1.) (5 points) Trace the behavior of an 8-bit parallel load register with input \(I \), output \(Q \), and load control input \(ld \) by completing the following timing diagram.

\[\begin{array}{cccccccc}
I & 5 & 1 & 12 & 65 & 92 & 0 & 0 & 21 \\
ld & \hspace{1cm} \\
clk & \hspace{1cm} \\
Q & \hspace{1cm} & \hspace{1cm}
\end{array} \]

2.) (5 points) Design an 8-bit register with 2 control inputs \(s_1 \) and \(s_0 \), 8 data inputs \(I_{7..0} \), and 8 data outputs \(Q_{7..0} \). \(s_1s_0=00 \) means maintain the present value, \(s_1s_0=01 \) means load, and \(s_1s_0=10 \) means clear. \(s_1s_0=11 \) means to swap the high nibble with the low nibble (a nibble is 4 bits), so 11110000 would become 00001111, and 11000101 would become 01011100.

3.) (5 points) Assuming all gates have a delay of 1, compute the time required to add two numbers using an 8-bit carry-ripple adder.

4.) (5 points) Design a digital thermometer that can compensate for errors in the temperature sensing device’s output \(T \), which is an 8-bit input to our system. The compensation amount can be positive only, and comes to our system via inputs \(a \), \(b \) and \(c \), from a 3-pin DIP switch. Our system should output the compensated temperature on an 8-bit output \(U \).

5.) (5 points) Design a circuit that outputs the average of four 8-bit inputs

6.) (5 points) Trace through the execution of the barrel shifter shown below, when \(I=01100101 \), \(x = 1 \), \(y = 0 \), \(z = 1 \). Be sure to show how the input \(I \) is shifted at each stage.

\[\begin{array}{cccc}
x & \text{sh} & \ll 4 & \text{in} & 0 \\
y & \text{sh} & \ll 2 & \text{in} & 0 \\
z & \text{sh} & \ll 1 & \text{in} & 0 \\
Q & \hspace{1cm} & \hspace{1cm} & \hspace{1cm} & \hspace{1cm}
\end{array} \]

7.) (5 points) Using the barrel shifter shown above, what settings of the inputs \(x \), \(y \), and \(z \) are required to shift the input \(I \) six positions.
8.) (5 points) Design a 5-bit magnitude comparator.

9.) (10 points) Design a circuit that outputs 1 if the circuit’s 8-bit input equals 99: (a) using an equality comparator, (b) using gates only. *Hint:* In this case, you need only 1 AND gate and some inverters.

10.) (10 points) Design a 4-bit up/down-counter that has four control inputs: \(\text{cnt_up} \) enables counting up, \(\text{cnt_down} \) enables counting down, \(\text{clear} \) synchronously resets the counter to all 0s, and \(\text{set} \) synchronously sets the counter to all 1s. If both count control inputs \(\text{cnt_up} \) and \(\text{cnt_down} \) are 1, the counter will retain its current count value.

11.) (10 points) Design an 8-bit multiplier.

12.) (5 points) Convert the following two’s complement binary numbers to decimal numbers:
 a. 00001111
 b. 10000000
 c. 10000001
 d. 11111111
 e. 10010101

13.) (5 points) Convert the following decimal numbers to 8-bit two’s complement binary form:
 a. 6
 b. 26
 c. -8
 d. -30
 e. -60
 f. -90
 g. -120

14.) (10 points) Design an ALU with two 8-bit inputs A and B, and control signals x, y, and z. The ALU should support the operations described in the following table. Use an 8-bit adder an arithmetic/logic extender.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

15.) (10 points) Design an 8x32 two port (1 read, 1 write) register file.