Which office hours work best for you?

1. M 11:00AM – 12:00PM
2. M 1:30PM – 2:30PM
3. W 9:00AM – 10:00AM
4. R 9:00AM – 10:00AM
5. R 10:00AM – 11:00AM
6. F 9:00AM – 10:00AM

Digital Logic – Introduction

Why Study Digital Design?

- Look “under the hood” of computers
 - Solid understanding → confidence, insight, even better programmer when aware of hardware resource issues
- Electronic devices becoming digital
 - Enabled by shrinking and more capable chips
 - Enables:
 - Better devices: Better sound recorders, cameras, cars, cell phones, medical devices, ...
 - New devices: Video games, PDAs, ...
- Known as “embedded systems”
 - Thousands of new devices every year
 - Designers needed: Potential career direction

Digital Design

Chapter 1: Introduction

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Digital Logic – Introduction

What Does “Digital” Mean?

- **Analog signal**
 - Infinite possible values
 - Ex: voltage on a wire created by microphone

- **Digital signal**
 - Finite possible values
 - Ex: button pressed on a keypad

Analog Signal

- Sound waves from the speaker
- Voltage on the microphone wire

Digital Signal

- Digital signal on the wire
- Variable value as a function of time

Possible values:

- An analog signal
 - Infinite possible values
 - Ex: voltage on a wire created by microphone

Digital Signal

- Digital signal
 - Finite possible values
 - Ex: button pressed on a keypad

Possible values:

- 0, 1, 2, 3, or 4

Binary - Digital Signals with Only Two Values

- **Binary digital signal** -- only two possible values
 - Typically represented as 0 and 1
 - One binary digit is a bit

- We’ll only consider binary digital signals

- Binary is popular because
 - Transistors, the basic digital electric component, operate using two voltages
 - Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Example of Digitization

- Analog signal (e.g., audio) may lose quality
 - Voltage levels not saved/copied/transmitted perfectly

- Digitized version enables near-perfect save/copy/transmission
 - “Sample” voltage at particular rate, save sample using bit encoding
 - Voltage levels still not kept perfectly
 - But we can distinguish 0s from 1s

- Let bit encoding be:
 - 1 V: “01”
 - 2 V: “10”
 - 3 V: “11”

Digitized signal not perfect re-creation

- Higher sampling rate and more bits per encoding brings closer.

How Do We Encode Data as Binary for Our Digital System?

- Some inputs inherently binary
 - Button: not pressed (0), pressed (1)

- Some inputs inherently digital
 - Just need encoding in binary
 - E.g., multi-button input: encode red=001, blue=010, ...

- Some inputs analog
 - Need analog-to-digital conversion
 - As done in earlier slide -- sample and encode with bits

Digital System

- Sensors and other inputs
 - Digital data
 - Digital System

- Digital data
 - Digital System
 - Digital data
 - Sensors and other inputs
Digital Logic – Introduction
How to Encode Numbers: Binary Numbers

- Each position represents a quantity; symbol in position means how many of that quantity
 - Base ten (decimal)
 - Ten symbols: 0, 1, 2, ..., 8, and 9
 - More than 9 -- next position
 - So each position power of 10
 - Nothing special about base 10 -- used because we have 10 fingers
 - Base two (binary)
 - Two symbols: 0 and 1
 - More than 1 -- next position
 - So each position power of 2

- Working with binary numbers
 - In base ten, helps to know powers of 10
 - one, ten, hundred, thousand, ten thousand, ...
 - In base two, helps to know powers of 2
 - one, two, four, eight, sixteen, thirty two, sixty four, one hundred twenty eight
 - (Note: unlike base ten, we don’t have common names, like “thousand,” for each position in base ten -- so we use the base ten name)

Digital Logic – Introduction
Converting from Decimal to Binary

- What is the value of the binary number 100110 in decimal?
 1. 100,110
 2. 21
 3. 22
 4. 38

- Subtraction Method (Easy for Humans)
 - Goal: Get the binary weights to add up to the decimal quantity
 - Work from left to right
 - (Right to left – may fill in 1s that shouldn’t have been there – try it).
 - Subtraction method
 - Subtract a selected binary weight from the (remaining) quantity
 - Then, we have a new remaining quantity, and we start again (from the present binary position)
 - Stop when remaining quantity is 0

- Converting from Decimal to Binary Numbers

- Remaining quantity: 12

- Subtract a selected binary weight from the (remaining) quantity

- Subtraction method

- Goal: Get the binary weights to add up to the decimal quantity

- Work from left to right

- (Right to left – may fill in 1s that shouldn’t have been there – try it).

- Subtraction method

- Subtract a selected binary weight from the (remaining) quantity

- Then, we have a new remaining quantity, and we start again (from the present binary position)

- Stop when remaining quantity is 0
Digital Logic – Introduction
Converting from Decimal to Binary

- What is the value of the decimal number 25 in binary?
 1. 11000
 2. 11001
 3. 10111
 4. 011001

- Division Method (Good for Computers)
 - Divide decimal number by 2 and insert remainder into new binary number.
 - Continue dividing quotient by 2 until the quotient is 0.

- Example: Convert decimal number 12 to binary

 \[
 \begin{array}{c|c}
 \text{Decimal Number} & \text{Binary Number} \\
 \hline
 12 & \text{1100} \\
 \end{array}
 \]

- Example: Convert decimal number 12 to binary (continued)

 \[
 \begin{array}{c|c}
 \text{Decimal Number} & \text{Binary Number} \\
 \hline
 6 & \text{110} \\
 \end{array}
 \]

- Example: Convert decimal number 12 to binary (continued)

 \[
 \begin{array}{c|c}
 \text{Decimal Number} & \text{Binary Number} \\
 \hline
 3 & \text{011} \\
 \end{array}
 \]

- Example: Convert decimal number 12 to binary (continued)

 \[
 \begin{array}{c|c}
 \text{Decimal Number} & \text{Binary Number} \\
 \hline
 1 & \text{011} \\
 \end{array}
 \]

- Since quotient is 0, we can conclude that 12 is 1100 in binary

- What is the value of the decimal number 54 in binary?
 1. 110110
 2. 100010
 3. 1000010
 4. None of the above
Digital Logic – Introduction

Hexadecimal Numbers

- Nice because each position represents four base two positions
- Used as compact means to write binary numbers
- Known as hexadecimal, or just hex

<table>
<thead>
<tr>
<th>hex</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

Convert 1110000 to hex:

- 0
- 1
- 6

Digital Logic – Introduction

Converting from Hexadecimal to Binary

- What is the value of the hexadecimal number AB in binary?
 1. 10111010
 2. 01011011
 3. 10101011
 4. 10101010

<table>
<thead>
<tr>
<th>hex</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

Digital Logic – Introduction

Converting from Hexadecimal to Decimal

- What is the value of the hexadecimal number 2E in decimal?
 1. 101110
 2. 00101110
 3. 30
 4. 46

<table>
<thead>
<tr>
<th>hex</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>