not essential 

not essential 
y ’ z 

x ’ y ’ 
xz x y essential 

1 

essential 

1 
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Optimization and Tradeoffs  
Automated Two-Level Logic Minimization Method 

  Steps 1 and 2: Exact 
  Step 3: Hard. Checking all possibilities: exact, but computationally 

expensive. Checking some but not all: heuristic.  
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Optimization and Tradeoffs  
Example of Automated Two-Level Minimization 

  1. Determine all prime 
implicants 

  2. Add essential PIs to 
cover 
  Italicized 1s are thus 

already covered 
  Only one uncovered 1 

remains 

  3. Cover remaining 
minterms with non-
essential PIs 
  Pick among the two 

possible PIs 

1 1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

y ’ z ’ 

x ’ z 

xz ’ 

( c ) 

1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

1 1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( b ) 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( a ) 
1 

1 
1 
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Optimization and Tradeoffs  
Problem with Methods that Enumerate all Minterms or Compute all Prime Implicants 

  Too many minterms for functions with many variables 
  Function with 32 variables: 

  232 = 4 billion possible minterms.  
  Too much compute time/memory 

  Too many computations to generate all prime implicants 
  Comparing every minterm with every other minterm, for 32 variables, 

is (4 billion)2 = 1 quadrillion computations 
  Functions with many variables could requires days, months, years, or 

more of computation – unreasonable 
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Optimization and Tradeoffs  
Solution to Computation Problem 

  Solution 
  Don’t generate all minterms or prime implicants 
  Instead, just take input equation, and try to “iteratively” improve it 
  Ex: F = abcdefgh + abcdefgh’+ jklmnop 

  Note: 15 variables, may have thousands of minterms 
  But can minimize just by combining first two terms: 

  F = abcdefg(h+h’) + jklmnop  =  abcdefg + jklmnop 
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Optimization and Tradeoffs  
Two-Level Minimization using Iterative Method 

  Method: Randomly apply “expand” 
operations, see if helps 
  Expand: remove a variable from a 

term 
  Like expanding circle size on K-map 

  e.g., Expanding x’z to z legal, but 
expanding x’z to z’ not legal, in shown 
function 

  After expand, remove other terms 
covered by newly expanded term 

  Keep trying (iterate) until doesn’t help 

Ex: 
   F = abcdefgh + abcdefgh’+ jklmnop 
   F = abcdefg + abcdefgh’ + jklmnop 
   F = abcdefg + jklmnop 

0 1 1 0 
00 01 11 10 

0 1 
0 
1 1 0 

I yz 
x 

0 1 1 0 
00 01 11 10 

0 1 
0 
1 1 0 

I yz 
x 

xy’z 

x’z 

xyz 

z (a) 

(b) 

xyz xy’z 

x’z 

x ’ 
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Optimization and Tradeoffs  
Multi-Level Logic Optimization – Performance/Size Tradeoffs 

  We don’t always need the speed of two level logic 
  Multiple levels may yield fewer gates 
  Example 

  F1 = ab + acd + ace        F2 = ab + ac(d + e) = a(b + c(d + e)) 
  General technique: Factor out literals – xy + xz = x(y+z) 

a 
c 
e 

c a 

a 
b 

d 
4 F1 

F2 

F1 = ab + acd + ace 
(a) F2 = a(b+c(d+e)) 

(b) (c) 

22 transistors 
2 gate delays 

16 transistors 
4 gate-delays 
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F2 
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Optimization and Tradeoffs  
Multi-Level Logic Optimization – Performance/Size Tradeoffs 

  Use multiple levels to reduce number of transistors for 
  F1 = abcd + abcef 

  Solution 
  F2 = abcd + abcef = abc(d + ef) 
  Tradeoff: Has fewer gate inputs, thus fewer transistors a 

a 
b 
c 
e 
f 

b 
c 
a 
d 

F1 
F2 

F1 = abcd + abcef F2 = abc(d + ef) 
(a) (b) (c) 

22 transistors 
2 gate delays 

18 transistors 
3 gate delays 

a 
b 
c 
d 
e 
f 

F1 
F2 20 
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1 2 3 4 
delay (gate-delays) 
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Optimization and Tradeoffs  
Multi-Level Example: Non-Critical Path 

  Critical path: longest delay path to output 
  Optimization: reduce size of logic on non-critical paths by using multiple 

levels 


