Common Pitfalls Regarding Transition Properties

- Only one condition should be true
 - For all transitions leaving a state
 - Else, which one?
- One condition must be true
 - For all transitions leaving a state
 - Else, where go?

Verifying Correct Transition Properties

- Can verify using Boolean algebra
 - Only one condition true: AND of each condition pair (for transitions leaving a state) should equal 0
 - One condition true: OR of all conditions of transitions leaving a state) should equal 1

Example:

\[a \cdot a' = a + a'b \]
\[= a \cdot (1 + b) + a'b \]
\[= a + ab + a'b \]
\[= a + (a + a')b \]
\[= a + b \]

Fails! Might not be 1 (i.e., \(a=0 \), \(b=0 \))

Evidence that Pitfall is Common

- Recall code detector FSM
 - We “fixed” a problem with the transition conditions
 - Do the transitions obey the two required transition properties?
 - Consider transitions of state
 - Start, and the "only one true" property

Simplifying Notations

- FSMs
 - Assume unassigned output implicitly assigned 0
- Sequential circuits
 - Assume unconnected clock inputs connected to same external clock
More on Flip-Flops and Controllers

- Other flip-flop types
 - SR flip-flop: like SR latch, but edge triggered
 - JK flip-flop: like SR (S=J, R=K)
 - But when JK=11, toggles
 - T flip-flop: JK with inputs tied together
 - Toggles on every rising clock edge
 - Previously utilized to minimize logic outside flip-flop
 - Today, minimizing logic to such extent is not as important
 - D flip-flops are thus by far the most common

Non-Ideal Flip-Flop Behavior

- Can’t change flip-flop input too close to clock edge
 - Setup time: time that D must be stable before edge
 - Else, stable value not present at internal latch
 - Hold time: time that D must be held stable after edge
 - Else, new value doesn’t have time to loop around and stabilize in internal latch

Metastability

- Violating setup/hold time can lead to bad situation known as metastable state
 - Metastable state: Any flip-flop state other than stable 1 or 0
 - Eventually settles to one or other, but we don’t know which
 - For internal circuits, we can make sure observe setup time
 - But what if input comes from external (asynchronous) source, e.g., button press?
 - Partial solution
 - Insert synchronizer flip-flop for asynchronous input
 - Special flip-flop with very small setup/hold time
 - Doesn’t completely prevent metastability

Initial State of a Controller

- All our FSMs had initial state
 - But our sequential circuit designs did not
 - Can accomplish using flip-flops with reset/set inputs
 - Shown circuit initializes flip-flops to 01
 - Designer must ensure reset input is 1 during power up of circuit
 - By electronic circuit design
Glitching

- Glitch: Temporary values on outputs that appear soon after input changes, before stable new output values.
- Designer must determine whether glitching outputs may pose a problem.
 - If so, may consider adding flip-flops to outputs.
 - Delays output by one clock cycle, but may be OK.

Active Low Inputs

- We’ve assumed input action occurs when input is 1.
 - Some inputs are instead active when input is 0 -- “active low”.
 - Shown with inversion bubble.
 - So to reset the shown flip-flop, set R=0. Else, keep R=1.

Design Challenge

- Design Challenge
 - Determine what is wrong with the following FSM, and design a possible corrected version using your best guess as to the original intent.

Due Next Lecture (as announced in class)
1 point extra credit (Homework)