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Abstract

We propose a novel approach for enhancing precision in
a leading video analytics system that detects cashier fraud
in grocery stores for loss prevention. While intelligent video
analytics has recently become a promising means of loss
prevention for retailers, most of the real-world systems suf-
fer from a large number of false alarms, resulting in a sig-
nificant waste of human labor during manual verification.
Our proposed approach starts with the candidate fraud-
ulent events detected by a state-of-the-art system. Such
fraudulent events are a set of visually recognized checkout-
related activities of the cashier without barcode associa-
tions. Instead of conducting costly video analysis, we ex-
tract a few keyframes to represent the essence of each candi-
date fraudulent event, and compare those keyframes to iden-
tify whether or not the event is a valid check-out process that
involves consistent appearance changes on the lead-in belt,
the scan area and the take-away belt. Our approach also
performs a margin-based soft classification so that the user
could trade off between saving human labor and preserving
high recall. Experiments on days of surveillance videos col-
lected from real grocery stores show that our algorithm can
save about 50% of human labor while preserving over 90%
of true alarms with small computational overhead.

1. Introduction

A large portion of revenue loss in retail is related to em-
ployees and directly caused by fraud or error that occurs
in and around the point of sale (POS). For instance, when
scanning items during a transaction, a cashier may pur-
posely fail to trigger the barcode scanner in an attempt to
give free merchandise to a customer. Such an improper be-
havior, often called “sweethearting” in the retail industry,
is a collusion between a cashier and a customer who is usu-
ally the casher’s friend or family member. In other cases,
failure to trigger the barcode scanner is due to the cashier’s
sloppiness or lack of training, and such failures are usually
referred to as “operational errors”. Both sweethearting and

operation errors result in otherwise avoidable loss to retail-
ers, and we call both of them “fraud” for simplicity in this
paper.

Fraud ranks as one of the most serious problems in the
retail industry and causes retail shrinkage with over bil-
lions of dollars each year worldwide. Recently, video an-
alytics technologies of cashier fraud detection have increas-
ingly received attention by retailers as a promising means
of loss prevention. There are several systems commercially
available for detecting cashier fraud [15, 1, 11]. One of
the state-of-the-art systems proposed in [6, 7] employs a
spatio-temporal method to recognize predominant cashier
activities relevant to the checkout process, i.e. “visual scan”.
Each visual scan recognized by the system includes three
action primitives from the cashier: item pick-up, item scan
and item drop-off (see Fig. 1(a)). A visual scan, if out of
alignment with any barcode in the transaction log, is flagged
as “suspicious” and subject to manual verification.

To ensure high efficiency, simple features (i.e. motion
from frame differencing) are used to detect action primi-
tives. Consequently, although the system achieves a high
detection recall, its precision is low – a large percentage
of system-generated alerts turn out to be false alarms, and
much human labor is wasted on manually verifying a large
number of alerts of which only a small portion are true pos-
itives. A majority of false alarms are due to the errors of
action primitive detection, which are caused by belt move-
ment, customer interactions and arbitrary cashier move-
ment. Such false action primitives form invalid visual scans,
during which the barcode reader is indeed not supposed to
be triggered.

To significantly save human labor while maintaining
high detection recall, we propose an approach to validate
candidate visual scans detected by the system and filter out
those that are less likely to be true checkout processes. In-
stead of directly analyzing the original video, our algorithm
focuses on keyframes that capture the essence of action
primitives in each candidate visual scan. This is inspired
by the fact that humans can quickly eliminate false alarms
by simply examining the keyframes without navigating into
the video. Based on the keyframes, we develop an effective



validation criterion by comparing regions of interest (ROIs)
of the keyframes after handling complications such as belt
movement and local appearance change using augmented
motion compensation and max-pooling of sub-block differ-
ences. Further inseparability is handled by taking a margin-
based approach using learned conservative thresholds, and
a soft classification provides users with the flexibility to bal-
ance between saving human labor and retaining high re-
call. Experimental results have shown that our algorithm
enhanced detection precision by up to 20%, and halved hu-
man labor in manual verification while over 90% of true
alarms are preserved, with little computational overhead.

The remainder of this paper is organized as follows.
In Section 2 , we briefly review the visual scan detection
method that detects and organizes action primitives [6, 7].
Section 3 details our proposed visual scan validation algo-
rithm using soft margin keyframe comparison. Experimen-
tal results are given in Section 4, and Section 5 concludes
this paper.

2. Visual Scan Detection

The predominant cashier activity during a transaction is
characterized by a sequence of repetitive i.e. visual scan
events, each of which consists of three basic actions (prim-
itives) in sequence: pickup, scan and drop (See Figure 1(a).
Based on this observation, a spatiotemporal approach was
proposed in [6, 7] to recognize visual scans. The approach
identifies checkout-related primitives using the bag of fea-
tures model (BOF) based on Space-Time-Interest Points
(STIP) [12] and histograms of optical flow [14, 4]. The fea-
tures are fed into an SVM classifier with Multiple-Instance
Learning (MIL) [2]. A specialized Hidden Markov Model
(HMM) model [3] that considers the strong temporal depen-
dencies between the primitives is then applied to optimally
group the primitives into a sequence of visual scans using
a specialized Viterbi algorithm. The integrated visual scans
are further aligned with transaction data in time to flag sus-
picious scan activity in a transaction. Due to the limit in
space, interested readers please refer to [6, 7] for more de-
tails about the algorithm.

While the approach described above has demonstrated
good performance in detecting cashier fraud, the computa-
tionally expensive STIP features have greatly limited fur-
ther application of this approach to fraud detection in the
real world. As a compromise, the system employs a more
efficient method to detect primitives based on thresholding
motion energy at pre-specified ROIs. However, a significant
increase of false alarms has been observed due to the errors
generated by the less accurate primitive detectors. In what
follows, we will describe our approach of reducing false
alarms by analyzing event keyframes extracted from video.

Figure 1. (a) An example of a valid visual scan. (b) An example
of an invalid visual scan. The three images from the top are the
pickup, scan, and drop keyframes, respectively. The rectangular
boxes indicate the ROI pairs to compare.

3. Visual Scan Validation
3.1. Keyframe Representation of Visual Scan

In order to achieve a real-time performance, we do not
resort to the original video to validate visual scans. Instead,
we extract a keyframe for each detected action primitive.
More specifically, the frame located in the middle of the
duration of an action primitive is selected as the keyframe
for that action primitive. As a result, each candidate visual
scan consists of three keyframes corresponding to pickup,
scan, and drop, respectively, as is shown in Figure 1. We
only use the three keyframes to determine the validity of
a candidate visual scan, resulting in an efficient real-time
algorithm.

3.2. Comparing ROI Pair

Humans can immediately tell whether three keyframes
constitute a valid visual scan simply by looking at the
pickup, scan, and drop areas. Intuitively, if a visual
scan is valid, then both the pickup area and the scan
area should undergo major appearance change between the
pickup keyframe and the scan keyframe; similarly, both the
scan area and drop area should undergo major appearance
change between the scan keyframe and the drop keyframe.
This is illustrated in Figure 1(a), where the three images
from the top are the pickup, scan, and drop keyframes, re-
spectively. Note that all the four ROI (region of interest)
pairs (i.e. P1 vs. P2, S1 vs. S2, S2 vs. S3, D2 vs. D3)
should have major appearance change before the visual scan
can be determined as valid. If any of the four ROI pairs does
not meet this requirement, the visual scan is invalid, as is
shown in Figure 1(b).



Before directly comparing a ROI pair, we first need to
deal with the belt movement in the pickup and drop areas.
Even if there is no pickup or drop action, there could still be
large appearance change if the belt has moved between two
keyframes. In order to remove the influence of belt move-
ment, we perform motion estimation before comparing the
appearance of an ROI pair in the pickup or drop region.

Let us use the pickup region as an example. The location
of the pickup ROI is selected by user and remain fixed in the
scan keyframe, as is illustrated by the solid yellow rectangle
A2B2C2D2 in the middle image of Figure 2. Using the
pickup ROI in the scan keyframe as a template, we search
for the most similar image patch in the pickup region of the
pickup keyframe (i.e. the top image of Figure 2). In the
example shown in Figure 2, the best match is A1B

′
1C
′
1D1.

Note that the best match might be smaller than the ROI in
the scan keyframe. If this occurs, the corresponding portion
of the ROI that does not appear in the best match is cropped
and not considered for comparison. In this example, region
B′2B2C2C

′
2 is cropped away.

However, if we simply compare A1B
′
1C
′
1D1 with

A2B
′
2C
′
2D2, we still cannot capture the appearance differ-

ence caused by the cashier’s hand in region A1D1E1F1.
Therefore, we need to augment the image patch of the
pickup keyframe with region A1D1E1F1, and augment the
image patch of the scan keyframe with the image of a clear
belt (which has been rolled underneath the table in the scan
keyframe) as is shown by A2D2E0F0. The final image
patches to compare are B′1C

′
1E1F1 and B′2C

′
2E0F0.

Similarly, for the drop region, region G2J2I2H2 is se-
lected by user and remain fixed in the scan keyframe, and its
best match is searched in the drop area of the drop keyframe.
The image patches are augmented the same way as for the
pickup region, and the final image patches to compare are
H2I2K0L0 and H3I3K3L3.

To make use of the prior knowledge of the direction of
belt movement, we only search to the right of the pickup
ROI and to the left of the drop ROI. A limited search range
is applied vertically.

As the scan region does not move, no motion compen-
sation is performed. The image patch in the scan ROI of
the scan keyframe is paired with the image patch at ex-
actly the same location in the pickup keyframe and the drop
keyframe, respectively, forming another two pairs of image
patches to compare. They are illustrated by the red squares
in Figure 2.

To compare two image patches, we divide each patch
into a grid of sub-blocks, and difference is computed for
each pair of corresponding sub-blocks. The maximum dif-
ference over all pairs of sub-blocks is taken as the differ-
ence between the two image patches. The reason behind
max-pooling of sub-block differences is that in many cases
the items are small and they only cause local appearance

Figure 2. An illustration of generating image patches to compare
for the pickup and drop regions. Please see the text for details.
(Best viewed in color.)

change in the ROI. If difference is averaged over the entire
ROI, such local appearance changes would not be captured.

When computing the difference between a pair of cor-
responding sub-blocks, we simply compute the pixel-wise
mean absolute difference. We do not adopt a histogram-
based approach as is proposed in [13, 8, 5, 10, 9] since the
image patches to compare have already been registered by
motion compensation.

3.3. Generating Threshold-based Features

After comparing ROI pairs, we obtain 4 appearance dif-
ferences, denoted as d(P1, P2), d(S1, S2), d(S2, S3), and
d(D2, D3). A naive approach to determine the validity of a
visual scan would be directly feeding the appearance dif-
ferences into a binary classifier such as SVM. However,
this approach turns out to yield poor performance. Fig-
ure 3 shows a visualization of the distribution of those 4-
dimensional data points by projecting them onto several 2-
D planes. As we can see, although valid visual scans (red
dots) generally have higher appearance differences than in-
valid visual scans (blue dots), they are highly inseparable.
How could this happen? This is caused by the fact that
some invalid visual scans also have large appearance differ-
ences for all the four ROI pairs. One of the most apparent
cases is passing a non-merchandise item (such as a shop-
ping basket). A less apparent example is shown in Figure 4,
where the movement of cashier’s idle hand results in large



Figure 3. Visualization of data point distribution for valid visual
scans and invalid visual scans. The red and blue dots indicate valid
and invalid visual scans, respectively. (Best viewed in color.)

Figure 4. An example of an invalid visual scan which has large
appearance differences for all the four ROI pairs.

d(P1, P2), d(S1, S2), and d(S2, S3), while an item taken
away in the drop area leads to a large d(D2, D3). More so-
phisticated object appearance models and recognition algo-
rithms could be applied to further disambiguate these cases,
yet they are not feasible for real-time applications.

In order to overcome this inseparability problem while
maintaining real-time performance, we do not directly clas-
sify those data points. Rather, we take a conservative ap-
proach which preserves all valid visual scans in the training
set. More specifically, we compute four thresholds

t1 = min
i∈T

di(P1, P2), t2 = min
i∈T

di(S1, S2),

t3 = min
i∈T

di(S2, S3), t4 = min
i∈T

di(D2, D3), (1)

where T is the training set. A test visual scan is determined
as valid only when the appearance differences of all the four
ROI pairs are larger than their corresponding thresholds. As
many invalid visual scans do not satisfy this criterion, they
are discarded without being checked by the user.

3.4. Soft Classification Using Margin

Although the thresholds obtained in Equation 1 guaran-
tee an 100% recall on the training set, some test data points
which are valid visual scans might still fall below one of the
four thresholds and are mistakenly discarded. It would be
more desirable if a soft classification is enabled where each
detected visual scan is given a score and the user controls
the number of preserved visual scans (i.e. those classified
as being valid), and thus the amount of human labor, ac-
cording to those scores.

To soften the classification, we first need to compute
the margin of each detected visual scan with respect to
the thresholds in Equation 1. The margins associated with
the thresholds t1 through t4 are m1 = d(P1, P2) − t1,
m2 = d(S1, S2) − t2, m3 = d(S2, S3) − t3, and m4 =
d(D2, D3)− t4. Naively, to obtain a soft classification, we
could simply train a logistic regression model [3] directly
using m1 through m4 as its covariates. However, what re-
ally matters is the ”worst-case” margin. For example, a can-
didate visual scan is invalid as long as one margin is nega-
tive; the other three margins are irrelevant. Incorporating
all the four margins would introduce noise and therefore
adversely affect the classification performance. To compute
the worst-case margin, we should treat two different cases
separately.

Firstly, if ∀p ∈ 1, 2, 3, 4, mp ≥ 0 for an example, then
this example will be classified as a valid visual scan accord-
ing to Equation 1. Therefore, the margin M for this ex-
ample (i.e. the worst-case margin) is the smallest margin
among m1 through m4:

M = min
p∈{1,2,3,4}

mp (2)

On the other hand, if ∃ p ∈ 1, 2, 3, 4,mp < 0 for an
example, then this example will be classified as an invalid
visual scan according to Equation 1. Therefore, the margin
M for this example (i.e. the worst-case margin) is the largest
negative margin:

M = max
p∈{1,2,3,4},mp<0

mp (3)

These two cases are illustrated in Figure 5, where the
left figure shows the margin for a valid visual scan and the
right figure for an invalid visual scan. Note that in the right
figure, although d(P1, P2) has the smallest absolute margin,
it is not meaningful for an invalid visual scan, as the margin
of such examples should be defined from the negative side.



Figure 5. An illustration of computing the margin of a detected vi-
sual scan in two different cases. The ellipses indicate the selected
margin.

Having obtained the margin of each training example,
now we could soften the classification by learning a logistic
regression model [3] over the margin to compute the valid-
ity scores of the examples. During training, the label value
is 0 for invalid visual scans and 1 for valid ones. This learn-
ing task can be formulated as

(w∗, b∗) = argmin
w,b

∏
i∈T

(
ewMi+b

ewMi+b + 1
)yi(

1

ewMi+b + 1
)1−yi

+λ(w2 + b2), (4)

where w and b are the parameters in the logistic regression
model, yi is the label for training example i, and λ is the
ridge regularization parameter.

For a testing example, its margin is computed exactly the
same way as a training example — not knowing its ground-
truth label does not pose any problem. Its score is then com-
puted by the learned logistic regression model:

S =
ew

∗M+b∗

ew∗M+b∗ + 1
, (5)

where M and S are the margin and score of the testing ex-
ample, respectively.

An example of the mapping from margin to score is il-
lustrated in Figure 6, where both the training and testing ex-
amples are shown. The black curve is the mapping learned
from the training examples. During testing, the user selects
a score threshold, as is indicated by the dashed purple line in
Figure 6. All the testing examples whose scores are higher
than the score threshold (i.e. the testing points to the right
of the solid purple line in Figure 6) are classified as valid
visual scans. We can see that increasing the score threshold
leads to a higher precision at the risk of a lower recall.

In order to give the user a reference, the algorithm pro-
vides a reference S0 score which corresponds to zero mar-
gin:

S0 =
eb

∗

eb∗ + 1
. (6)

In Figure 6, the reference score and its associated deci-
sion boundary are illustrated by the dashed and solid green

Figure 6. An example of mapping margins to scores, as well as
an illustration of the reference and user score thresholds. (Best
viewed in color.)

Figure 7. Description of the training and testing data sets in two
experiments. Please see text for details.

lines, respectively.

4. Experimental Results
The effectiveness of our algorithm is examined using re-

tail surveillance videos collected from real grocery stores.

4.1. Generalization Over Cashiers

Dataset description. We first evaluate our algorithm on
the surveillance video taken over the same checkout counter
yet containing multiple cashiers. The video sequence cap-
tures the activities of four different cashiers working at dif-
ferent shifts over an entire day. The details of the data in this
experiment are listed in the upper half of Figure 7, where
“Total # ”means the number of candidate visual scans re-
turned by the visual scan detection algorithm described in
Section 2. No barcode reading is present in any of those
candidate visual scans.“Valid # ”means the ground-truth
number of valid visual scans. “Prec.”means the precision
of the detection algorithm. Note that the two cashiers in the
testing set never appear in the training set. Also note that
the ground-truth labels for training are given beforehand.

Precision-recall curve. In our proposed visual scan val-
idation algorithm, increasing the score threshold results in



Figure 8. Precision-recall curve for experiment 1. The blue curve
shows the result using the worst-case margin. The red square indi-
cates the working point when the reference score threshold is used.
The magenta curve displays the result using the raw margins. The
same representation convention applies to all the other plots that
follow.

fewer visual scans that pass the validation, and therefore
less human labor to manually check if fraud indeed occurs
during those visual scans. In the meantime, a higher score
threshold leads to a greater risk of missing visual scans that
are actually valid. In other words, the score threshold trades
off between precision and recall. The precision-recall curve
of the testing set is shown in Figure 8, where the blue and
magenta curves show the results when using the worst-case
margin M and the raw margins m1 through m4, respec-
tively. The red square indicates the working point when the
automatically-generated reference score threshold (which is
0.2271) is used under the worst-case margin. This represen-
tation convention applies to all the remaining plots in this
paper. We could see that using the worst-case margin well
outperforms the raw margins.

F-measure. Figure 9 shows the F-measure (defined as
the harmonic mean of precision and recall) as a function
of the score threshold. As we can see, the reference score
threshold gives the near-optimal F-measure. Worst-case
margin achieves much higher F-measures than raw margins
under most score thresholds.

Reduction in human labor. The reduction in human la-
bor can be measured by the reduction factor, defined as the
ratio of the number of the visual scans output by the visual
scan validation algorithm, to the number of the visual scans
generated by the visual scan detection algorithm. The re-
lation between the reduction factor and the score threshold
is displayed in Figure 10. We can see that using the refer-
ence score threshold reduces human labor by half. The fact
that using the raw margins retrieve fewer visual scans under
the same score threshold is meaningless, since it does not
reflect anything related to accuracy.

Recall-reduction curve. The effectiveness of our pro-
posed algorithm is best demonstrated by the relation be-

Figure 9. Relation between F-measure and score threshold for ex-
periment 1.

Figure 10. Relation between reduction factor and score threshold
for experiment 1.

tween recall and the reduction factor, which is shown by
the blue curve in Figure 11. The green dashed line along
the diagonal depicts the performance of randomly picking
candidate visual scans as valid ones — in this case, recall is
always equal to the reduction factor. The higher the actual
curve over the green dashed line, the more effective the al-
gorithm is. From the figure, we can see that our proposed
algorithm performs way better than chance. We can also see
that using the worst-case margin yields consistently better
performance than using the raw margins.

Numerical results. The numerical results of maintain-
ing a 90% recall are shown in the left part of Figure 12.
Here, “Prec.”, “Reca”. and “Redu”. are the abbreviations
of precision, recall, and reduction factor, respectively. The
columns titled “Original ”, “SMKC ”, and “Chance ”show
the statistics of the original data set, the retrieved data set by
our proposed algorithm, and by random selection, respec-
tively. We can see that our algorithm almost doubles the
precision and reduces human labor to 46% while keeping a
90% recall.

The results mentioned above indicate that our algorithm
generalizes well to different cashiers.



Figure 11. Relation between recall and reduction factor for experi-
ment 1. The green dashed line depicts the performance when valid
visual scans are picked randomly.

Figure 12. Numerical results of our proposed algorithm under a
90% recall. Please see text for details.

4.2. Generalization Over Cashiers and Counters

Dataset description. To see how well our algorithm
generalizes to even greater scenario differences, we trained
it using a video taken at one checkout counter, and tested it
on a video taken at another checkout counter. Now both the
counter layout and the cashiers are different between train-
ing and testing sets. An example is shown in Figure 13. The
training and testing data sets are described in the lower part
of Figure 7. Note that the testing data set is very different
from the training one also in terms of precision.

P-R curve and F-measure. The precision-recall curve
and the F-measure - threshold curve are displayed in Fig-
ures 14 and 15, respectively. We can see that the maximum
F-measure is only about 5% lower compared to the same-
counter case, although the layout of checkout counters are
disparate. When the reference score threshold (0.1420) is
used, precision is enhanced by over 10% while recall is still
close to 100%. The performance using the raw margins is
much worse.

Reduction in human labor and reduction-recall
curve. Figures 16 and 17 show the reduction-factor -
threshold curve and the recall - reduction-factor curve.
Again, the performance of our algorithm is significantly
better than chance — about 45% of reduction in human la-
bor can be achieved while 90% of valid visual scans are pre-
served. By contrast, the performance degenerates to nearly
chance if the raw margins are used. From Figure 17, we
could see that if the reference score threshold is used, over

Figure 13. Training and testing sets have different cashiers and
counter layouts. (a) A training example. (b) A testing example.

Figure 14. Precision-recall curve for experiment 2.

Figure 15. Relation between F-measure and score threshold for
experiment 2.

30% of human labor is saved while almost all valid visual
scans are captured.

Numerical results. The numerical results of maintain-
ing a 90% recall are shown in the right part of Figure 12.



Figure 16. Relation between reduction factor and score threshold
for experiment 2.

Figure 17. Relation between recall and reduction factor for experi-
ment 2. The green dashed line depicts the performance when valid
visual scans are picked randomly.

Again, precision is enhanced by 14%, and human labor is
almost halved.

The results show that our algorithm generalizes well to
both different cashiers and different checkout counters.

5. Conclusion

In this paper, we propose an effective visual scan val-
idation algorithm to enhance the precision of visual scan
detection in retail surveillance applications. The algorithm
validates candidate visual scans by comparing ROIs of the
keyframes associated with the candidate visual scans. Belt
movement and local appearance change are handled by
augmented motion compensation and max-pooling of sub-
block differences. Furthermore, the problem of insepara-
bility caused by spurious motions are solved by comput-
ing worst-case margins with respect to learned conserva-
tive thresholds and training a logistic regression model for
soft classification based on the worst-case margins. Our
proposed algorithm significantly increases the precision of
visual scan detection, and therefore considerably reduces

human labor, in real-world surveillance videos where both
cashiers and checkout counters have large variations.

As future work, we plan to further analyze the distribu-
tion of feature vectors and develop a semi-supervised learn-
ing scheme to relieve human labeling efforts.
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