State Encoding

- **Encoding**: Assigning a unique bit representation to each state
- Different encodings may optimize size, or tradeoff size and performance
- Consider 3-Cycle Laser Timer...
 - Example 3.7's encoding: 15 gate inputs
 - Try alternative encoding
 - \(x = s_1 + s_0 \)
 - \(n_1 = s_0 \)
 - \(n_0 = s_1' + s_1's_0 \)
 - Only 8 gate inputs

One-Hot Encoding Example: Three-Cycles-High Laser Timer

- Four states – Use four-bit one-hot encoding
 - State table leads to equations:
 - \(s = s_3 \cdot s_2 \cdot s_1 \cdot s_0 \)
 - \(n_3 = s_2 \)
 - \(n_2 = s_1 \)
 - \(n_1 = s_0' \cdot s_3 \)
 - \(n_0 = s_0' \cdot s_3 + s_3 \)
 - Smaller:
 - \(3(n_0+n_1+n_2+n_3) = 8 \) gate inputs
 - Earlier binary encoding (Ch 3): 15 gate inputs
 - Faster
 - Critical path: \(n_0 = s_0' \cdot s_3 \)
 - Previously: \(n_0 = s_1's_0' + s_1's_0's_0' \)
 - 2-input AND slightly faster than 3-input AND

Output Encoding

- **Output encoding**: Encoding method where the state encoding is same as the output values
 - Possible if enough outputs, all states with unique output values
Mealy vs. Moore Example: Beeping Wristwatch

- **Button b**
 - Sequences must select lines 0, 01, 10, and 11.
 - Each value displays a different internal register.
 - Each unique button press should cause a 1-cycle beep, with p=1 being beep.
 - Must wait for button to be released (b) and pushed again (c) before sequencing.

- Note that Moore requires unique state to pulse p, while Mealy pulses p on every input.
- Tradeoff: Moore's pulse on p may not test one full cycle.

Mealy vs. Moore Tradeoff

- Mealy outputs change mid-cycle if input changes.
 - Note earlier soda dispenser example.
 - Mealy had fewer states, but output d not 1 for full cycle.
 - Represents a type of tradeoff.

Mealy vs. Moore FSMs

- Moore: 3 states; Mealy: 2 states.

Mealy vs. Moore Example: Beeping Wristwatch

- Inputs: enough
- Outputs: clear

Mealy vs. Moore Tradeoff

- Moore vs. Mealy Tradeoff:
 - Mealy outputs change mid-cycle if input changes.
 - Note earlier soda dispenser example.
 - Mealy had fewer states, but output d not 1 for full cycle.
 - Represents a type of tradeoff.

Mealy vs. Moore

- Q: Which is Moore, and which is Mealy?
 - A: Mealy on left, Moore on right.
 - Moore outputs on arcs, meaning outputs are function of state AND inputs.
 - Mealy outputs in states, meaning outputs are function of state only.

Mealy vs. Moore Example: Beeping Wristwatch

- Button b
 - Sequences must select lines 0, 01, 10, and 11.
 - Each value displays a different internal register.
 - Each unique button press should cause a 1-cycle beep, with p=1 being beep.
 - Must wait for button to be released (b) and pushed again (c) before sequencing.

- Note that Moore requires unique state to pulse p, while Mealy pulses p on every input.
- Tradeoff: Moore's pulse on p may not test one full cycle.
Implementing a Mealy FSM

- Straightforward
 - Convert to state table
 - Derive equations for each output
 - Key difference from Moore: External outputs (d, clear) may have different values in same state, depending on input values

Inputs: enough (bit)
Outputs: d, clear (bit)

<table>
<thead>
<tr>
<th>Input</th>
<th>enough</th>
<th>d</th>
<th>clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Wait

Init

enough'/d=0
enough/d=1
/d=0, clear=1

Mealy and Moore can be Combined

- Final note on Mealy/Moore
 - May be combined in same FSM

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stop

Stp

Ch

b'/p=0
b/p=1
s1s0=00
s1s0=01
b/p=1
s1s0=10
b/p=1
s1s0=11

Combined Moore/Mealy FSM for beeping wristwatch example

Design Challenge

- Design Challenge
 - Convert the following Moore FSM to the nearest Mealy FSM equivalent.

Due Next Lecture (as announced in class)
1 point extra credit (Homework)