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a b s t r a c t

We propose four probabilistic generative models for simultaneously modeling gene expression levels and

Gene Ontology (GO) tags. Unlike previous approaches for using GO tags, the joint modeling framework al-

lows the two sources of information to complement and reinforce each other. We fit our models to three

time-course datasets collected to study biological processes, specifically blood vessel growth (angiogenesis)

and mitotic cell cycles. The proposed models result in a joint clustering of genes and GO annotations. Differ-

ent models group genes based on GO tags and their behavior over the entire time-course, within biological

stages, or even individual time points. We show how such models can be used for biological stage boundary

estimation de novo. We also evaluate our models on biological stage prediction accuracy of held out samples.

Our results suggest that the models usually perform better when GO tag information is included.

© 2015 Elsevier Inc. All rights reserved.

t

m

f

n

p

t

a

a

[

b

t

r

u

g

j

T

a

F

l

c

d

s

1. Introduction

The Gene Ontology (GO) Consortium (http://www.

geneontology.org) maintains annotations of genes and gene products

of eukaryotic cells using a standardized controlled vocabulary [1,2].

The GO is organized as three sub-ontologies, each being a directed

acyclic graph (DAG), describing a particular gene attribute: Biological

Process (BP), Molecular Function (MF), or Cellular Component (CC).

As new knowledge is gained about the specific roles of genes or their

products, the ontology is updated to reflect the new findings. Since

eukaryotic organisms share a significant number of genes, i.e., similar

nucleotide sequences with similar functions, the ontology helps biol-

ogists working on different model organisms share useful knowledge

between them. The GO annotations are also useful to statisticians

and computational biologists working with high throughput gene

expression data (e.g., microarrays) to evaluate their methods and

draw biological conclusions from them. Uses of the GO tags include

biological analysis of differentially expressed genes and enrichment

analysis of gene clusters [3] using various methods [4–6].

In general, previous research combining expression data and GO

annotations has used the annotations in a second stage of analysis af-

ter a quantitative analysis of expression data. Specifically, genes are

clustered using continuous expression data and then the clusters are

examined for GO tag enrichment. We propose instead that using the
∗ Corresponding author.Tel.: 5202476726.
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wo sources of evidence simultaneously in a probabilistic generative

odeling framework offers substantive benefit. For example, the in-

ormation in GO tags can help deal with biological and experimental

oise in expression data. The reverse can be true as high through-

ut expression measurements can alleviate uncertainty in GO anno-

ations arising from missing or incorrect annotations. Note that we

ssume a relevant subset of genes are already selected using a suit-

ble prior analysis such as differentially expressed gene set selection

7,8].

Probabilistic models for multimodal data provide a way to com-

ine information from multiple modalities. They have been used ex-

ensively in other areas of research such as linking words and image

egions [9–12], to fuse information from different sources and draw

seful inferences from them. In this work, we use similar probabilistic

enerative models to cluster GO terms associated with genes in con-

unction with their expression profiles measured using microarrays.

his helps to exploit the information available in GO annotations to

ccount for some of the noise in the expression measurements [13].

or example, the inclusion of GO terms in clustering increases the

ikelihood of genes with similar GO annotations to lie within the same

luster even though their expression profiles may differ significantly

ue to noise.

We focus on time-course microarray experiments, where snap-

hots of gene expression are taken at predetermined instants of

ime. The observation interval is of biological interest such as a

itotic cell cycle [14–16] or the response of a tissue to an injury

17]. The main thrust of this paper is models that capture the joint

robability distributions of temporal gene expression patterns and

http://dx.doi.org/10.1016/j.mbs.2015.08.007
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O tags. These models are generative statistical models in that they

escribe how the data can be sampled. The first model we describe

s the multimodal mixture model (MMM) which clusters genes

imultaneously based on GO tags and expression patterns, which are

onsidered conditionally independent given the cluster. The second

odel (Pooled-MMM), modifies MMM under the assumptions that

he stages are known, and carry the bulk of the variation of interest

n the underlying expression patterns. Under these two assumptions,

t makes sense to assume that variation within a stage is due to noise

rocesses, and thus we treat the temporal observations within a stage

s independent measurements of the same underlying latent expres-

ion level. Although our approach has resemblances to biclustering

18], we adopt a statistical generative modeling framework and use

xpression data and tags jointly in a multimodal approach, which

s different from clustering rows and columns together based on re-

ucing squared residues. Our work is also similar to data integration

pproaches [19–21] but the modalities being integrated are different.

Notice that in MMM and Pooled-MMM we implicitly assume that

O tags are best linked to patterns over all stages within the exper-

ment time frame. An alternative hypothesis is that the GO tags are

est linked to a specific stage. Hence we introduce the stage specific

ultimodal mixture model (SS-MMM) where GO tags are assumed

o be emitted from one of the stages. This complicates inference be-

ause the data is not informative regarding which stage is responsible

or which GO tags, as GO tags are only associated with gene activity

aken as a whole. This situation is similar to related work on associat-

ng words with images [9], where we assume that words come from

mage regions, but in training we only have labels (e.g., keywords) at

he image level. Nonetheless, in analogy with that work, if we have

ultiple genes with overlap in their GO tags, and similar expressions

t a particular stage, then we could learn relevant relationships be-

ween GO tags and stages. Finally, if the stage time windows are not

nown, but we wish to experiment with the temporal locality of the

ssociation between GO tags and expression levels, then we can sim-

ly use each time point as a stage, which leads to the time specific

ultimodal mixture model (TS-MMM).

Evaluation:We use biological stage (henceforth referred to as

stage”) prediction performance on held out data to measure how

ell the proposed models capture the underlying biological process.

number of analyses of gene expression data aim at predicting the

tage of a tissue, e.g., diseased or not, and it is thus sensible to use

henotype prediction performance to evaluate our models. For the

S-MMM and Pooled-MMM models we adopt a Bayesian approach

hat uses stage information learned as part of model training. To

ompute stages for the two models that do not explicitly represent

tages (MMM and TS-MMM), we estimate the stage likelihood using

ime based marginal likelihoods. We study the effect of including GO

ags by evaluating the models both with GO tags and without. Our

esults suggest that the use of GO tags is helpful for biological stage

rediction.

Apart from biological stage prediction, when the number of stages

re known for the training data, our generative models can be used

o estimate stage boundaries de novo. We demonstrate this by apply-

ng our SS-MMM model to estimate stage boundaries first in the data

ets for which we have ground truth information. The results suggest

hat our best estimates are within one time point of the true bound-

ries. This implies that our models could also be useful for estimating

hich time points can be grouped into stages where such informa-

ion is not available a priori. We apply the same method to determine

he best estimate of stage boundaries in a data set where this infor-

ation is not available.

. Methods

Definitions: A sample refers to the collection of measurements

n a particular microarray. A microarray dataset is a collection of
amples, where each sample is obtained by measuring a tissue un-

er a certain biological condition. The vector of expression measure-

ents for a gene g across all the arrays in the dataset is denoted by eg

nd the set of GO tags associated with it is denoted by Og. A partic-

lar sample in the data is indexed by t, which corresponds to a time

oint in the case of time-course experiments. The gene’s expression

alue for the sample at that time is denoted by e
g
t . In addition, the ex-

ression vector of all genes at the time point t is denoted by et . While

ur methodology nicely supports multiple observations per gene for

time point, this does not occur in the data we experimented with,

nd hence this simplification is well defined. A stage s represents a

articular phenotypic condition or biological stage. The time course

atasets have distinct biological stages, each one containing a num-

er of samples for the time points falling within the stage, referred to

s a pool of samples within that stage.

.1. Proposed models

In what follows, we first describe the MMM model that clus-

ers genes based on their expression behavior across the entire time

ourse and GO tags associated with them. We then describe the

ooled-MMM model, which assumes that observations at different

ime points within a stage are simply replicated measurements. In

articular, the Pooled-MMM model uses this notion to constrain the

xpression levels within a biological stage to have the same average

alue, i.e., they come from the same stage-specific cluster.

Both the MMM and the Pooled-MMM associate GO tags with the

xpression behavior over the time series. However, it is possible that

O tags are better linked to a specific biological stage or even to a spe-

ific time point. The SS-MMM model addresses the former possibility

y allowing GO tags to arise from any one of the biological stages.

inally the TS-MMM model allows for the GO tags to be associated

ith gene expression levels at any one of the individual time points

ddressing the latter possibility.

.2. Multimodal mixture model (MMM)

In the multimodal mixture model (MMM), a gene g’s expression

ector eg and its associated GO tags Og jointly arise from a certain

luster cg, which is one of a set of possible clusters of genes with sim-

lar expression profiles and GO annotations. The sampling of a par-

icular cluster cg is governed by a prior over clusters P(cg). The joint

istribution p(eg, Og) is modeled as

pMMM(eg, Og) ∝
∑

cg

P(cg)

(∏
t

p(eg
t |cg)

)(∏
o∈Og

(P(o|cg))
1

|Og|

)
, (1)

here e
g
t denotes the expression value of gene g at time point t. The

hoice of the number of clusters is discussed in Section 5.1. The above

ikelihood is defined up to a scaling factor but all the probabilities

re appropriately normalized during training and inference, which

pplies to all the models proposed in this work. The GO tags Og are

enerated independently of the expression values conditioned on the

lusters. We use o to denote a particular GO term and |Og| for the to-

al number of GO terms associated with gene g, which includes all

ncestors in the GO DAG. The form of P(o|cg) is a multinomial with

s many bins as the number of unique ontology terms associated

ith all genes. The exponent 1
|Og| adjusts for different numbers of GO

ags associated with different genes and lets each gene contribute the

ame towards the likelihood function over all the genes (Section 3).

he form of p(e
g
t |cg) is a univariate Gaussian. This model leads to a

lustering of genes into groups where the genes within a group have

imilar expression profiles across all the time points and have simi-

ar GO tags. The discrete distributions P(cg), P(o|cg) and the Gaussian

eans and variances are parameters of the model that are learned

uring model training (Section 3).
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Fig. 1. Graphical representation of the multimodal mixture model (MMM) and its

pooled version (Pooled-MMM). The shaded nodes represent random vectors that are

observed, which in this case are the gene expression profile (eg) and the GO tags (Og)

of each gene g. It is assumed that there are N such genes and that their data is indepen-

dently generated. The hidden node represents the latent cluster variable cg responsible

for generating the expression profile and the GO tags. The only difference between the

MMM and Pooled-MMM models is that the parameters of Gaussians corresponding to

pooled time points within a stage are shared, i.e. constrained to be the same in the

latter case.

Fig. 2. Graphical representation of the stage-specific multimodal mixture model (SS-

MMM) and time-specific multimodal mixture model (TS-MMM). In the case of SS-

MMM, the gene expression measurements eg
t∈si

for all samples t within the pool be-

longing to a particular stage si are generated from the stage specific clusters denoted

by cg
si

. The number of such pooled samples within a stage si is denoted by |si|. The GO

tags Og are generated independently, conditioned on the cluster, of the expression lev-

els by the same process. However, each GO tag o comes from only one of the clusters

within one of the stages. This choice is with a uniform prior on all the stages as indi-

cated by the hidden variable zg
o followed by a cluster prior conditioned on the expres-

sion level(s) within the chosen stage. It is assumed that there are M such stages and N

genes in the microarray dataset. TS-MMM is a special case of SS-MMM with each stage

si consisting of a single time point t.
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A graphical representation of the above model is shown in Fig. 1.

The graph depicts a generative model for the expression profile eg of

a gene g and its associated GO tags Og through the latent variable cg

corresponding to a cluster.

2.3. Pooled multimodal mixture model (Pooled-MMM)

The pooled multimodal mixture model (Pooled-MMM) is a special

case of the MMM model of Section 2.2 and allows for pooling of gene

expression levels across the time points corresponding to a biologi-

cal stage. This is achieved by generating the expression levels at all

time points t within a stage s from the same shared cluster parame-

ters. This leads to the following expression for the joint distribution

p(eg, Og):

pPooled-MMM(eg, Og) ∝
∑

cg

P(cg)

(∏
s

p(eg
s |cg)

)(∏
o∈Og

(P(o|cg))
1

|Og|

)
,

(2)

where s corresponds to a stage and e
g
s is the gene expression (sub)

vector, i.e. a pool of samples encompassing time points t ∈ s. The

form of p(e
g
s |cg) is a multivariate Gaussian with a diagonal covari-

ance matrix with shared parameters, i.e. the means and variances are

constrained to be the same value across all the time points of a stage.

Note that similar to the MMM model, the GO tags are generated at the

entire time-course level. The graphical model for the Pooled-MMM

is the same as that of MMM except that the parameters across the

pooled time points of a stage are shared as shown in Fig. 1.

2.4. Stage-specific multimodal mixture model (SS-MMM)

The stage-specific multimodal mixture model assumes that genes

cluster independently at different biological stages, a gene’s expres-

sion values at time points within a stage being noisy versions of the

same latent value. Thus we pool the samples for each stage, and as-

sume that the observations are conditionally independent, given the

stage. The joint distribution p(eg, Og) is modeled as

pSS-MMM(eg, Og) ∝ p(eg)P(Og|eg)

∝
∏

s

∑
cg

s

P
(
cg

s

)
p
(
eg

s |cg
s

)

×
(∏

o∈Og

(P(o|eg))
1

|Og|

)
, (3)

where s refers to a biological stage or phenotype, consisting of a

pooled set of time points t ∈ s. c
g
s represents the latent cluster vari-

able for stage s that generates all the samples within the gene ex-

pression (sub) vector e
g
s corresponding to the pool of s. The form of
p(e
g
s |cg

s) is assumed to be a multivariate Gaussian with a diagonal co-

ariance matrix. The means and variances of this multivariate Gaus-

ian are shared across the pooled time points similar to the Pooled-

MM model. P(o|eg) is a discrete distribution given by

(o|eg) = 1

M

∑
s

∑
cg

s

P(cg
s |eg

s)P(o|cg
s), (4)

here the assumption is that each tag o is generated by the same set

f stage specific clusters c
g
s within each stage s. However, the tag is

andomly sampled from only one of the clusters within one of the

tages. This sampling is with equal pool priors as indicated by the

eighting factor 1
M in the above equation (M is the total number of

tages) but with cluster priors conditioned on the pooled expression

evel(s) within the corresponding stage. The form of the conditional

luster priors can be deduced using Bayes’ rule

(cg
s |eg

s) ∝ p(eg
s , cg

s) (5)

= p(eg
s |cg

s)P(cg
s) (6)

Fig. 2 shows a graphical model representation of the SS-MMM

odel. In the figure, si corresponds to a particular stage that spans

subset of the available samples and |si| denotes the total number of

uch samples. The clusters for the stage si are represented by the la-

ent variable c
g
si

. The shaded nodes e
g
t∈si

represent the observed gene

xpression value for a gene g at any of the time points t ∈ si. The

haded node o represents a single GO tag within the set Og of GO

ags for gene g, and z
g
o is the hidden variable indicating the choice

f a stage, among all stages, from one of whose clusters the tag o is

andomly generated.

.5. Time specific multimodal mixture model (TS-MMM)

Our fourth model (TS-MMM) is similar to the SS-MMM, but

reats each time point as a stage. It thus addresses the possibility that

uitable grouping of time points into biological stages is not available,

r is not helpful. The joint distribution p(eg, Og) is modeled as

pTS-MMM(eg, Og) ∝
∏

t

∑
cg

t

P
(
cg

t

)
p
(
eg

t |cg
t

)

×
(∏

o∈Og

(P(o|eg))
1

|Og|

)
, (7)
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hich is a special case of the SS-MMM model of Section 2.4 with

ach stage s representing a single time point t. The expression for

he GO tags distribution P(o|eg) takes a similar form as Eq. (4) and is

iven by

(o|eg) = 1

T

∑
t

∑
cg

t

P(cg
t |eg

t )P(o|cg
t ), (8)

here the contributions from GO tags are averaged across all the

ime points t, as each observed tag is associated with each of the

ime points with equal prior probability. The graphical model repre-

entation of the TS-MMM is the same as that of SS-MMM except that

ach stage now corresponds to a single time point as shown in Fig. 2.

. Model training and inference

Each of the above proposed models is trained using a suitable

ersion of the expectation–maximization (EM) algorithm [22–24].

M finds parameters that locally maximize the likelihood for all the

enes assuming that the data for each gene is independently gener-

ted. That is it maximizes the likelihood function LI = ∏
g p(eg, Og).

he estimated parameters include the Gaussian mixture means, vari-

nces, cluster priors and cluster conditional ontology term distribu-

ions. Note that the cluster priors and cluster conditional ontology

erm distributions are multinomials with their bin probabilities esti-

ated directly during the learning process.

.1. Bayesian stage prediction for pooled sample models

The pooled sample models of Sections 2.3 and 2.4 encode stages,

nd learn a distribution of stages and observations during training.

iven a new observation, eU , whose stage is unknown (U), and the

et of GO tags O, the posterior distribution over stages P(s|eU , O) can

e written using Bayes’ rule as

(s|eU , O) ∝ p(s, eU , O). (9)

The form of p(s, eU , O) depends on the particular model. For the

ooled-MMM model, we have

p(s, eU , O|θ) ∝
∏

g

∑
c

p(eg
U
|s, c, θ)P(Og|c, θ)P(c|θ), (10)

here θ are the model parameters learned from training data us-

ng EM. We emphasize that only the (shared) Gaussian parameters

f the cluster c within the stage s are used for computing the likeli-

ood p(e
g
U
|s, c, θ) above. For the SS-MMM model of Section 2.4, it is

roportional to the stage specific likelihood, i.e.,

p(s, eU , O|θ) ∝ p(eU , O|s, θ)

∝
∏

g

(∑
cs

P(cs|θ)p(eg
U
|cs, θ)

)

×

⎛
⎝∏

o∈Og

(∑
cs

P(cs|eg
U
, θ)P(o|cs, θ)

) 1
|Og|

⎞
⎠ (11)

.2. Time-based stage prediction

The MMM and TS-MMM models do not represent biological stages

nd hence cannot be used directly to make inferences about the stage

f a new sample. We propose a framework for these models to do

tage prediction based on marginalizing over the time points of train-

ng samples using the estimated model parameters. The posterior dis-

ribution over stages s given the new measurement sample eU , whose

tage is unknown (U), and the set of GO tag assignments O for all

enes can be written as

(s|eU , O) ∝ p(s, eU , O) (12)
=
∑

t

p(t, s, eU , O) (13)

=
∑

t

P(s|t, eU , O)p(et = eU , O) (14)

=
∑

t

P(s|t)p(et = eU , O), (15)

arginalizing over time. The term p(et = eU , O) is the density of the

ew data being observed at time corresponding to sample t of the

raining data, and is expanded further below. Note that we use the

act that the stage s is conditionally independent of both gene ex-

ressions and GO tags given the time point. The quantity P(s|t) can

e set to 1 or 0 depending on whether the sample t in the training

ata arises from stage s or not followed by appropriate normalization

f the posterior. Marginalization implies that any of the possible time

oints within a stage might have contributed to the observed gene

xpression levels and their tags. The computation of p(et = eU , O) for

ach of the two models (Sections 2.2 and 2.5) is described next.

.2.1. Marginal time densities

The maximum likelihood parameters θ, estimated by the EM pro-

edure, imply a joint probability density function over the space of

ene expression levels of different time points and GO terms. Given T

ime points, we denote this joint density by

p(e1, e2, . . . eT , O|θ), (16)

here et is the vector of measurement of all genes for time point t

nd O is the set of GO term assignments to genes. We express the

arginal joint density p(et = eU , O|θ) for a new sample eU by using

hat value in the slot for t in (16), and marginalizing out the other

imes:

p(et = eU , O|θ)
=

∫
e1,...,et−1,et+1,...eT

p(e1, . . . , et−1, eU , et+1, . . . , eT , O|θ)
× de1 . . . det−1det+1 . . . deT (17)

In the general case this is complex, but recall that in MMM and TS-

MM, the genes are independent. If we rearrange the dei into blocks

y gene, we see that (17) reduces to the product of the marginals for

ach gene. Specifically,

p(et = eU , O|θ) =
N∏

g=1

p(eg
t = eg

U
, Og|θ), (18)

here

p(eg
t = eg

U
, Og|θ)

=
∫

eg
1,...,eg

t−1,eg
t+1,...eg

T

p(eg
1
, . . . , eg

t−1
, eg

U
, eg

t+1
, . . . , eg

T
, Og|θ)

×deg
1
. . . deg

t−1
deg

t+1
. . . deg

T
(19)

nd the form of p(e
g
1
, . . . , e

g
t−1

, e
g
U
, e

g
t+1

, . . . , e
g
T
, Og|θ) is given by the

xpression for the joint distribution of the model of interest. We de-

ive expressions for MMM and TS-MMM next.

.2.2. MMM

In the case of MMM we substitute the corresponding joint dis-

ribution (Eq. (1)) for p(e
g
1
, . . . , e

g
t−1

, e
g
U
, e

g
t+1

, . . . , e
g
T
, Og|θ) in Eq. (19)

nd move the integral within the sum over clusters

p(eg
t = eg

U
, Og|θ ) ∝

∑
c

P(c|θ )P(Og|c, θ )

×
∫

eg
1
,...,eg

t−1
,eg

t+1
,...eg

T

p(eg
1
, . . . , eg

t−1
, eg

U
, eg

t+1
, . . . , eg

T
|c, θ )

× deg
1
. . . deg

t−1
deg

t+1
. . . deg

T
. (20)
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Using the cluster conditional independence assumption among gene

expression levels across individual time points and GO tags (Eq. (1))

and also the fact that cluster conditional densities of expressions at

each time point integrate to one, this becomes

p(eg
t = eg

U
, Og|θ) ∝

∑
c

P(c|θ)p(eg
U
|c, θ)P(Og|c, θ). (21)

3.2.3. TS-MMM

Following an approach similar to the MMM model, the marginal

p(e
g
t = e

g
U
, Og|θ) is given by

p(eg
t = eg

U
, Og|θ) ∝

∑
ct

P(ct |θ)p(eg
U
|ct , θ)P(Og|ct , θ), (22)

where the GO tag probabilities P(Og|ct , θ) are evaluated using only

the cluster parameters of the tth time point in Eq. (8) because the hid-

den variable zo for every tag o is now assigned to time point t (Fig. 2).

3.3. Stage boundary estimation

The learned parameters of the pooled sample models can be used

to estimate stage boundaries in a time course data set. This can be

done by examining the training likelihood LI given a grouping of the

time points into stages. If the total number of time points is small and

the number of stages is assumed, then it is feasible to perform a brute

force search over all possible groupings as we do for the experiments

described below. The grouping that leads to the highest likelihood is

taken to be the best estimate of the stage boundaries given the as-

sumed number of stages.

4. Datasets and experimental protocol

We used data from three time-course experiments to train our

models and then predict the biological stage labels using the esti-

mated model parameters: angiogenesis data of Hoying et al. [25,26],

yeast cell cycle data of Cho et al. [15], and human cell cycle data of

Whitfield et al. [16]. The predicted label is the most likely stage la-

bel obtained from the posterior distribution P(s|eU , O, θ) using the

learned model parameters with ties resolved randomly.

4.1. Hoying angiogenesis data

The Hoying angiogenesis data came from an experimental model

(in vivo) of tissue vascularization in SCID mice with the implants

obtained from tie2:GFP mouse [25]. Tissue samples were extracted

from the implanted constructs at discrete time points – days 3, 7,

14, 21 and 28. In a unique experimental design these samples and

a day 0 sample (implant source) were hybridized using two channel

microarrays to obtain measurements of gene expression. Care was

taken so that biological variations were averaged out in the mea-

surements. There were 4 measurements per gene per time point.

The intensity measurements were background subtracted and lin-log

transformed [26] for variance stabilization and only those measure-

ments that were consistently well above the background level were

retained. The transformed measurements were corrected for spatial

location and intensity variations using lowess regression in a custom

statistical software called CARMA [26]. Then a gene-by-gene ANOVA

was performed to adjust for the gene specific variations introduced

by the experimental factors namely the Array (A), Dye (D) and Va-

riety (V) effects. The V effect corresponded to time and was used as

the time point specific level of gene expression. Data from two such

hybridization runs (run-1 and run-2) was used for the experiments.

To evaluate prediction accuracies, we trained models using mea-

surements from each run separately. Held-out accuracies were com-

puted by predicting labels for samples from the other run. In other

words, since we do not have any notion of ground truth for this data,
e validated the models on the assumption that the stages for the

wo runs were the same. Only differentially expressed genes selected

y CARMA were used. Since the differentially expressed genes that

ere selected were different for different runs we included only the

nes that were common to both. Starting from 1282 genes that were

elected as differentially expressed in run-1, we searched for their

orresponding normalized expression levels in run-2. Only 706 of

hem had any valid measurements in run-2 based on ANOVA and so

nly these were used for one set of experiments. Similarly, starting

rom the 978 differentially expressed genes of run-2, we found 932 of

hem having any valid normalized expression values in run-1 based

n ANOVA.

Two sets of models were trained using GO tags from the Biological

rocess (BP) and Molecular Function (MF) GO hierarchies respectively

nd one without any tags (No GO). For data with 706 genes, this re-

ulted in 480 and 363 total GO tags from the BP and MF hierarchies

espectively. The total number of GO tags for the other data with 932

enes were 569 and 400 from the BP and MF hierarchies, respectively.

ote that we included all the ancestors of the GO annotations for the

enes by tracing the GO hierarchies starting from each annotation all

he way to the root of the corresponding hierarchy.

We considered stage prediction corresponding to our hypothe-

is of the two stages of blood vessel growth (angiogenesis and mat-

ration). During the first stage (angiogenesis), relevant microvessel

egments relax their normal vessel structure leading to the expan-

ion of the microvasculature via the addition of new vessel segments.

ubsequently, the newly formed vessels differentiate into the varied

lements of a normal vasculature including arterioles, venules and

apillaries finally leading to a mature vascular network (maturation)

hrough vessel adaptation. We hypothesized that the first two time

oints correspond to angiogenesis and the next four to maturation.

his is based on the experimental results described in Section 5.2.

or the stageless models of Sections 2.5 and 2.2, stage probabili-

ies were computed from marginal time probabilities as described in

ection 3.2. In each case predicted stage was the one with the highest

robability.

.2. Cho yeast cell cycle data

The yeast cell cycle data has been used to identify and study the

eriodic fluctuations of mRNA levels of cell cycle regulated genes.

ynchronized cells derived from cultures of Saccharomyces cerevisiae

nd arrested at time 0 were allowed to go through mitotic cell divi-

ion over a period of 160 min. The method of synchronization was

ased on the temperature sensitive cdc28-13 allele. Expression levels

f all the genes in the yeast genome were sampled at 10 min inter-

als resulting in a total of 17 measurements including time 0. The

ells underwent almost two complete cell divisions within this pe-

iod and hence the data represents measurements over two cell cy-

les. The transition from the first to second cycle is approximately at

bout 90 min from the start. Each cell cycle is divided into 4 phases:

1, S, G2, and M based on bud size, cellular position of nucleus and

tandardization to previously known cell cycle regulated genes [15].

he S phase corresponds to genome duplication, M phase to nuclear

ivision, which are separated from each other by the two gap phases

1 and G2.

The raw yeast cell cycle data was preprocessed by log transforma-

ion followed by geometric normalization. Measurements from both

he cell cycles were used and prediction accuracies were computed

y training models on data from each cell cycle separately. Stage pre-

iction accuracies were computed in a similar fashion as the Hoy-

ng data. Table 1 lists the time samples corresponding to the various

hases of cell cycle for both the cycles.

Previous work using this dataset identified 421 [15] genes as cell

ycle regulated. We used only the measurements for these genes in
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Table 1

Assignment of time points to various stages of the yeast cell cycle in the Cho dataset.

The data has two complete cell cycles with the transition from the first to second cycle

occurring at 90 min from start. The assignment of time samples from the two cycles

are listed in separate columns.

Phase Time points Time points

(cycle-1) (cycle-2)

G1 0, 10, 20 90, 100

S 30, 40 110, 120

G2 50, 60 130, 140

M 70, 80 150, 160

Table 2

Assignment of time points to the S and Non-S phases of the human cell cycle in the

Whitfield dataset. This dataset has 3 complete cell cycles with samples recorded every

hour over a period of 46 h, with a different number (14, 14 and 17) and assignment of

samples to the two phases of each cycle. Each column shows the phase assignment for

the samples, denoted by the measurement hour, within a cycle.

Phase Time points Time points Time points

(cycle-1) (cycle-2) (cycle-3)

S 0–3 14–18 28–32

Non-S 4–13 19–27 33–44
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ur experiments. This resulted in a total of 1275 and 491 tags includ-

ng the ancestors in the BP and MF GO hierarchies respectively. Mod-

ls were trained with (BP or MF) and without GO tags followed by

tage prediction.

.3. Whitfield human cell cycle data

Similar to the yeast, genes regulated periodically during the hu-

an cell cycle have been identified using the HeLa cancer cell

ine [16]. Three different synchronization methods were used to ar-

est cells in the S phase (double thymidine block) and M phase

thymidine-nocodazole block and mitotic shake-off) of the cell di-

ision cycle. Data from the third double thymidine block study was

sed for the experiments here. After release from the double thymi-

ine block, when the cells entered S phase, gene expressions were

onitored every hour up to 46 h during which the cells went through

hree successive cell division cycles. The cell divisions occurred after

pproximately 13 h, 27 h and 44 h relative to the 0 time point (re-

ease from the block). This yielded 14, 14 and 17 measurements for

he first, second, and third cycles, respectively. cDNA arrays probing

early 30,000 human genes were used to measure gene expression

evels.

In the human cell cycle data the time points corresponding to

he S phase are clearly delineated from that of the other phases

ut it is not the case with the other remaining phases. There seems

o be an overlap between the time points corresponding to the M,

1 and G2 phases. So we split the time points over one cell cycle

nto two phases: S and Non-S, where the Non-S phase is the super-

et of the remaining phases. This leads to the correspondence be-

ween samples of the three cell cycles and the two phases shown in

able 2.

We use a subset of the 1134 genes identified as cell cycle regu-

ated for our experiments. This is the set of 1099 genes for which

he publicly available data table has non-empty rows (http://genome-

ww.stanford.edu/Human-CellCycle/HeLa/). The total number of GO

ags for the included genes is 567 and 222 in the BP and MF hier-

rchies respectively. Models were trained using measurements from

ne full cell cycle out of the three available cycles and used to predict

tage labels on the samples of the other two cycles. This led to a total

f three training/test pairs with two cycles in the test set for each pair.
. Results

Using the protocol for each dataset described above we computed

he mean of prediction accuracies over 10 different EM runs for each

f the models. Each of the EM runs were initialized with different

andomly chosen cluster responsibilities for genes and run for 40 it-

rations, which we observed to be sufficient for convergence to the

earest optimum. We then averaged the resulting means over held-

ut sets to compute the overall mean prediction accuracy. The stan-

ard error of the overall mean was computed by dividing the stan-

ard deviation of the means over EM runs by the square root of the

umber of such means.

.1. Optimum number of clusters

We keep the number of groupings almost the same in the experi-

ents to make a fair comparison across the models with and without

sing GO tags. In order to choose a good number of clusters, we study

he held-out prediction behavior as a function of the number of clus-

ers in the model. We perform this study for the simplest multimodal

ixture model (MMM) by varying the number of clusters from 1 to

2 exponentially, i.e. doubling each time. The stage prediction results

n the three time course datasets for held-out samples are plotted in

ig. 3. Based on the plots, the optimum number of clusters is 16. How-

ver, we choose the number of clusters to be 15, a number divisible

y 3, which supported model topologies that we have omitted for the

ake of brevity. Alternatively, it is possible to use other model selec-

ion criteria such as AIC [27] or BIC [28] for choosing the number of

lusters in our models.

.2. Estimation of biological stages

As described in Section 3.3, it is possible to estimate stage bound-

ries in a time course dataset given that the number of stages is

nown. Assuming a moderately small total number of time points in

he dataset, a brute force search for all possible groupings of time

oints into stages is performed to determine the grouping that leads

o the best training likelihood. We first performed this search for the

atasets where the ground truth was known. Specifically, we tried

ll possible groupings for the Cho and Whitfield datasets where the

otal number of time points within different cycles was 8, 9 and 14,

4, 17, respectively. Our best estimate of the stage boundaries was off

y at most one time point of the ground truth boundaries in the five

xperiments in these two datasets.

The angiogenesis data was recorded to study the process of blood

essel growth in a microvascular construct. Blood vessel growth can

e hypothesized to involve roughly two stages (angiogenesis and

aturation) as described in Section 4.1. In our data, we do not know

eforehand as to where the switch from one stage to the other oc-

urs within the recorded time series. Thus we estimated the switch

oints based on training data likelihood as well as stage prediction

ccuracy on test data using the SS-MMM model. Following the brute

orce search approach, similar to the other datasets, we computed the

og likelihood of the training data for each possible stage boundary

stimate (day 3, 7, 14, 21 and 28) and averaged them across the EM

nitializations and the two experimental runs (Section 4.1). The re-

ults in Table 3 indicate that day 7 is the best stage switch estimate

mong all the possibilities.

Further we used each of the above models for stage prediction on

he dataset (reciprocally) not used for training. Here we are validat-

ng the de novo boundary using the assumption that the two data sets

ave the same stages in lieu of ground truth. Specifically, the “ground

ruth” switch point used for testing was the same one used for pool-

ng in the training data. We plot the average prediction accuracies

s a function of the switch point for both training and held out data

http://genome-www.stanford.edu/Human-CellCycle/HeLa/
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Fig. 3. Averaged stage prediction accuracies over held-out samples of the various datasets as a function of the number of clusters used in the MMM model. A prediction strategy

based on random guess would have a stage prediction accuracy of 50%, 25%, and 50% for the Hoying, Cho, and Whitfield datasets, respectively.

Table 3

Estimation of the best switch point for Hoying data set using training data likelihood.

The table lists the average log likelihood (LL) of training samples offset from the max-

imum for all possible switch points, equivalent to log of the likelihood ratio w.r.t. the

maximum likelihood, with (BP and MF) and without (No GO) using GO tags. The best

estimate in all cases is day 7.

Switch point LL (No GO) LL (BP) LL (MF)

3 −182 −181 −173

7 0 0 0

14 −17.7 −11.6 −8.38

21 −25.1 −13.6 −7.63

28 −137 −133 −130

Table 4

Parameter settings of the various models. Each cluster is modeled by a Gaussian distri-

bution in each of the models. The notation #a/#b indicates that there are as many a’s

as given by the column entries for every b of the particular model.

MMM Pooled-MMM SS-MMM TS-MMM

#Clusters #Pools #Clusters #Pools #Clusters
#Pools

#Clusters
#Time−points

Hoying data 15 2 15 2 15 15

Cho data 15 4 15 4 15 15

Whitfield data 15 2 15 2 15 15

(

g

e

M

e

i

i

i

5

c

in Fig. 4. The switch point (day 7) leading to the most accurate pre-

diction on held out samples is a second good estimate of the true

switch, which agrees with the first estimate. This second process is

similar to cross validation and provides an estimate of the most likely

switch point in the absence of such information a priori, we use the

day 7 switch point for all experiments on the angiogenesis data. For

the other datasets we use the stage switch points that came with the

datasets as provided in Sections 4.2 and 4.3.

5.3. Model parameters

The parameter counts for each of our models are listed in Table 4.
The above choices lead to grouping of the genes’ measurements

expression levels and GO tags) into almost the same number (15) of

roups. This is regardless of whether grouping is done considering

xpression profiles across the entire time course (MMM and Pooled-

MM), individual time points (TS-MMM) or pooling expression lev-

ls across a subset of time points (SS-MMM and Pooled-MMM). Keep-

ng the number of base clusters as similar as possible in all the group-

ngs enables a fair comparison across models that are quite different

n how they group the data.

.4. Cluster GO term posteriors

All our models learn a posterior over GO terms for each of the

lusters. These posteriors could be useful for further interpretation
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Fig. 4. Estimation of the switch point between the angiogenesis and maturation stages for the Hoying dataset. The plots show the stage prediction accuracy as a function of different

assumed switch points (days 3, 7, 14, 21 and 28). The three plots correspond to models without using GO tags (top-left) and using tags from the Biological Process (top-right) or

Molecular Function (bottom) GO hierarchies. Based on average stage prediction accuracy over held out data, day 7 is the optimal estimate of the time of stage switch.
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f the clusters. For example, the most probable GO terms within a

luster could be indicative of the predominant Biological Process or

olecular Function that the genes within that cluster are involved.

ince our main focus in this paper is to evaluate the performance of

ultimodal clustering on phenotype prediction we have not exten-

ively examined the GO term posteriors for biological interpretation.

ig. 5 shows the first 20 most likely GO terms of the Cho yeast cell cy-

le data from the Biological Process ontology in a few clusters of the

MM model. The GO terms were post-processed using the REViGO

ool [29] to eliminate any redundancies in the terms.

.5. Comparison between models

The stage prediction results on held-out samples of the three

ime-course datasets using each of the models are shown in Fig. 6.

he results suggest that the proposed models learn about the under-

ying distribution, as stage prediction performance on held out data

s almost always above chance (excepting the MMM and SS-MMM

odels on the yeast cell cycle data, without using GO tags). Further,

he models that use GO tags almost always perform better or at least

qually well within error relative to their corresponding models

hat do not make use of GO tags. This improvement in prediction

erformance is most evident for the yeast cell cycle data. Regardless

f the model, the average prediction accuracy is close to chance
rediction (25%) when GO tags are not used. Using GO tags from

he BP tree, this improves to around 70.3%, 38.54%, 68.40%, and

6.67% for the MMM, TS-MMM, SS-MMM and Pooled-MMM models

espectively. A similar improvement to around 65.4%, 45.49%, 84.44%,

nd 73.54% is observed using the MF GO tags. In the case of human

ell cycle data, the most significant improvement from about 49.1%

No GO) to about 76.51% (BP) and 73.57% (MF) is observed using the

ooled-MMM model. Using GO tags in the other models results in

similar but a slightly less significant improvement. The prediction

erformance on the angiogenesis data using models that use GO tags

s almost as good or slightly better as the ones not using them. Note

hat this data has only very few samples (6) and so an anomalous

esult is quite likely. The prediction results offer clear evidence

hat GO tags provide independent and useful information that can

ugment measured expression levels of genes.

There seems to be a merit to using models that pool expres-

ion levels within a stage, on the task of learning about biological

tages. On almost all the datasets, the pooled sample models seem

o help the task of stage prediction. This is because appropriately

onstrained models generalize better than their unconstrained ver-

ions. With the knowledge of biological stages, the extra constraints

f sharing Gaussian parameters across time samples of a stage

ead to simpler models in the case of pooled sample models (SS-

MM and Pooled-MMM). On the other hand their corresponding
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Fig. 5. Most likely GO terms in a few clusters of the MMM model on the Cho yeast cell cycle data. The 20 most likely terms were chosen based on their posterior likelihoods in the

clusters. The terms were post-processed to eliminate any redundancies in the GO terms using the REVIGO [29] tool. The same tool was used to plot the visualization of the terms
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special cases (TS-MMM and MMM) with fewer constraints tend

to overfit leading to relatively poor generalization. This is simi-

lar to regularization in model fitting or introducing appropriate

priors in Bayesian inference. Note that some of the other con-

straints, e.g., all the genes within a group making phase transi-

tions together, might agree more with some datasets than others.

Models without such constraints are easy to construct but they

have a tendency to fit noise more than the underlying biological

phenomena.

5.6. Comparison to a discriminative model: multiclass SVM

We experimented with a discriminative model for stage predic-

tion on our datasets, specifically a Multiclass Support Vector Ma-

chine (SVM) with a linear kernel. We used the standard formulation

of multi-class classification with a different weight vector for each
lass within the structured output SVM (SVM-struct) framework [30].

he prediction results are plotted in Fig. 6e. Note that GO tags are not

seful in discriminative modeling as they remain the same across all

he gene expression samples and do not help differentiate between

amples. Therefore we did not use GO tags for these experiments. The

xperimental protocol is the same as for the previous experiments for

ach dataset. The results are competitive with some of the generative

odels proposed in this paper that use GO tags. This suggests that

t is possible to obtain a high prediction accuracy without using GO

ags using a discriminative model such as a multiclass SVM. However,

enerative models can be used to make a number of inferences other

han stage prediction, as exemplified by the determination of stage

oundaries developed here. These models can also be used to sim-

late new data points by sampling. Discriminative methods [31–33]

ack this ability and learn a strong model with fewer parameters only

o discriminate between classes.
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Fig. 6. (a)–(d) Averaged stage prediction accuracies over held out samples of the various datasets using the different models. The pooled sample models (SS-MMM and Pooled-

MMM) use a Bayesian stage prediction scheme (see Section 3.1), whereas the TS-MMM and MMM models use a time-based stage prediction scheme (see Section 3.2). A prediction

strategy based on random guess would have a prediction accuracy of 50%, 25%, and 50% on the Hoying, Cho, and Whitfield datasets, respectively. (e) Average prediction accuracy on

the held out samples of the Hoying, Cho and Whitfield datasets using a multiclass SVM. GO tags are not used for these experiments as they remain the same across all the samples.
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. Discussion

In this work, we introduce a multimodal probabilistic genera-

ive framework for modeling a number of microarray datasets. Mul-

imodal models enable us to incorporate an independent source of

nformation in the form of Gene Ontology (GO) tags for analyzing

icroarray gene expression data. These are terms from an evolving

ontrolled vocabulary to describe genes and gene products. The most

ommon approach to use these terms is to examine gene clusters

r candidate gene groups by doing an enrichment analysis. We de-

iate from this approach and use these terms in clustering genes in

continuous-discrete space of gene expression levels and GO terms.

lthough we use Gaussians in this work, different sources of noise
an be easily modeled with appropriate parametric probability distri-

utions in the generative framework. A number of inferences includ-

ng phenotype or biological stage inference can be done employing a

ayesian methodology. The proposed models do not assume anything

bout how the gene expression data were measured. Expression data

easured using other technologies is easily handled within our mod-

ling framework.

We propose four generative multimodal models for time course

ene expression datasets to cluster genes differently based on their

ehavior over the entire time course, biological stages or individual

ime points. We use these models to infer biological stage boundaries

ssuming the number of stages, and stage prediction on novel data

iscussed in detail below. To determine stage boundaries, we choose
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the ones leading to the largest likelihood. To compute the likelihood

we choose to use the SS-MMM model. Using this paradigm, we are

able to estimate the true stage boundaries to within a single time

point relative to ground truth in Cho and Whitfield datasets. We use

the same procedure to estimate the stage boundary in the Hoying

dataset where no such prior information is available. We also validate

that the boundary we find is also the best boundary for stage predic-

tion on the assumption that the two runs of the experiment have the

same stages.

Our results based on biological stage prediction for various

datasets suggest that GO tags provide useful information to obtain

better gene clusters for the task of prediction. Significant improve-

ments in prediction accuracies using GO tags are observed on the

yeast and human cell cycle data, whose genes and annotations have

been long studied. The improvements are less significant with the

Hoying angiogenesis data possibly due to various factors such as the

selection of genes, their annotations or the dataset size. Models that

pool samples across time points (Pooled-MMM and SS-MMM) are

regularized versions of corresponding models (MMM and TS-MMM)

that do not assume pooling and lead to better generalization in terms

of prediction accuracy.

The held-out prediction behavior on all the datasets improves

with increasing number of clusters, up to about 16 clusters, when GO

tags are used. This is not necessarily true with models not using GO

tags. This implies that when more patterns (clusters) of gene behav-

ior are allowed, GO tags can help delineate these patterns in a way

useful for phenotype prediction. From Fig. 3, it can be seen that by

increasing the number of clusters from 1 to 16 the average held-out

prediction accuracy improves from around 30% to 70% when GO tags

are used with the yeast cell cycle data. A similar improvement from

around 63% to around 75% is observed with the human cell cycle

data. Note that with models not using GO tags in the two cases the

average prediction accuracy remains almost the same over the range

of number of clusters. It ranges between 15% and 30% in the case of

yeast cell cycle data and between 60% and 65% in the case of human

cell cycle data.

The above improvement due to using GO tags is more significant

in the two cell cycle datasets than the angiogenesis dataset. This is

perhaps due to two possible reasons. One is that the number of sam-

ples in the Hoying angiogenesis data is small (6 per run, see Section 4)

leading to estimates of standard errors that are relatively large. The

second is the quality of GO tags for the genes chosen for the exper-

iment. For the two cell cycle datasets, the chosen genes have been

very well studied by other research groups and are known to be in-

volved in the process of cell cycle regulation. Yeast and human genes

have been thoroughly studied and annotated. The genes used for the

Hoying data are chosen based on differential expression. More work

is needed to ascertain that the selected genes are all involved in the

blood vessel growth process and have reliable GO annotations.

7. Software

A Matlab package implementing the proposed

methods will be made available online at the URL:

http://www.ivilab.org/software.html.
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Appendix A. Expectation maximization (EM)

We describe the EM algorithm update equations for training each

of our models described in this work. In our implementation, the EM
 w
lgorithm is initialized with random assignments to cluster respon-

ibilities (expected values of hidden variables) of the E-step. Most of

he equations follow the notation in Section 2 and other equations in

he paper, along with a few new terms introduced below as needed.

1. MMM

The parameters of the MMM model include the cluster priors P(c),

eans (μc(t)), variances (σ2
c (t)) of the clusters c at each of the time

oints t in the training data, and the cluster conditional Gene Ontol-

gy term distributions P(o|c) for each term o. Let μc and σ2
c represent

he corresponding mean and variance vectors obtained by concate-

ating these parameters across the time points t. The E-step and the

-step update equations are given as follows.

1.1. E-step

g
c = P(c|eg, Og) (A.1)

∝ P(c)p(eg, Og|c) (A.2)

here γ g
c is the expected value of the hidden variable (cluster respon-

ibility) corresponding to cluster c for gene g. The form of p(eg, Og|c)
s given by Eq. (1).

1.2. M-step

(c) =
∑

g γ g
c∑

c

∑
g γ g

c

(A.3)

c =
∑

g γ g
c eg∑

g γ g
c

(A.4)

2
c =

∑
g γ g

c (eg − μc)
2∑

g γ g
c

(A.5)

(o|c) =
∑

g δg(o)γ g
c∑

o

∑
g δg(o)γ g

c

(A.6)

here δg(o) is an indicator function which is 1 if gene g is annotated

ith the term o, otherwise 0.

2. Pooled-MMM

The EM update equations for this model are almost the same as

he MMM model, except that shared parameter values for all pooled

ime points within a stage are used in computing the likelihood in

he E-step (Eq. (2)). Similarly, expression values for all pooled time

oints within a stage are averaged to obtain the corresponding shared

arameter estimates. The M-step updates for only the shared param-

ters: stage s specific mean (μc(s)) and variances (σc(s)) are given

elow.

2.1. M-step

c(s) =
∑

g γ g
c

(
1
|s|

∑
t∈s eg

t

)
∑

g γ g
c

(A.7)

2
c (s) =

∑
g γ g

c

(
1
|s|

∑
t∈s

(
eg

t − μc(s)
)2

)
∑

g γ g
c

(A.8)

here |s| is the number of samples within stage s .

http://www.ivilab.org/software.html
http://dx.doi.org/10.13039/100008335
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3. SS-MMM

The parameters of the SS-MMM model include the univariate

tage and cluster specific means (μcs
), variances (σ2

cs
), priors (P(cs)),

nd ontology term conditional distributions (P(o|cs)) for every cluster

s of a stage s.

3.1. E-step

Each gene admits two responsibility variables, one for sampling

he expression from a stage specific cluster γ g
cs
(e

g
s) and the other for

ampling a GO tag o from a stage specific cluster γ g
cs
(o)

g
cs
(eg

s) = P(cs|eg
s) (A.9)

∝ P(cs)p(eg
s |cs) (A.10)

g
cs
(o) = P(cs|o, eg

s) (A.11)

∝ P(cs|eg
s)P(o|cs) (A.12)

The likelihoods in the above equations are computed from the cur-

ent parameter estimates in the EM iterations.

3.2. M-step

(cs) =
∑

g

(
γ g

cs
(eg

s) + ∑
o

δg(o)γ g
cs
(o)

M

)
∑

cs

∑
g

(
γ g

cs
(eg

s) + δg(o)γ g
cs
(o)

M

) (A.13)

cs
=

∑
g γ g

cs
(eg

s)
(

1
|s|

∑
t∈s eg

t

)
∑

g γ g
cs
(eg

s)
(A.14)

2
cs

=
∑

g γ g
cs
(eg

s)
(

1
|s|

∑
t∈s (eg

t − μcs
)2

)
∑

g γ g
cs
(eg

s)
(A.15)

(o|cs) =
∑

g δg(o)
γ g

cs
(o)

M∑
o

∑
g δg(o)

γ g
cs
(o)

M

(A.16)

n the above equations, M is the total number of stages, |s| is the total

umber of samples in a stage s, and δg(o) is the indicator function for

enoting whether the gene g is annotated with the term o.

3.3. TS-MMM

The EM update equations are the same as for the SS-MMM model

xcept that stage s is replaced by time point t and number of stages

is replaced by the total number of time points N.
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