
Abstract

We work with a model of object recognition where
words must be placed on image regions. This approach
means that large scale experiments are relatively easy,
so we can evaluate the effects of various early and mid-
level vision algorithms on recognition performance.

We evaluate various image segmentation algorithms
by determining word prediction accuracy for images
segmented in various ways and represented by various
features. We take the view that good segmentations
respect object boundaries, and so word prediction should
be better for a better segmentation. However, it is usually
very difficult in practice to obtain segmentations that do
not break up objects, so most practitioners attempt to
merge segments to get better putative object
representations. We demonstrate that our paradigm of
word prediction easily allows us to predict potentially
useful segment merges, even for segments that do not
look similar (for example, merging the black and white

halves of a penguin is not possible with feature-based
segmentation; the main cue must be "familiar
configuration").

These studies focus on unsupervised learning of
recognition. However, we show that word prediction can
be markedly improved by providing supervised
information for a relatively small number of regions
together with large quantities of unsupervised
information. This supervisory information allows a better
and more discriminative choice of features and breaks
possible symmetries.

1. Introduction

We adopt a model of object recognition where words
must be placed on image regions [1-3]. This is achieved
in practice by exploiting large image data sets with
associated text. Critically, we do not require that the text
be associated with the image regions, as such data is rare.
Considering processes which translate from images
(visual representation) to words (semantics) gives a
handle on a number of difficult computer vision
problems. In part, this is because translation performance
can be measured on a large scale, by comparing at the
proposed translation (predicted words) with the actual
translation (associated text).

We use word prediction performance to evaluate
image segmentation and feature choices. It is widely
agreed that segmentation measures should be task
oriented (see [4] for related work). We argue that word
prediction is an excellent task because it is associated
with higher level image semantics and recognition. An
orthogonal recent approach is to link segmentation
performance to those provided by human subjects [5, 6].

Perfect segmentation is not available, and even if
contours are perfectly followed, low level approaches
cannot consistently deliver groupings reflecting
semantics. For example, low level segmenters cannot
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Figure 1. Illustration of labeling. Each region is
labeled with the maximally probable word, but a
probability distribution over all words is available
for each region.



merge the black and white halves of a penguin. We
propose using region word prediction as a vehicle for
integrating the higher level processes with the lower level
ones. Specifically merges are proposed between regions
with similar word posteriors. Such a mechanism should
facilitate the learning of familiar configuration, and
possibly shape, as shape descriptions should become
more pertinent as appropriate regions are merged.

While the system we are building is purposely
designed to learn from data with minimal structure, there
are limits to what can be done without supervision. For
example, it can be difficult to learn to distinguish items
that tend to co-occur. However, supervised data is
difficult and expensive to collect, so in §7 we study
methods that improve performance using a small amount
of  labeled data.

The translation model for machine vision has many
elements from a long history of computer vision
research. Early work along the lines of traditions
artificial intelligence (summarized in [7]) proposed
paradigms for reasoning about image pieces with labels.
There is also previous work on learning region
classification from labeled [8, 9] and semi-labeled data
[10, 11] Recent work on integrating words and text to
improve image retrieval is also relevant [12-14].

2. Predicting words from images

A number of methods have recently been described
for predicting words from segmented images [1-3, 15].
For most of the results reported in this paper we use a
special case of one of the models in [3]. Specifically, we
model the joint probability of words and images regions
as being generated by a collection of nodes, each of
which has a probability distribution over both words and
regions. The word probabilities are provided by simple
frequency tables, and the region probability distribution
are Gaussians over feature vectors. We restrict the
Gaussians to have diagonal covariance (features are
modeled as being independent).

Given an image region, its features imply a
probability of being generated from each node. These
probabilities are then used to weight the nodes for word
emission. Thus words are emitted conditioned on image
regions. In order to emit words for an entire image (auto-
annotation), we simply sum the distributions for the N
largest regions. Thus each region is given equal weight,
and the image words are forced to be generated through
region labeling.

To be consistent with the more general models
referenced above, we index the nodes by “levels”, l.
Given a region (“blob”), b, and a word w, we have

† 

P(w | b) = P(w | l)P(b | l)P(l ) P(b)
l

Â (1)

where P(l) is the level prior, P(w|l) is a frequency table,
and P(b|l) is a Gaussian over features. To estimate the
conditional density of words given blobs for the entire
image these probabilities are summed over the N largest
blobs. Parameters for the conditional probabilities linking
words and blobs are estimated from the word-blob co-
occurrence data using Expectation Maximization [16].
For all experiments reported in this paper we use 500
nodes.

For the work on supervision (§7) we use a simpler
model [2] where the image regions are first discretized
using K-means clustering, and then a machine translation
algorithm [17, 18] is used to simultaneously learn the
translation table and the correspondences.

3. Experimental Protocol

For the bulk of experiments we used images from 160
CD's from the Corel image data set. Each CD has 100
images on one relatively specific topic such as "aircraft".
From the 160 CD's we drew samples of 80 CD’s, and
these sets were further divided up into training (75%) and
test (25%) sets. The images from the remaining CD’s
formed a more difficult “novel” held out set. Predicting
words for these images is difficult, as we can only
reasonably expect success on quite generic regions such
as “sky” and “water”—everything else is noise.

Each such sample was given to each process under
consideration, and evaluated on the basis of at least 1000
images. The results of 10 such samples were further
averaged. This controls for both the input data and EM
initialization. Words occurring less than 20 times in the
training set were excluded. The number of words in the
vocabulary varied from 153 to 174 over the 10 runs.

For the segmentation evaluation and segment merging
experiments we used a modest selection of features for
each segment, including size, position, color, oriented
energy (12 filters), differential response of 2 different
Gaussian filters, a few simple shape features—essentially
consistent with recent work on linking words with
images [2, 3, 15]. We normalize all features so that in the
training data each has mean zero and variance one.

For the feature evaluation experiments images were
segmented using Normalized Cuts [19].

Performance measures. Several ways to quantify
word prediction performance have been proposed [3].
Here we use the simplest measure. Specifically, we allow
the model to predict M words, where M is the number of
words available for the given test image. In our data M
varies from 1 to 5. The number correct divided by M is
the score.

In all results reported for segmentation, feature choice,
and region merging, we express word prediction relative
to that for the empirical word distribution—i.e., the
frequency table for the words in the training set. This



reduces variance due to varied test sample difficulty.
Exceeding the empirical density performance is required
to demonstrate non-trivial learning. Doing substantially
better than this on the Corel data is difficult. The
annotators typically provide several common words (e.g.
“sky”, “water”. “people”), and fewer less common words
(e.g. “tiger”). This means that annotating all images with,
say, “sky”, “water”, and “people” is quite a successful
strategy. Performance using the empirical word
frequency would be reduced if the empirical density was
flatter. Thus for this data set, the increment of
performance over the empirical density is a sensible
indicator.

4.    Semantic based segmentation evaluation

We evaluate six variants from three classes of
segmentation methods: the expectation-maximization
segmenter used for Blobworld [20-22], Normalized Cuts
[19], and the mean shift algorithm [23]. The
implementation of Normalized Cuts available to us
provides both over-segmented initial output (“preseg”) as
well as the finished results (“ncuts”). Similarly, the mean
shift implementation, kindly made available on-line [24],
gives three options (over segmentation, under
segmentation, and quantization). Example segmentations
from the three classes is shown in Figure 2.

A possible confound in our process is the number of

segments used for word prediction and thus in Figure 3
we plot performance as a function of using the largest 2,
4, 6, 8, 10, and 12 regions. The large scale of our
experiments—results for 10,000 images are used for each
data point—means we can estimate errors for each
plotted value (indicated by error bars).
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Figure 3. Segmentation methods compared using word prediction performance, evaluated on held out date
(left), and novel data (right). All values plotted are positive, which means that performance always exceeds
that using the empirical distribution. We restrict the plots to the “over-segment” version of mean-shift to
avoid clutter—the other versions give results close to this one. Some of the segmentation approaches are
shown to be significantly different, given the error estimates indicated by the bars around the points. The
errors were estimated from the variance of the word prediction process over 1000 different images over 10
input sets.

Figure 2. Examples of segments from Blobworld
(top ), mean shift quantized (middle) and
normalized cuts (bottom).



We find that ncuts provides distinctly better support
(well outside of error) for word prediction compared with
the Blobworld EM segmenter. The mean-shift algorithm
is somewhere between the two, again significant given
the error estimates in the case of the first held out set. For
the novel images, the order remains the same but there is
more variance. Interestingly, preseg seems to be
comparable to ncuts, provided that we increase the
number of segments to 20 (not plotted). Additional
experiments are needed before we can say whether there
is a real difference.

5. Semantic based feature evaluation

We apply a similar strategy to evaluating features.
Here we keep the segmenter and the number of regions
fixed (normalized cuts, 8 regions), and investigate word
prediction performance as a function of features. In
addition to the feature sets used in previous work, we
experiment with several others, including a more
comprehensive shape descriptor and color context as
described below.

Since it is impractical to evaluate all combinations of
features we break them into groups. We consider a
“base” set of features which consists of region size,
location, and two simple shape features, namely the first
moment of the region, and the area divided by the square
of the outer boundary length.

We consider adding color as encoded in three
different ways—straight RGB, L*a*b, and chromaticity
with brightness, specifically, S=R+G+B, r=R/S, and
g=G/S. In all case both the average color and its variance
over the region is used. Thus color adds 6 numbers to our
feature vector.

Texture is represented by a combination of the
average energy response to 12 filters with different
orientations, and the average response to the difference
of 4 different combinations of 2 Gaussian filters.

Our base features include minimal shape information.
It is not clear whether our segmentations of thumbnail
sized images contains usable shape information. In this
work we attempt to test this. Shape is difficult to
characterize using a modest sized feature vector, but we
wanted to keep the number of components roughly the
order of what is known to be manageable by our learning
procedure. Thus we choose to encode a limited amount
of shape information in 30 numbers. We considered only
the outer boundary of the each region, normalized for the
length of the boundary, and parameterized the distance
from the center of mass by arc-length. The result was
then smoothed and sampled at 30 points. The first point
was taken to be the top left corner. We specifically did
not make the shape descriptor invariant to rotation on the
assumption that the photographer bias for upright images

means that the orientation of the shape carries usable
information. (We have yet to test that assumption.)

By color context we mean the average color adjacent
to regions in various directions. It is intuitively
reasonable as a feature to try for improved word
prediction. For example, a brown blob is more likely to
be a bird, and less likely to be dirt, if it is surrounded by
light blue. To compute color context we start be
computing the average distance of the outer boundary of
a region from its center mass. Then we consider all
points within twice this distance in 4 quadrants aligned at
45 degrees to the image axis. For each of the four wedges
(top, bottom, left, right), we average the colors in the
wedge but not in the region, provided that there are more
than 100 such points. Otherwise the average color of the
region itself is used. This gives 12 numbers for each
region.

In Table 1 we give word prediction performance for a
number of combinations of features. Not surprisingly
given the nature of the Corel data, color is most
important. Interestingly, color space makes a significant
difference (more than we expected). Chromaticity plus
brightness does the best, and both it and L*a*b do
significantly better than RGB. This ranking suggests that
correlation among the color components is a likely
source of trouble (recall that we treat features as
independent). This also suggests that steps should be
taken to reduce the correlation among other features.

Color context helps, but not as much as we hoped.
Color context was conveniently computed in terms of
RGB. The above finding on the effect of color space
suggests that we should test color context expressed in
the chromaticity plus brightness space.

Table 1. Word prediction performance for a variety
of feature sets. More features is certainly not
better, likely due to over-training and noise. Color
is the the best single cue, followed by texture.

Word prediction performance
on the various data sets (error is
roughly 0.003)Feature set

Training Held out Novel
Base set 0.019 0.020 0.018
Base set, RGB 0.076 0.057 0.044
Base set, L*a*b 0.097 0.085 0.061
Base set, rgS 0.109 0.092 0.065
Base, rgS, color context 0.134 0.094 0.055
Base set, texture 0792 0.048 0.041
Base, rgS, texture 0.109 0.072 0.059
Base set, shape 0.053 0.016 0.017
Base set, rgS, shape 0.065 0.029 0.027
Base,rgS, texture, shape 0.083 0.043 0.038
Everything 0.097 0.055 0.039



Texture also carries some usable information—using
it with only the base set gives significant improvement,
but when used in conjunction with color the increment is
not that large. This may be due to the fact that the
variance we include with color carries some texture
information. Additional experiments will sort this out.

Utilizing shape proved to be problematic. It is clear
from the results on the training data that our shape
feature carries usable information but the results on the
held out data reveal that what was captured does not
generalize well. We are not particularly surprised by this
result given the nature of our segment boundaries
obtained from small images. However, the results also
indicate that longer feature vectors can make things
worse—even though they provide more
information—which indicates that over-training needs to
be investigated as a source of difficulty.

Assuming that we can overcome these problems, we
are still left with the reality that learning shape from data
is confounded by the fact that objects are often split up
by segmenation processes, often because making the
pieces into an object requires higher level information.
To tackle learning the appropriate shape templates from
familiar configurations we propose the novel strategy of
using word prediction posterior probabilities to merge
image regions

6.      Merging regions using word prediction

It is generally assumed that segmentations based on
low level features are not entirely appropriate for
recognition. For example, merging the white and black
halves of a penguin requires deference to some other
processes. We propose that associated text is a possible
broker for these processes, providing the tokens upon

which salient familiar configurations can be learnt. As a
first step in this direction we offer a simple region
proposal strategy based on word prediction.

Specifically we look at the correlation between the
word posteriors for adjacent regions. The higher the dot
product of the two vectors representing the word
posterior, the more attractive the merge.

To evaluate our region merging mechanism we
examined all possible merges for 50 held out images for
each of our 10 samples. A total of 5911 images like the
ones in Figure 4 were rated. Two evaluators did
approximately half of the scoring apiece. The evaluators
were blind to the machine merge score, Each merge was
rated as accept or reject. Roughly 10% (590) were rated
as “undecided” and thus ignored. We wish to test for the
existence of a relationship between the merge score
above and human rating, but of course the data is very
noisy. Thus we rank the machine scores, and put them
into bins representing the worst 20%, the next best 20%,
and so on. For each bin, we compute the average
acceptance score. The results in Table 2 demonstrate that
the merges with higher scores are more likely to be
accepted by the human evaluators.

7. Using Labeled Data

For our purposes, supervised recognition data is
obtained by manually attaching word labels to image
regions. Such data is never going to be available in large
quantities, and needs to be used jointly with unsupervised
data. However, quite small quantities of supervised data
can help the recognition process in two ways: selecting
appropriate representations of image information, and
breaking symmetries present in unsupervised data.

7.1. Learning to Match Regions and Words

It is easier to study the effects of labeled data using a
somewhat simpler process to attach labels to image
regions than that used to study segmentation. In [2], an

Figure 4. Example proposed merges illustrated by
the line connecting two regions in each of the
images. The example on the left is evaluated as
good, and the example on the right is evaluated as
bad. To evaluate the automatic merge proposal
process, we examined 5911 images like these.

Table 2. The relationship between a histogram of
machine proposed merges and the human
evaluation thereof. We are encouraged that as the
strength of the proposal rises, it is more likely to
be judged as appropriate by the human evaluator.
The error estimates shown in parentheses indicate
that the proposed merges are significantly different
from chance.

Range of merge proposal
scores based on word
prediction. Each group
consists of 982 or 983 merges

Average human
evaluation score

0-20% 0.420 (0.016)
20-40% 0.436 (0.016)
40-60% 0.471 (0.016)
60-80% 0.484 (0.016)
80-100% 0.525 (0.016)



unsupervised process learns to attach words to image
regions by vector quantizing a representation of the
image region, and then building a joint probability table
using EM. The missing variables are the correspondence
between image regions and annotation words. This
process is exactly analogous with that used to build
lexicons in statistical machine translation [25]. The
difficulty with this approach is that the representation of
the image regions is obtained completely independent of
the words. Ideally, one would want have clusters of
image regions that tend to result in few distinct words.
Supervised data can achieve this.

7.2 Selecting Appropriate Representations

In particular, we use the following procedure.
Supervised data supplies a small set of image regions
where we know both the label and features for the region.
As in §3, each image region is originally represented by
30 features; these features are shifted and scaled to have
zero mean and unit variance. We perform principal
components analysis on the result, to reduce the
dimension to 11 for stability, and then obtain linear
discriminant features. This yields a feature space, within
which we have a small number of labeled elements. We
construct one cluster per appearance type. The
vocabulary is reduced to only the label words required to
describe the blobs in the selected CDs. We add the word
null to the vocabulary, and to the annotations of each
image. Unsupervised data is now vector-quantized by
nearest neighbours in the feature space—this means that
an unlabelled image region is assigned to the cluster
belonging to the closest labeled image region.

There are now two possibilities. First, we could build
a nearest neighbour classifier, where an unlabelled image
region is given the label of the closest labeled image
region. As the results show, this method suffers from the
relatively small amount of labeled data available.
Second, we could assign unlabeled image regions to the
cluster of the closest labeled image region, but still learn
the joint probability of image clusters and words from
data using EM. This has the considerable advantage that
we can still use the unsupervised word and image data.

7.3. Breaking Symmetries

It can be difficult to learn region-word corres-
pondences from annotated images if the entropy of the
annotations is not high (the usual case). In the extreme
case, two words always appear together in annotations,
and so the incomplete data log-likelihood has a
symmetry—the horses could be green and the grass
brown, or the other way round. Even small amounts of
labeled data should break this symmetry. Manual
labeling is easily incorporated into the method of [2]; one

fixes the correspondences that are known between image
regions and words, and fills in missing correspondences
with EM, as before.

8.  Experimental Results on Supervised Data

We expect that labeled data will primarily affect
correspondence—which region in the image is annotated
with which term. Here the annotation measure is clearly
only a proxy. It seems reasonable to assume that
arranging word prediction to occur only through
individual regions (and not partly through image clusters
as in [1]) makes the proxy measure more appropriate.
However, we still need to check the correspondences,
and this is done by hand; what this means is the scale of
experiments must be somewhat smaller.

Data sets: We used 6 CDs from the Corel dataset to
test the effect of labeled data. Each CD contains 100
images. Segmented versions of ten images from each CD
are labeled by hand. In this collection, each CD
represents a specific topic (“tigers”, “planes”, etc.) and so
only a few keywords are sufficient to describe a CD.
Each CD is split into a 70 image unlabeled training set, a
10 image labeled training set (where word-region
correspondences are manually identified) and a 20 image
test set.

Strategies compared are:
1) The method of [2], but with only unsupervised data .
2) A method where labeled data are used to produce
clusters of image regions as in §7.3, but where the joint
probability table between clusters of image regions and
words is learned using unsupervised data.
3) A method where labeled data are used to produce
clusters of image regions and where the joint probability
table between clusters and words is learned with a
combination of supervised and unsupervised data.
4) A method where labeled data is used to produce a
nearest neighbour classifier—image regions are assigned
the label of the nearest labeled example.

Evaluation is difficult for this task, because to check
correspondence between image regions and words, one
must check each label assignment by hand. We use
annotation performance as a proxy, and also check
labelings of image regions by hand. Table 3 compares (a)
annotation performance (the extent to which the method
annotates images with words that are the same as those
supplied) and (b) correspondence performance (the total
number of regions that have words on them that are
correct) for each of the four methods described above.
Method 3 is better than method 2, and method 2 is
significantly better than method 1; method 4 is better at
correspondences than any other method, but does
somewhat worse at annotation. This appears to be
because there is relatively little data with which to train a



nearest neighbour method; the unsupervised data
improves performance by being available in bulk.

For methods 1, 2, and 3 one can compute the mutual
information in the learned joint probability distribution
coupling words and region descriptors. There are 15
words, and 22 blobs. The mutual information for joint

probability tables linking words and blobs are, in bits,
1.25, 1.24 and 1.32 for methods 1,2 and 3 respectively.
The maximum possible value is 3.72. Notice that
supervisory information on image region clusters alone
appears to make little difference, but supervising both
clustering and correspondence results in a significant
difference. While the value is low, it clearly shows the
impact of supervisory information.

Nearest neighbours (method 4) has another significant
flaw: it tends to over-predict words, as table 4 indicates.

9. Discussion

Studying object recognition as a word prediction task
has the attraction that it finesses the finer details of the
recognition problem (what object representations to
adopt; how to group shape representations; how to reason
about pose) and makes it possible to do large scale
experiments on the broader aspects of recognition. Such
experiments give a rough but useful evaluation of
different representations. We have shown that
segmenters differ considerably in their ability to support
word prediction—choosing a better segmenter will make
a real difference in a practical problem. Furthermore, we
have shown that the right choice of features will also
improve performance. However, the great difficulty in
the current word prediction paradigm is the lack of
comprehensive shape representation. Shape
representations are hard to incorporate, because the
representation typically must be formed out of more than

Table 3. The effects of supervision on word
prediction performance measured by comparing
four different methods. The first three columns
measure annotation prediction on unlabeled
training, labeled training and test data respectively.
For each image, the method predicts the number
of annotations actually present in the image, and is
scored based on the fraction of those predictions
that are correct. The final column gives the total
number of regions that correspond correctly, out of
a maximum of 301.

method unlabeled
training

labeled
training

test  correspondence

1 0.0692 0.1431 0.0597 15
2 0.0794 0.1736 0.0988 113
3 0.0782 0.1736 0.0811 202
4 0.0687 0.1486 0.1025 301

Table 4. The table shows correspondence results
and false positive rates on a test data set for a set
of words for methods 3 and 4. Correspondence
results are obtained by predicting words using the
method, and then checking each image by hand.
We show the number of times the term was
predicted correctly, the total number of predictions
made, and the percentage of predictions that are
correct. Notice that the two methods make correct
predictions at about the same rate, but that
method 4 predicts words very much more often
than method 3. We also show the false positive
results (fp) which are obtained using the
annotation performance as a proxy. Nearest
neighbor method creates more false postives.

both supervised nearest neighbor
correspondenc
e

fp correspondence fp

eagle 0 / 0 (NAN) 0.00 4 / 63 (6%) 0.84
elephant 5 / 30 (17%) 0.77 4 / 30  (13%) 0.77
field 6 / 54 (11%) 0.85 6 / 54  (11%) 0.85
forest 0 / 0 (NAN) 0.00 0 / 5  (0%) 0.95
grass 10 /31(32%) 0.77 19 / 54 (35%) 0.78
horses 5 / 42 (12%) 0.82 5 / 37 (14%) 0.84
lion 2 / 35 (6%) 0.75 2 / 23 (9%) 0.76
plane 9 / 40 (23%) 0.70 9 / 40 (23%) 0.70

Figure 5. Each column shows images labeled
using one of the four strategies (reading from the
left): method 1 (k-means clustering of image
regions); method 2 (supervised clustering of image
regions, but unsupervised word-region
correspondence learning); method 3 (supervised
data used both to cluster image regions and to
learn correspondences); and method 4 (nearest
neighbours)



one region, and the criteria by which regions should be
merged are obscure: “familiar configuration” simply
means that the regions do better together than apart. We
have shown that region merges suggested by a word
prediction criterion are good; this suggests that it should
be possible to take these merged regions and construct a
shape representation that in turn enhances recognition.
Finally, we have shown that supervised data, even in
small amounts, can significantly improve word
prediction rates by improving both the representation
adopted for image regions and the correspondence
established between regions and words.
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