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Abstract

In this paper, we present a novel competitive EM (CEM) algorithm for "nite mixture models to overcome the two main
drawbacks of the EM algorithm: often getting trapped at local maxima and sometimes converging to the boundary of the
parameter space. The proposed algorithm is capable of automatically choosing the clustering number and selecting the “split” or
“merge” operations e7ciently based on the new competitive mechanism we propose. It is insensitive to the initial con"guration
of the mixture component number and model parameters.

Experiments on synthetic data show that our algorithm has very promising performance for the parameter estimation of
mixture models. The algorithm is also applied to the structure analysis of complicated Chinese characters. The results show
that the proposed algorithm performs much better than previous methods with slightly heavier computation burden.
? 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

In the probabilistic model construction for univariate and
multivariate data, "nite mixture models have been widely
used due to their great :exibility and power [1]. The ca-
pability of representing arbitrary complex probability den-
sity functions (pdfs) enables it to have many applications
not only in unsupervised learning "elds [2], but also in
(Bayesian) supervised learning scenarios or in parameter
estimation of class-conditional pdfs [3].

Expectation-maximization (EM) algorithm is a widely
used class of iterative algorithms for maximum likelihood
(ML) or maximum a posteriori (MAP) estimation in prob-
lems with incomplete data, e.g. "tting mixture models to
observed data [4,5]. However, because of its greedy nature,
the EM algorithm still has some defects: it is sensitive to the

∗ Corresponding author. Tel.: +86-10-6278-2447; fax:
+86-10-6278-6911.

E-mail addresses: zhangbb99g@mails.tsinghua.edu.cn
(B. Zhang), zcs@mail.tsinghua.edu.cn (C. Zhang),
yixing97@mails.tsinghua.edu.cn (X. Yi).

initial con"guration and usually gets stuck at local maxima;
for mixtures, it cannot choose the component number auto-
matically and sometimes converges to the boundary of the
parameter space. Most of the time, when trapped at a
local maximum, the components’ distribution in data space
is inappropriate—overpopulated regions and underpopu-
lated regions coexist. The components cannot move to the
expected positions due to the di7culty of passing through
some low likelihood regions [6].

Some defects of EM are illustrated in Fig. 1. The
samples depicted in Fig. 1a come from 8-component
two-dimensional Gaussian mixture models (GMM) and
the initial con"guration is randomly set. We apply EM to
the estimation of the parameters of GMM with this data
set and run it several times. Some typical local maxima
are recorded and depicted in Figs. 1b–d. In some cases as
in Fig. 1b, crowded regions (kernels 1 and 2) and sparse
regions (kernel 4) coexist when EM encounters the local
maximum; Fig. 1c shows that EM sometimes converges to
the boundary of the parameter space (kernel 2); Fig. 1d
depicts a situation when the above two cases appear at the
same time.
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(b) Overpopulated and 
underpopulated regions coexist

(c) 2nd kernel converges to the
boundary of the parameter space. 

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

1

2

3

4
5

6

7

8

(d) Problems of (b) and (c) coexist 

(a) The TrueMixtures
(2000 Samples)

Fig. 1. Drawbacks of the basic EM algorithm.

1.1. Related work

Many variants of the EM algorithm have been proposed
to try to solve the problems of EM. Ueda and Nakano
[7] presented one method of deterministic annealing EM
algorithm (DAEM) [7]. By introducing the temperature pa-
rameters to modify the posteriori probability in the E-step,
they provided the EM with the ability to escape the local
maxima in some cases. However, the DAEM and other sim-
ilar extensions of EM are useless with respect to the prob-
lem of inappropriate distribution of the components in data
space when locally trapped. Ueda et al. proposed the split
and merge EM (SMEM) algorithm to address this issue
[6]. Without changing the component number, this method
chooses the candidates to split and merge by some given
criteria and attempts splitting and merging operations when
locally trapped. It simultaneously escapes the local max-
ima in many situations and performs more e7ciently than
DAEM. However, this deterministic algorithm cannot au-
tomatically determine the component number. Shoham pre-
sented one robust clustering algorithm by creating a de-
terministic agglomeration EM (DAGEM) with multivariate
t-distributions [8]. It was derived from the DAEM algorithm
and achieved encouraging performance. Because the initial
component number is much larger than the true number, the
computation load is one to two orders of magnitude heavier
than EM [8].

The methods of model selection can be divided into two
families. One is based on a random sampling mechanism,
e.g. Markov Chain Monte Carlo (MCMC) methods [9].
Roberts has used the reversible jump Markov Chain Monte

Carlo (RJMCMC) method to partition the data and automat-
ically choose the clustering number [10]. The global optimal
solution can be achieved but the computation burden is too
heavy. The other one is based on some deterministic crite-
ria [1,11]. Figueiredo et al. have designed one such criterion
similar to the minimum message length (MML) criterion
[11]. Combining this criterion and some annihilation oper-
ation, this extension of EM that we will refer to as AEM
overcomes most of the problems depicted in Fig. 1. It can
also determine the clustering component number in the opti-
mization procedure. However, when there is great disparity
between the components’ prior probabilities, it sometimes
fails to "nd the global optimal solution [11].

1.2. The competitive EM algorithm

To overcome the drawbacks of EM and to develop a more
robust clustering method, we propose a novel competitive
EM algorithm (CEM), which includes these operations: the
basic iterative steps of EM, split, merge and annihilation
operations. The mixture models’ state is evaluated by the
criterion Figueiredo proposed [11]. Our algorithm has the
following impressive advantages which are revealed by our
experiments:

• CEM is insensitive to the initial con"guration of the com-
ponent number and model parameters.

• CEM will avoid converging to the boundary of parameter
space by eliminating components with sparse samples.

• The competitive mechanism has been introduced to
select the “split” and “merge” operations more e7ciently
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according to the new criterion we design. When the
current model needs more components, CEM will choose
the “split” operation with large probability and vice versa.

• CEM is a very robust clustering method with a slightly
heavier computation cost, especially in very complicated
cases.

The remainder of the paper is organized as follows: Sec-
tion 2 brie:y reviews "nite mixture models and the EM Al-
gorithm. Section 3 presents the CEM algorithm in detail.
Section 4 reports the experiments on synthesis data and gives
a performance analysis of our algorithm. Section 5 investi-
gates an application of the CEM algorithm on the structure
analysis of Chinese characters. Section 6 concludes the pa-
per and discusses some related open issues.

2. Learning �nite mixture models

2.1. Finite mixture models

It is said a d-dimensional random variable x =
[x1; x2; : : : ; xd]T follows a k-component "nite mixture distri-
bution, if its probability density function can be written as

p(x|�) =
k∑

m=1


mp(x|�m); (1)

where 
m is the prior probability of the mth component and
satis"es


m¿ 0 and
k∑

m=1


m = 1; (2)

where �m is the parameter of the mth density model and
�={(
m; �m); m=1; 2; : : : ; k} is the parameter set of mixture
models. DiQerent descriptions of p(x|�m) can be assigned to
diQerent kinds of mixture models. We focus on "nite mixture
models and demonstrate the mechanism of our algorithm by
means of Gaussian mixture models.

2.2. The EM algorithm

EM has been widely used in the parameter estimation of
"nite mixture models. We review it brie:y and introduce EM
notations for the convenience of later description of CEM.
Suppose that one set Z consists of observed data X and un-
observed data Y, Z=(X;Y) and X are called complete data
and incomplete data, respectively. The E-step calculates the
complete data expected log-likelihood function de"ned by
the so-called Q function,

Q(�; �̂(t)) ≡ E[logp(X;Y|�)|X; �̂(t)]: (3)

The M-step updates the parameters by

�̂(t + 1) = argmax
�

Q(�; �̂(t)): (4)

The EM algorithm performs the E- and M-steps iteratively,
and the convergence is theoretically guaranteed [4].

3. The proposed competitive EM algorithm

3.1. Model selection criterion

To estimate the appropriate number of components, many
deterministic criteria are proposed [1,11]. We use the same
criterion presented by Figueiredo [11]:

�̂ = argmax
�

L(�;X);

L(�;X) = logp(X|�)− N
2

k∑
m=1

log
(n
m

12

)

− k
2
log

n
12

− k(N + 1)
2

; (5)

where N is the number of parameters specifying each
component and n is the total number of training samples.
Figueiredo testi"ed that this criterion is better than some
other criteria such as Rissanen’s minimum description
length (MDL) criterion, Schwarz’s Bayesian inference cri-
terion (BIC), Laplace-empirical criterion (LEC) and the
integrated classi9cation likelihood (ICL) criterion, etc. by
experiment [11].

The criterion is derived from minimum message length
criterion, de"ned as

�̂MML = argmax
�

{logp(X|�) + logp(�)

− 1
2
log|I(�)| − c

2

(
1 + log

1
12

)}
; (6)

where I(�) ≡ −E[D2
0logp(X|�)] is the expected Fisher in-

formation matrix and c is the dimension of � (the symbol
D2

0 denotes the matrix of second derivatives, or Hessian).
Generally, the Fisher information matrix for mixture mod-
els cannot be calculated analytically so Figueiredo replaced
it with the complete data-based Fisher information matrix
Ic(�) ≡ −E[D2

0logp(Z|�)] and deduced the criterion above
[11].

3.2. Split and merge mechanism

When EM encounters local maxima, the components usu-
ally overpopulate in some regions, i.e. the model over-"ts
the data, but underpopulate in other regions. The di7culty
of passing through some low likelihood regions prevents
them from getting to the expected positions. To overcome
this problem, we do the split or merge operation when EM
has converged to a local maximum, thus the components’
distribution can self-adapt, and split will take place where
the components are too few and merge will take place where
the components are too many. This design enables our algo-
rithm to escape the local extrema by modifying the mixtures
model structure, not by moving components through those
low likelihood regions, which is of great di7culty.

Many non-Gaussian measurement functions have been
used as the split criteria, e.g. Kurtosis, Negentropy, etc.
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[12]. Ueda presented one merge criterion, de"ning that if the
posterior probabilities of two components are very similar,
the merge happens [6]. Some people intuitively de"ne that
merge mostly happens where the two components are very
close to each other. The drawbacks of de"ning the split and
merge criteria separately are apparent: the algorithm cannot
choose the split or merge operation according to the current
state, which will cause the repeated occurrence of futile split
and merge operation. This phenomenon can be observed in
our experiments and greatly aQects the convergence speed.

3.2.1. Split and merge probabilities
We use local Kullback divergence to measure the distance

between the local data density fm(x) and model density
pm(x) of the mth component as in SMEM [6].

J (m; �) =
∫

fm(x; �) log
fm(x; �)
pm(x; �m)

dx; (7)

where the local data density fm(x) is the modi"ed empir-
ical distribution weighted by the posterior probability and
de"ned as

fm(x; �) =

∑n
i=1 �(x − xi)P(m|xi; �)∑n

i=1 P(m|xi; �)
: (8)

We arrange that the split probability of the mth component
is in direct proportion to J (m; �) and the merge probability
of the mth and lth components is in inverse proportion to
J (m′; �′), where m′ and �′ denote, respectively, the new in-
dex of merged component and new parameters of mixture
models if the mth and lth components merge. Because the
new parameters can be easily calculated if the merge oper-
ation occurs, the additional computation load for J (m′; �′)
is not heavy.

The split and merge probabilities are formulated by

Psplit(m; �) =
J (m; �)
Z(�)

; (9)

Pmerge(m; l; �) =
�=J (m′; �′)

Z(�)
; (10)

where Z(�) is a normalized factor to make
k∑

m=1

Psplit(m; �) +
k∑

m=1

k∑
l=m+1

Pmerge(m; l; �) = 1 (11)

and � is a constant determined by experiments.

3.2.2. Split and merge operations
The operation type and the candidates of split or merge

components are sampled by Eqs. (9) and (10).
Split Operation: k → k + 1. Suppose that the mth

component is chosen to split, CEM will generate two new
components from the current samples in the mth component.
We initialize the two new components parameters by ran-
dom initialization method and optimize them by the basic
EM algorithm. The random initialization method employed
in this paper means that the mean value and the prior proba-
bility of each kernel are randomly set; the covariance of each

component is set to be �2
0I , where �0 = 0:15dScale. dScale

denotes the scale of the data points, which is formulated by,

dScale = max
{16m6d};{16i; j6n}

|x(i)m − x( j)m |: (12)

Merge operation: k → k − 1. Suppose that the mth and
lth components are selected to merge, the parameters of
the merged component can be calculated directly from the
original mth and lth components parameters. As with most
kinds of "nite mixture models, this can be done easily. In
GMM, the formula of calculating those parameters is as
follows:


(M)
m = 
m + 
l;

"(M)
m = (
m"m + 
l"l)=


(M)
m ;

U(M)
m = {
m[Um + ("m − "(M)

m )("m − "(M)
m )T]

+ 
l[#l + ("l − "(M)
m )("l − "(M)

m )T]}=
(M)
m : (13)

3.2.3. Acceptance probability
After the operation type and operation candidates are cho-

sen by sampling according to the split and merge probabili-
ties, the acceptance probability is proposed to prevent poor
operation. It is calculated by

Pa =min
(
exp

[
L(�(t + 1);X)− L(�(t);X)

$

]
; 1
)

; (14)

where $ is a constant determined by experiments. In this
way, if the operation increases the value of model evalu-
ation function, it will be accepted de"nitely. However, if
the operation decreases the value of model evaluation func-
tion, it will not be rejected directly, but accepted via cer-
tain probability. This mechanism enables the model to have
certain jumping capability and simultaneously prevents the
model from diverging to overly worse state. The larger $,
the stronger the jumping capability of the model. In our ex-
periments, $ = 10.

3.3. Component annihilation mechanism

To prevent the algorithm from converging to the bounds
of parameter space, the mechanism of component annihila-
tion is introduced. The component m will be eliminated, if

n
m ¡N: (15)

As Figueiredo mentioned in his paper [11], many or even
all components may die simultaneously if k is too large in
the initial step. We use the component-wise EM for mix-
tures (CEM2) algorithm to prevent this in the annihilation
operation [13]. This algorithm updates parameters of com-
ponents sequentially, not simultaneously. When one compo-
nent dies, the CEM2 can increase the survival probability of
other components. The computation load of CEM2 is only
slightly heavier than EM [11].
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Fig. 2. Flow chart of CEM.

3.4. The competitive EM algorithm

In this section, we summarize the CEM algorithm and
illustrate the :ow as shown in Fig. 2.

(1) Initialization: Set k and the prior probabilities arbi-
trarily subject to Eq. (2) and set other parameters by the
random initialization method. Set t = 0 (t is a counter).

(2) Operation sampling: If �(t) is not a local maximum,
go to (3); otherwise sample the operation type and split or
merge candidates according to Eqs. (9) and (10). If the split
operation is chosen, go to (4); otherwise go to (5).
(3) EM iteration: Implement the EM iteration once, de-

note the new parameters as �′(t) and go to (7).
(4) Split operation: Generate two new components from

the samples of the split candidate by the random initial-
ization method and optimize them by EM. Denote the new
parameters as �′′(t) and go to (6).

(5) Merge operation: Let the two candidates merge to
one new component. Denote the new parameters as �′′(t)
and go to (6).

(6) Acceptance sampling: Calculate the acceptance prob-
ability Pu = min(exp{[L(�′′(t);X) − L(�′(t);X)]=$}; 1).
Sample u ∼ U [0; 1], if u6Pa, accept �′(t) = �′′(t), other-
wise �′(t) = �(t).

(7) Component annihilation: Any component satisfying
condition (15) will die. Use CEM2 to update parameters and
perform step (7) until no component satis"es death criterion.
Let �(t + 1) denote the "nal parameters of mixture models.
Update t = t + 1.

(8) End condition: If t ¡T (T is a pre-de"ned
large number), go to (2), otherwise output � ∗ where
� ∗ = argmax

�(t)
L(�(t);X), t = 0; 1; : : : ; T .

4. Experiments

In Section 4.1, three examples with three diQerent syn-
thetic data sets are presented to show how the proposed
algorithm performs. In order to comprehend the necessity



136 B. Zhang et al. / Pattern Recognition 37 (2004) 131–144

of introducing the competitive mechanism, we illustrate
the drawbacks of the separated split and merge criterion in
Section 4.2. Performance analysis of the CEM algo-
rithm in comparison with EM and AEM is reported in
Section 4.3.

4.1. Synthetic data

4.1.1. The 9rst example
In the "rst example, we use 2000 samples from an

8-component two-dimensional GMM shown in Fig. 1a. The
parameters are:


i = 1=8; i = 1; 2; : : : ; 8;

"1 = [1:5; 0]T; "2 = [1; 1]T; "3 = [0; 1:5]T;

"4 = [− 1; 1]T; "5 = [− 1:5; 0]T; "6 = [− 1;−1]T;

"7 = [0;−1:5]T; "8 = [1;−1]T:

#1 = #5 = diag[0:01; 0:1];

#3 = #7 = diag[0:1; 0:01];

#2 = #4 = #6 = #8 = diag[0:1; 0:1]: (16)

In this experiment, we set three typical local maxima, as
depicted in Fig. 1, as three initial states of GMM and run
CEM from these states to demonstrate how it works. Fig. 3
shows the optimization procedure. Fig. 3(a–k) show what
happens when CEM runs from the states depicted in Fig.
1b, c and d, respectively. When CEM runs from Fig. 1b, the
kernels in the overpopulated region (kernels 1 and 2) merge
in step 1 and kernel 3 in the sparse region is selected to
split in step 4. In this way, the CEM quickly "nds the global
optimal solution shown in Fig. 3c. When CEM runs from
Fig. 1c, kernel 2 which has converged to the boundary of
the parameter space is chosen to die in step 1 because there
are too few samples in this component. The inappropriate
kernel 7 splits in step 5 and thus CEM achieves the global
optimal solution quickly. When CEM runs from Fig. 1d
where two kinds of local maxima coexist, it selects one
annihilation operation, one merge operation and two split
operations e7ciently and quickly converges to the global
optimal solution successfully.

The signi"cance of the split and merge operations can be
easily comprehended by these "gures. The separated local
maxima in the parameter space of the EM algorithm are
linked by the split or merge operation, and the best solution
can be achieved with a very high probability.

4.1.2. The second example
In the second example, we use 1000 samples from

4-component GMM shown in Fig. 4 (also see [7,11]). In
this GMM, the two components (kernels 1 and 2) share a

common mean, but have diQerent covariance matrices. The
prior probability of kernel 4 is a little lower than the other
kernels. The parameters of GMM are given as follows:


1 = 
2 = 
3 = 0:3; 
4 = 0:1;

"1 = "2 = [− 4;−4]T;

"3 = [2; 2]T; "4 = [− 1;−6]T;

#1 =

[
1 0:5

0:5 1

]
; #2 =

[
6 −2

−2 6

]
;

#3 =

[
2 −1

−1 2

]
; #4 =

[
0:125 0

0 0:125

]
: (17)

Fig. 4 illustrates what happens during the optimization
procedure when we run CEM from a challenging initial con-
"guration. Here, we use the random initialization method
mentioned in Section 3.2.2. In Fig. 4, many details have
been plotted to show how CEM "nds the global optimal
solution by alternately implementing the following: using
EM iteration to "nd the local maxima, selecting the split or
merge operation by competitive mechanism and eliminating
meaningless components with the annihilation operation.

4.1.3. The third example
In the third example, we "t GMM to one complicated

spiral manifold data set with 2000 samples shown in
Fig. 5a. The data is generated by[

x1

x2

]
=

[
(2 + 10t)sin(7)t)

(2 + 10t)cos(7)t)

]
+ 0:5 ∗

[
n1

n2

]
; (18)

where t is uniformly distributed in [0; 1], and n1, n2 are i.i.d.
N (0; 1).
Fig. 5 shows the details of one experiment with this data

set. Fig. 5b plots one random initial state (k=30; T =1000),
Figs. 5c–f show some intermediate states of the searching
procedure. It can be observed that CEM uses the CEM2

method to eliminate 3 kernels when t=1; most components
have moved to appropriate positions when t = 10; CEM
slightly simpli"es the model after 100 steps; the acceptable
solution has been achieved when t = 200; the "nal parame-
ter estimation of GMM by CEM is given in Fig. 5g (29ker-
nels). Compared with Fig. 5h, which plots the components’
principal axes of the optimal GMM, our algorithm has suc-
cessfully found one appropriate solution.

The proposed algorithm can usually converge to the state
shown in Fig. 5g and another state (28 kernels) with a
low probability, regardless of the kernel number in the ini-
tial state (e.g. k = 1, 30, and 100) and which kind of ini-
tial methods are used (e.g. random initialization or k-mean
initialization). It achieves very good solutions and never
gets trapped in poor local maxima. In CEM, the necessary
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Fig. 3. Example 1: CEM runs from local maxima:(a–c) from Fig. 1b, (d–f) from Fig. 1c, (g–k) from Fig. 1d.

number of iterations to "nd the satisfactory solutions is cor-
related with the initial component number, e.g. when k=100,
the requisite iterations are twice as many as in the case

when k =30. If we use k-mean as the initialization method,
we can avoid some ineQective split and merge operations
and thus decrease the iteration number required (We should
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(d) 1 st kernel splits 
t=36 

(e) The second maximum
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(g) 4th and 5th kernels merge 
t=60 

(h) The third maximum
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(i) 1 st kernel splits 
t=89 
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(j) The fourth maximum 
t=101 

(k)  1st and 4th kernels merge 
t=110 

(l) The final estimation
t=115 

Fig. 4. Example 2: a convergence process of CEM.

emphasize that k-mean initialization cannot always decrease
the necessary number of iterations, some statistics address-
ing this issue will be given in Section 4.3). In Fig. 5i-l, the
approximate necessary number of iterations in each run is
given below the graph (e.g. Fig. 5i, T = 800).

4.2. Drawbacks of the separated split and merge criteria

We will focus on drawbacks of the separated split and
merge criteria in this section. In several sequential itera-
tions, the same components will be chosen many times to
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(i) Initialization with 30 kernels 
using k-means algorithm 
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(l) Initialization with 100 kernels
using k-means algorithm 
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Fig. 5. Example 3.

do merge and split operations, i.e. they merge and split,
remerge and re-split. For example, in Fig. 6, if the current
state is Fig. 6a, only one split operation is needed to reach
the global optimal solution shown in Fig. 6d. But if the
split and merge criteria are separated and the operation is

sampled with equal probability, the algorithm may unfortu-
nately select merge instead of split at this point and lead the
model to the state shown in Fig. 6b. From this state to Fig.
6d, at least two split operations are required (e.g. "rst split
to Fig. 6c then to Fig. 6d). For complicated situations, this
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Fig. 6. EM variants with separated split and merge criteria may run in long path: a–b–c–d, CEM will go directly from a to d with high
probability.

kind of ineQective operation will happen in diQerent regions
simultaneously causing a long convergence time. As for
CEM, the competitive mechanism is introduced and it can
choose the operation more e7ciently according to the split
or merge criterion. If one component needs to be split in
some local region, the CEM algorithm will split it with high
probability and vice versa. In this way, it avoids the long
path (a–b–c–d) and chooses the short-cut (a–d) with high
probability.

4.3. Performance analysis

In this section, we will investigate the capability of our
algorithm with the data sets presented in examples 1 and
2. We performed a great number of experiments with two
diQerent initialization methods (the random initialization
method and k-mean initialization method) and diQer-
ent initial component numbers. Compared with EM and
AEM, these experiments show attractive performance for
CEM.

Tables 1 and 2 report some statistics on the performance
of EM, AEM and CEMwith the test data sets. Each row rep-
resents the statistics for 1000 runs in one turn. Two indices
concerning the performance of the algorithms are given, in-
cluding Ps—the success ratio to "nd the global optimal so-
lution in one turn and Tavg—the average count of iterations
to "nd the global optimal solution in one turn (when the
algorithm fails in one run, all the iterations in this run are
counted, e.g. for CEM, T iterations will be counted). The

second index reveals the average requisite computation load.
The initial k is set to be: the optimal number, the lowest
number (1) and one large number (20). When initial k = 1,
random method and k-mean have no diQerence. Some ob-
servations on these tables are given below:

• By means of the random initialization method, AEM and
CEM will search out the global optimal solution with a
much higher probability than the basic EM. In the simple
case when all the components have similar prior probabil-
ity, CEM and AEM can always "nd the global optimal so-
lution and EM can also obtain the global optimal solution
with high probability (in Table 1, Ps = 46:7% for EM).
When there is a great disparity between the prior probabil-
ities of the components, CEM performs much better than
AEM and EM rarely "nds the global optimal solution, as
in Table 2, Ps = 19:0%; 71:0%; 90:2% for EM, AEM and
CEM (T =200; k =4) respectively. Concerning the aver-
age computation burden, EM is the lowest, and CEM is
a little more when the k is initially set to be the optimal
number or the lowest number (1). When the initial k is
too high, both AEM and CEM will result in a high work
load, as in Table 1, Tavg =24:7; 250:1; 33:6; 50:9; 209:1 for
EM, AEM, CEM(T =200; k =4), CEM(T =200; k =1)
and CEM(T = 400; k = 20), respectively.

• By means of the k-mean initialization method, EMs ef-
"ciency is greatly enhanced compared with the random
initialization method. The computation burden to "nd the
global optimal solution generally decreases (in Table 2,
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Table 1
Statistics of experiments for Example 1

Initialization
Algorithm 

T k Method 
% Successful (Ps) Average Count of Iterations (Tavg) 

Random
EM − 8

k-means 
Random

AEM  − 20
k-means 
Random

8 
k-means 200 

1 −
Random

8 
k-means 

1 −
Random

400 

20 
k-means 
Random

CEM 

800 20 
k-means 100.0

100.0
95.8
98.7
100.0
100.0
100.0
99.6
100.0
99.8
100.0
100.0

73.3
46.7

249.5
211.4

250.5
209.6

52.4
11.7

32.5
50.9

12.8
33.6

313.5
250.1

13.4
24.7

Table 2
Statistics of experiments for Example 2

Initialization
Algorithm 

T k Method 
% Successful (Ps) Average count of iterations (Tavg) 

Random
EM − 4 

k-means 
Random

AEM  − 20
k-means 
Random

4 
k-means 200 

1 −
Random

4 
k-means 

1 −
Random

400 

20 
k-means 
Random

CEM 

800 20 
k-means 83.0

92.0
37.0

72.2
96.9
96.3
95.6

92.2
93.7

90.4

60.3
71.0

59.2
19.0

506.4
342.7

368.3
280.4

70.6
54.5

79.2
59.9

43.7
68.9

435.6
242.1

29.2
23.9

the statistics of the EMs Tavg seems to be exceptional only
because EM will easily get trapped in local maxima in
a few steps with random initial method). Furthermore, if
the initial k is similar or equal to the optimal component
number, k-mean enhances CEM as well as EM. When the
initial k is much more than the optimal number, k-mean
only has negative eQects on AEM and CEM: decreas-
ing the probability of "nding the optimal solution and in-
creasing the computation load. With respect to CEM, it
increases the required number of iterations, thus when T
is "xed to a number that is not big enough, it is di7cult

for CEM to "nd the global optimal solution (it can be
observed in Table 2, where T = 400, k = 20).

In general, concerning the capability of "nding the global
optimal solution, CEM and AEM perform better than EM
with CEM being more stable in complicated situations. The
computation burden of AEM and CEM increases greatly
when the initial kernel number is much larger than the op-
timal one. CEM has outstanding performance using various
initial methods. To get better results, CEM requires a higher
computation burden than AEM (when the initial k is set to
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Fig. 7. Evolution of criterion function L(�(t);X) for 3 examples.

be too large, CEM requires 1–3 times as much calculation
as AEM).

The typical convergence curves of CEM are presented in
Fig. 7. When CEM encounters local maxima, it attempts
to "nd a better solution by e7ciently selecting the split or
merge operation to change the GMM structure and quickly
obtains the global optimal solution.

5. Application for structure analysis of Chinese
characters

We applied the CEM algorithm to the structure analysis of
Chinese characters possessing very complicated and greatly
varied structures. The samples came from the characters’
images and the CEM algorithm was applied to extract the
strokes of these characters.

Fig. 8 shows the stroke extraction results for two styles
of complicated Chinese characters. The "st two rows are
print style characters “ (dragon)” and “ (both)”, the last
two rows are handwritten style characters “ (win)” and
“ (thank)”. The original images of these characters are
shown in Fig. 8a. The smallest rectangle boundary of the
object character is w × h(pixels). It is extracted and scaled
to be 100w=max(w; h) × 100h=max(w; h) (pixels). The co-
ordinates of all the foreground pixels in these scaled "elds
are recorded and normalized to [− 1; 1]. The "nal samples
are shown in Fig. 8b. DiQerent characters will have diQerent
numbers of sample points depending on complexity (about
500–2500 points). Fig. 8c shows the "nal parameter estima-
tions of GMMs. Fig. 8d shows the stroke-extraction results
directly from the GMMs, which are better than expected.

Even in very complicated cases, CEM achieves promising
performance, e.g. the radical “ (moon)” located in the bot-
tom left of the character “ (win)” has great overlap of
two strokes, but the algorithm is able to extract the strokes.
The structure analysis of Chinese characters can start from
these strokes, which we hope to study in future.

All these experiments prove that the CEM algorithm we
propose is very eQective for the parameter estimation of
complex problems.

6. Conclusion

A novel CEM algorithm for "nite mixture models is pre-
sented in this paper. It includes stages of EM iteration, split,
merge and annihilation operations. The initial component
number and model parameters can be set arbitrarily and the
split and merge operation can be selected e7ciently by a
competitive mechanism we have proposed. Using the anni-
hilation operation, we have overcome the problem of con-
verging to the boundaries of parameter space. CEM can eas-
ily escape all kinds of local extrema and automatically de-
termine the appropriate component number.

The experimental results of employing GMM for com-
plicated synthetic data and the structure analysis of intricate
Chinese characters show that our algorithm can "nd excel-
lent solutions with higher probability than other methods, es-
pecially in complicated situations. Although the computation
burden of our algorithm is a little heavier than Figueiredo’s,
it is still acceptable given the better overall performance.

Later work will involve the design of better end crite-
rion and some other simple measurements of the distance
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Fig. 8. Stroke-Extraction results from the complicated Chinese characters “ (dragon)” and “ (both)” and handwritten Chinese

characters “ (win)” and “ (thank)”. (a) The characters’ images; (b) Samples of the images, (c) The "nal estimation of GMM, (d)
Stroke-Extraction results directly from the GMMs.

between two probability distributions. More theoretical re-
search is needed to better choose the parameters � and $,
which are now determined by experiment.
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