Combinational Logic Design Process

Step 1: Capture the function
- Create a truth table or equations, *whichever is most natural for the given problem*, to describe the desired behavior of the combinational logic.

Step 2: Convert to equations
- This step is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.

Step 3: Implement as a gate-based circuit
- For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)

Digital Logic – Combinational Logic Design Process

Example: Three 1s Detector

Problem: Detect three consecutive 1s in an 8-bit input: abcdedfgh

- 00011101 → 1
- 10110101 → 0
- 11110000 → 1

Step 1: Capture the function
- Truth table or equation?
 - Truth table too big: 2^8=256 rows

Step 2: Convert to equation
- Equation: create terms for each possible case of three consecutive 1s
- \(y = abc + bcd + cde + def + efg + fgh \)

Step 3: Implement as a gate-based circuit
Problem: Output in binary on two outputs yz the number of 1s on three inputs

Step 1: Capture the function
- Truth table or equation?
 - Truth table is straightforward

Step 2: Convert to equation
- y = a'bc + ab'c + abc' + abc
- z = a'b'c + a'bc' + ab'c' + abc

Step 3: Implement as a gate-based circuit

Digital Logic – Combinational Logic
Completeness of NAND
- Any Boolean function can be implemented using just NAND gates. Why?
 - Need AND, OR, and NOT
 - NOT: 1-input NAND (or 2-input NAND with inputs tied together)
 - AND: NAND followed by NOT
 - OR: NAND preceded by NOTs
- Likewise for NOR

Digital Logic – Combinational Logic
Number of Possible Boolean Functions
- How many possible functions of 2 variables?
 - 2^2 = 4 rows in truth table, 2 choices for each
 - 2^2 = 2^4 = 16 possible functions
- 2^2 = 2^4 possible functions
Decoder
- Popular combinational logic building block, in addition to logic gates
- Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
 - So has four outputs, one for each possible input binary number
- Internal design
 - AND gate for each output to detect input combination
- Decoder with enable e
 - Outputs all 0 if e=0
 - Regular behavior if e=1
- n-input decoder: 2^n outputs

Multiplexor (Mux)
- Another popular combinational building block
- Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux → 3 select inputs
 - N inputs → $\log_2(N)$ selects
- Like a railyard switch

N-bit Mux
- What output of a 3x8 decoder will be asserted if $i_2i_1i_0 = 110$?
 1. $d_0 = 1$
 2. $d_3 = 1$
 3. $d_6 = 1$
 4. $d_7 = 1$
Digital Logic – Combinational Logic

Mux Example

- City mayor (with no budget for good voting system) can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3
- Use 4x1 mux

D&D

Digital Design Copyright © 2006
Frank Vahid

Digital Logic – Combinational Logic

N-bit Mux

- Example: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

Digital Logic – Combinational Logic

N-bit Mux Example

- If A=5, B=2, what is the output of the 4-bit 2x1 mux if s0 = 1?
 1. 0
 2. 5
 3. 2
 4. 7

Digital Logic – Combinational Logic

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) – each is 8-bits wide
 - Choose which to display using two inputs x and y
 - Use 8-bit 4x1 mux

Digital Logic – Combinational Logic

N-bit Mux Example

- From the car’s central computer
- We’ll design this later
- To the above display

Digital Logic – Combinational Logic

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) – each is 8-bits wide
 - Choose which to display using two inputs x and y
 - Use 8-bit 4x1 mux
Real gates have some delay
- Outputs don’t change immediately after inputs change

Encoders
- Encoder: Combinational logic building block with opposite functionality of decoder
 - Outputs binary encoding for input signal that is 1
 - 4x2 encoder would have four inputs and 2 outputs
 - What if two inputs are 1?
 - Can use a priority encoder
 - Gives priority to the highest input that is 1, and outputs binary encoding for that input
 - Example: If $d_3=1$ and $d_1=1$, will output $e_0=1$ and $e_1=1$ because d_3 has priority

In Class Exercise
- Design a 4x2 encoder using AND, OR, and NOT gates.