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ABSTRACT

Cashiers in retail stores usually exhibit certain repetitive
and periodic activities when processing items. Detecting such
activities plays a key role in most retail fraud detection sys-
tems. In this paper, we propose a highly efficient, effective
and robust vision technique to detect checkout-related prim-
itive activities, based on a hierarchical finite state machine
(FSM). Our deterministic approach uses visual features and
prior spatial constraints on the hand motion to capture par-
ticular motion patterns performed in primitive activities. We
also apply our approach to the problem of retail fraud detec-
tion. Experimental results on a large set of video data cap-
tured from retail stores show that our approach, while much
simpler and faster, achieves significantly better results than
state-of-the-art machine learning-based techniques both in de-
tecting checkout-related activities and in detecting checkout-
related fraudulent incidents.

Index Terms— video signal processing, finite state ma-
chine, retail shrink, event recognition

1. INTRODUCTION

In retail, a significant loss of over billions worldwide each
year is mediated by employees and customers due to checkout-
related fraud (or occasionally operational errors) around the
point of sale (POS). Video analytics systems have recently
been considered a very effective tool for detecting retail fraud,
gaining more and more preference over human surveillance,
due to their advantage in efficiency and scalability [1, 2, 3].

To register an item at the POS, the cashier usually per-
forms three activities: picking the item from the lead-in belt
(pickup), passing the item through scanning devices such as
barcode reader, weighing scale, etc (scan), and placing the
item on the exit/bagging area (drop). Such a process is usu-
ally referred to as a visual scan, and the three aforementioned
activities are considered primitives. A key component of re-
tail fraud detection systems is the detection of such primitive
activities, which still remains a challenging problem. Emerg-
ing approaches to for human activity recognition using spatio-
temporal features [4, 5, 6] or motion history [7] in combi-
nation with learning algorithms can be applied. However,
these approaches are computationally expensive and sensi-

tive to noisy and low resolution video data. Moreover, the
system may have to be retrained for different types of lane
layout, different camera viewing angles, and/or even for dif-
ferent cashiers. These disadvantages make them unsuitable
for a large-scale deployment of retail surveillance applica-
tions. Other approaches have turned to more efficient low-
level video processing techniques, based on extracting fore-
ground mask using background subtraction [8] or motion map
using frame differencing [9]. However these approaches suf-
fer from motion noise caused by different sources. In the re-
tail example, these can be checkout belt movement, lighting
change and customer interactions.

In this paper, we propose a highly efficient and accurate
vision technique to detect checkout-related primitive activi-
ties. We observe that the primitives pickup, scan, drop follow
a specific motion pattern - each primitive is an in/out pro-
cess in which the hand enters and exits a region of interest
(ROI). Based on this observation, our approach aims at detect-
ing activities following such a motion pattern. To detect hand
motion, first, a hand color model is adaptively learned from
continuously collected hand pixel examples. Based on this
model, a hand motion map is formed by classifying each mo-
tion pixel obtained by frame differencing as hand pixel or not.
This map explicitly captures the hand motion only and elimi-
nates a lot of motion noise from belt movement, background
changes, customer interactions, etc. We then design a hier-
archical FSM [10] to check whether or not the hand motion
follows the in/out pattern. The first-level FSM combines the
extracted hand motion with prior spatial constraints to gener-
ate a sequence of hand motion states. The second-level FSM
uses this state sequence as input to verify the in/out hand mo-
tion pattern. We apply our algorithm to detect all 3 types of
primitives in retail transactions. Our approach can work well
in very different types of lane layouts, and requires little tun-
ing effort. It is also robust to camera view changes, image
noise and motion noise.

We evaluate our approach on a large set of real cashier
checkout activities captured from retail stores. Experiments
show that our approach significantly outperforms more
sophisticated state-of-the-art machine learning-based tech-
niques in primitive event detection, while being equally effi-
cient as other real-time techniques ([9]) and requiring much
less tuning efforts. The results also demonstrate that the



Fig. 1. An image region used for collecting new hand pixel
samples. (Best viewed in color)

improvement in detecting primitives leads to the significant
improvement in detecting cashier-related fraudulent incidents
at checkout counters.

2. OUR APPROACH FOR DETECTING PRIMITIVE
ACTIVITIES

2.1. Hand Motion Extraction

To estimate hand motion, a crucial step is to detect and lo-
cate the hand, which remains a challenging task in many real-
life scenarios. With real-time and large-scale video surveil-
lance systems, it is quite inefficient to apply sophisticated
hand detection and tracking methods [11, 12]. We decide to
use a relatively simple and efficient approach for hand mo-
tion detection, based on a hand color model and motion cues,
similar to [13]. For the hand color model, whatever initial
color model we use would gradually become inaccurate due
to illumination changes, or suddenly become invalid due to
cashier switching. Therefore we develop a solution to learn
the hand color model adaptively. We define a particular region
where the hand usually enters during a transaction (e.g. key-
board, touchscreen) (Figure 1). A motion map is computed by
thresholding the result of frame differencing. By capturing a
snapshot when the motion map overlaps with this region, we
can continuously collect new hand pixel samples. Each sam-
ple is a rectangle image patch around the center point of the
overlapping area. After a sufficient number of new samples
are collected, the new hand color model is estimated as fol-
lows:

• Perform K-means clustering in RGB space to partition
all pixels in all examples into k clusters.

• Select the cluster with maximum size.

• Compute mean µh and the 3× 3 covariance matrix Σh

for all pixels in the selected cluster. Our new hand color
model is the pair of (µh,Σh).

Next, a hand color classifier is applied to all the image
pixels captured in the motion map to label each pixel as hand
pixel or not. The classifier uses (µh,Σh) to compute a hand

Fig. 2. Hand motion maps detected by our approach. Blue
pixels are labeled as hand pixels by the classifier. (Best viewed
in color)

likelihood value for each pixel. Then a threshold is applied to
convert the likelihood value to a binary pixel label. We then
apply morphological operators to this binary map to eliminate
more noise. Figure 2 illustrates some detected hand motion
maps.

2.2. Hierarchical FSM for Motion Pattern Recognition

The intuition of our approach is illustrated in Figure 3. If we
put a sequence of parallel lines at the border of the pickup
area, when entering/exiting the pickup area, the hand has to
cross all these lines one by one in a sequential order. There-
fore, in order to detect a pickup primitive activity, which is
composed of an entering followed by an exiting hand motion
w.r.t the pickup area, we need to determine such interactions
between the hand and the line sequence.

We define a deterministic FSM F
(1)
i for each line i in a

sequence (Figure 4(a)) to keep track of the state of the line.
F (1) is defined by a quadruple (Σ1, S1, s

0
1, δ1) where:

• Σ1 = {0, 1} is the input alphabet. 1 indicates the line
is contacted by the hand (the line is on), 0 indicates
otherwise (off).

• S1 = {(00), (01), (10), (11)} is the set of states. (01)
indicates that the line is switched on, i.e. changes its
state from 0 to 1, (10) indicates it is switched off, (00)
and 11 indicate the line stays at its current state.

• s01 = (00) is the initial state.

• δ1 : S1×Σ1 → S1 is the state-transition function visu-
ally described in Figure 4(a).

We also define another deterministic FSM F (2) to deter-
mine the interaction of the hand w.r.t the line sequence. F (2)

is defined by a quadruple (Σ2, S2, s
0
2, δ2) where:

• Σ2 = {s1, ..., sn,−s1, ...,−sn} is the input alphabet.
s1 indicates line 1 in the sequence is switched on, −s1
indicates it is switched off. n denotes the number of
line in a sequence.

• S2 = {I1, ..., In−1, IN,On, ..., O2, OUT} is the set
of states. I1 indicates that line 1 is switched on, i.e.



(a) (b)

Fig. 3. (a) An example of line configuration: base lines are put
at borders of ROIs to impose spatial constraints on the hand
motion. (b) Line sequences automatically generated from the
base lines on the left. (Best viewed in color)

at state (01). O2 indicates line 2 is switched off, i.e.
at state (10). IN indicates an entering hand motion
is accepted. OUT indicates an exiting hand motion is
accepted.

• s02 = OUT is the initial state.

• δ2 : S2×Σ2 → S2 is the state-transition function visu-
ally described in Figure 4(b).

A primitive activity is accepted when F (2) completes a
loop through all the states and returns back to the initial state
OUT . As illustrated in Figure 4(b), the input alphabet of F (2)

is determined by a set of F (1) machines. Therefore our model
can be considered a hierarchical FSM, in which the first-level
FSMs produce input for the second-level FSM.

2.3. Line Sequence Configuration

For each sequence, we only need to define one base line (The
red lines in Figure 3(a)). Intuitively these base lines should
be located at the border of the ROIs. Starting from each base
line, a line sequence is automatically generated (Figure 3(b)),
based on some predefined parameters such as the number of
lines nl, and the distance between each line dl. The overall
performance of our method also slightly depends on these pa-
rameters. For example, the distance between the lines (in pix-
els) should be proportional to the image resolution. Specif-
ically in our experiments, we empirically set nl = 3 and
dl = 10.

3. EXPERIMENTAL RESULTS

3.1. Primitives and Visual Scan Detection

We evaluate our approach on the same dataset used in [3] -
a set of video data of real checkout activities with three dif-
ferent cashiers captured from retail stores. The videos are at
high frame rate (20 FPS) and low resolution (320x240), each
video corresponds to one transaction. Our result is directly

(a) First-level FSM

(b) Second-level FSM

Fig. 4. (a) First-level FSM determines the states of each line
in a line sequence. (b) Second-level FSM uses the output
states from the first-level FSM to determine the in/out state
of the hand motion.

comparable with the results from two different methods re-
ported in [3]: the Bag of Features model (BOF) with one
single ROI, and the BOF model with multiple ROIs, using
multiple instance learning (MIL-BOF). Due to the small scan
area, only BOF was applied for scan. More details can be
found in [3]. The results reported in Table 1 show that our
efficient approach outperforms more sophisticated machine
learning-based techniques in detecting pickup and drop prim-
itives. For scan, our approach produces slightly more false
positives than the BOF method (lower precision), probably
because sometimes the cashier has to scan an item multiple
times before the scan is successful. Finally, after the primi-
tives are detected, we use the Viterbi-like algorithm proposed
in [2] to combine each triplet of pickup, scan and drop into a
visual scan. Our approach achieves the best precision, recall
and F-measure in detecting visual scan.

3.2. Checkout-related Fraud Detection

We use the Hungarian algorithm to match the list of detected
visual scans with a list of barcode signals received from the
transaction log (TLOG). A visual scan is validated if it is
matched with a barcode signal. Otherwise it is an invalid vi-
sual scan which corresponds to a checkout-related fraud.

We tested our algorithm on a very large set of real check-



Activity Alg. Precision Recall F-measure
BOF 0.84±0.09 0.90±0.04 0.86±0.05

Pickup MIL-BOF 0.87±0.11 0.88±0.04 0.87±0.06
Our method 0.84 0.96 0.90
BOF 0.88±0.06 0.96±0.03 0.92±0.03

Scan MIL-BOF
Our method 0.83 0.96 0.89
BOF 0.76±0.09 0.90±0.06 0.82±0.07

Drop MIL-BOF 0.81±0.06 0.91±0.06 0.86±0.05
Our method 0.92 0.86 0.89
BOF 0.88±0.05 0.82±0.03 0.84±0.02

Visual Scan MIL-BOF 0.92±0.06 0.81±0.05 0.86±0.05
Our method 0.95 0.82 0.88

Table 1. Comparison between our performance and the meth-
ods in [3] in terms of primitives and visual scan detection.

Alg. False Positive Rate Recognition Rate
[2] 3.8% 46%
Our method 2.5% 62%

Table 2. Comparison between our performance and the
method in [2] on a very large dataset in terms of checkout-
related fraud detection.

out activities captured from two retail stores for one business
day, covering a variety of lane types and settings, with mul-
tiple different cashiers. For this dataset, we obtained ground
truth by manually annotating all true cases of checkout-
related fraud in all the videos. Unfortunately, many concep-
tually true invalid visual scans such as cashier passing by
bags or baskets, scanning items with late or early barcode,
were not annotated as true cases in the ground truth, due to
limited annotation resources. Therefore such cases will be
considered false positives if detected. We compare our results
with the state-of-the-art system in [2]. The results reported in
Table 2 shows that or approach produces significantly better
results in terms of both false positive rate and recognition
rate.

3.3. Scalability Analysis

A scalability test was conducted with our video analytics sys-
tem on a PC Quad Core 2.4Ghz, 3.0 GB RAM, Windows XP,
demonstrating that our system can monitor in real time 20 live
video streams at 15 FPS and (360x244) resolution. Another
test on an enterprise server in a real store with our system
running shows that our system can monitor on average 2 live
cameras per CPU, at the same video frame rate and resolu-
tion.

4. CONCLUSION

In this paper, we introduced a very efficient, accurate and ro-
bust algorithm to detect checkout primitive activities. Exper-

imental results show that our new approach, although sim-
pler and more intuitive, outperforms more sophisticated ma-
chine learning-based techniques both in detecting primitives
and more complex checkout activities. In the near future we
will focus on extending the approach to detect more cashier-
customer interactions.
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