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ABSTRACT
We address the problem of jamming mitigation of multicast
communications in multi-channel ad hoc networks. Specifi-
cally, we develop two frequency hopping (FH) techniques for
establishing multicast communications. These techniques,
denoted by KFH and CFH, address the two following prob-
lems. First, establishing multicast communications in the
presence of a control-channel jamming attack. Second, re-
distributing the secret keys (i.e., PN codes) once the current
keys have been exposed by a smart eavesdropping jammer.
Our techniques are distributed, do not incur any additional
message exchange overhead, work in the absence of node
synchronization, and maintain the multicast group consis-
tency.

1. INTRODUCTION
Wireless communications are vulnerable to intentional in-

terference attacks, typically referred to as jamming. Con-
ventional anti-jamming techniques rely extensively on spread
spectrum (SS) communications, including frequency hop-
ping spread spectrum (FHSS).
We consider two types of jamming attacks: control-channel

denial of service (DoS) attacks, and the smart eavesdropper
jamming attack. The operation of a wireless network relies
extensively on exchanging messages over a control channel.
The network performance can be severely degraded if a jam-
mer lunches a DoS attack on such a channel. In the pres-
ence of a smart eavesdropping jammer, FH sequences may
be (eventually) partially figured out by the eavesdropper,
who may attempt to persistently target certain frequencies
in certain time slots.
In this work, we propose two FH techniques that can es-

tablish multicast communications in the presence of a control-
channel DoS attack and/or smart eavesdropper attack. Our
techniques have four important features: (i) They are fully
distributed, (ii) they do not incur any additional message
exchange overhead, (iii) they can establish multicast links
in the absence of node synchronization, and (iv) in contrast
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to [2], they maintain the multicast group consistency, where
at any time instant all nodes have consistent keys.

Our FH algorithms, denoted by KFH and CFH, rely on
special types of quorum systems that satisfy the rotation
k-closure property. KFH is based on the uniform k-arbiter
quorum system and CFH is based on the Chinese remain-
der theorem (CRT) quorum system. The rotation k-closure
property enables these FH techniques to operate in the ab-
sence of node synchronization.

2. QUORUM SYSTEMS
This section briefly introduces quorum systems and ex-

plains the rotation k-closure property.
Definition 1. Given a set Zn = {0, . . . , n−1}, a quorum

system Q under Zn is a collection of non-empty subsets of
Zn, each called a quorum, such that ∀G,H ∈ Q : G∩H ̸= ∅.

Definition 2. A quorum system Q under Zn is said to
satisfy the rotation k-closure property if ∀G1, G2, . . . , Gk ∈
Q and ∀i1, i2, . . . , ik ∈ Zn,

∩k
j=1 rotate(Gj , ij) ̸= ∅.

3. KFH ALGORITHM
The KFH algorithm uses the uniform k-arbiter quorum

system, which is known [1] to exhibit the rotation (k + 1)-
closure property.

Definition 3. A k-arbiter quorum system Q under Zn

is a collection of quorums such that
∩k+1

i=1 Gi ̸= ∅, ∀G1, G2

, . . . , Gk+1 ∈ Q.
Definition 4. A quorum system Q under Zn that satisfies

Q = {G ⊆ Zn : |G| = (⌊kn/(k+1)⌋+1)} is called a uniform
k-arbiter quorum system.

In KFH (similarly CFH), each FH sequence consists of
several time frames. Each frame consists of a block of consec-
utive time-frequency hops. We explain the KFH algorithm
using the following example. Suppose that the number of
nodes is 3, the frame length (denoted by n) is 4, and the set
of channels is {f1, f2, . . . , fL}.
Step 1: Construct a universal set Z4 = {0, 1, 2, 3}.
Step 2: Construct a uniform 2-arbiter quorum system Q
under Z4.
Step 3: Construct an FH sequence w using the following
procedure:

• Select a quorum G from the quorum system Q.
• Assign frequency h to the FH slots that correspond to G,

and assign a random frequency hx to the other slots, where
h and hx ∈ {f1, f2, . . . , fL}.

• Repeat the above procedure for the other frames.
Step 4: Repeat Step 3 to construct the other FH sequences.
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Figure 1: D for KFH and CFH (L = 6).
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Figure 2: Expected delay for KFH.
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Figure 3: Expected delay for CFH.

4. CFH ALGORITHM
The CFH algorithm uses the Chinese remainder theorem

(CRT) quorum system, which exhibits the rotation k-closure
property. The CRT is formally described as follows.
Theorem 1. Let p1, . . . , pk be k positive integers that

are pairwise relatively prime, i.e., gcd(pi, pj) = 1, ∀i, j ∈
{1, . . . , k}, where gcd(pi, pj) is the greatest common divisor
of pi and pj . Let y = p1p2 . . . pk and let z1, . . . , zk be k
integers, where zi < pi, ∀i ∈ {1, . . . , k}. Then, ∃ a solution
I for the following system of simultaneous congruences:

z1 (mod p1) ≡ z2 (mod p2) ≡ . . . ≡ zk (mod pk).

Furthermore, any two solutions I and I ′ to the above sys-
tem are congruent modulo y, i.e., I ′ ≡ I (mod y). That is,
there exists exactly one solution I between 0 and y − 1.
Using Theorem 1, we can construct quorum systems that

satisfy the rotation k-closure property.
Theorem 2: Let p1, . . . , pk be k positive integers that

are pairwise relatively prime, and let y = p1 . . . pk. The
CRT quorum system Q = {Gi : Gi = {pici : ci ∈ {0,
. . . , y/pi − 1}}, ∀i ∈ {1, . . . , k}} under Zy satisfies the ro-
tation k-closure property.
The CFH algorithm for generating k asynchronous multi-

cast FH sequences is the same as the KFH algorithm, with
two differences. First, CFH uses the CRT quorum systems
instead of the uniform k-arbiter quorum system. Second,
the frame length is equal to y = p1p2 . . . pk.

5. PERFORMANCE EVALUATION

5.1 Expected Percentage Hamming Distance
(HD)

The expected percentage HD for two FH sequences x =
(x1x2 . . . xn) and y = (y1y2 . . . yn), denoted by D(x,y), is

defined as D(x,y) def
= E[D(x,y)] = E[

(∑n
i=1 1{xi ̸=yi}

)
/n],

where 1{·} is the indicator function. For simplicity, we drop

the superscript in D(x,y). In KFH, D is the same for all
pairs of FH sequences, whereas in CFH they are different
for different pairs. Thus, for CFH, we compute the expected
value over all pairs of FH sequences.
Let DKFH and DCFH denote the value of D for the KFH

and CFH algorithms, respectively. Then,

DKFH = µ1
(n−⌊ kn

k+1⌋)µ3

n
+ (1− µ1)

(n−⌊ kn
k+1⌋−1)µ3

n

where µ1 = µ2−1
µ2

, µ2 =

(
n⌊

kn
k+1

⌋
+ 1

)
, and µ3 = L−1

L
.

DCFH = L−1
2k2nL

∑k
i=1

∑k
j=1

(
n− n

xixj

)
.

Figure 1 depicts D vs. the number of nodes for the KFH
and CFH algorithms when the number of channels L = 6.
As the number of nodes increases, DCFH increases whereas
DKFH decreases.

5.2 Expected Delay
The expected delay is defined as the expected time until

the multicast link is established. Let TKFH and TCFH de-
note the expected delay for the KFH and CFH algorithms,
respectively, where the expectation is taken over all possible
random assignments. Then,

TKFH =
∑n−1

i=1 i
∏i−1

j=0(1− β(αj))β(αi)

where

β(αj) =
∑k

i=0

(
k + 1
i

)
αk+1−i
j

(
1−αj

L

)i
+(1−αj)

k+1( 1
L
)k

and αi =
⌊ kn

k+1⌋−i+2

n
+

⌊ kn
k+1⌋−i+3

n−i+1
i−1
n

. Furthermore,

TCFH =
∑n−1

i=1 i(1− φ)i−1φ,

where

φ =

k−1∑
i=0

∑
∀{s1,s2,...,sk−i}
∈{x1,x2,...,xk}

[
1

s1s2 . . . sk−i

(
1

L

)i k∏
j=k−i+1

(
1− 1

sj

)]
+

(
1

L

)k−1 k−1∏
l=0

(
1− 1

sl

)
k equals to the number of nodes minus one for TKFH, and

the number of nodes for TCFH. Figures 2 and 3 show the
expected delay for KFH and CFH, respectively. For both
KFH and CFH, the expected delay increases with L and the
number of nodes.

6. CONCLUSIONS
We proposed two FH algorithms, called KFH and CFH,

for establishing multicast communications in the presence
of a control-channel DoS attack and/or smart eavesdropper
attack. We showed that KFH is faster than CFH, but CFH
has better HD than KFH.
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