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Abstract—Opportunistic spectrum access (OSA) and self-
interference cancellation (SIC) are two emerging solutions for
enhancing spectrum utilization, which are expected to impact
the design of 5G networks. In this paper, we consider the
problem of composing an opportunistic LTE-A network using
a set of existing base stations (BSs) with heterogeneous SIC
capabilities and costs. The objective is to design the cheapest
network that can support the probabilistic rate demands of
multiple users. Towards achieving this goal, we propose novel
stochastic joint channel and BS allocation schemes that account
for uncertainty in channel availability. First, we develop two static
(proactive) joint allocation models. We refer to these models as
Het-SMKP1 and Hom-SMKP. In these models, the allocation is
done once such that user demands are probabilistically met. In
Het-SMKP1, a user can request different probabilistic rates for
different small cells, whereas in Hom-SMKP each user requests
the same probabilistic rate for the entire network. Second, we
propose an adaptive (proactive and reactive), two-stage allocation
model for heterogeneous rate demands, which we refer to as
Het-SMKP2. The adaptive model allows for correcting the initial
resource allocation once the channel availability uncertainties are
partially resolved. We numerically evaluate the performance of
the static and adaptive allocation schemes under various system
parameters. Despite its computational complexity, the adaptive
scheme improves the probability of rate demand satisfaction
considerably compared to the static scheme.

Keywords—Opportunistic spectrum access, self-interference
cancellation, LTE-A, resource allocation, stochastic optimization,
multiple knapsack problem.

I. INTRODUCTION

The massive growth in wireless devices and mobile traffic
has motivated research and development on the next generation
(i.e., 5G) cellular networks. 5G cellular networks are intended
to support higher data rates, higher spectrum and energy
efficiencies, and lower latency. Among the emerging solutions
for enhancing spectrum utilization are opportunistic spectrum
access (OSA), small cells [1]–[3], and in-band full-duplex
(FD) wireless – more generally, self-interference cancellation
(SIC) [4]. These solutions are expected to have a tremendous
impact on 5G networks and beyond.

Traditionally, much of the spectrum is statically licensed
for a given use in a given geographic area. Exceptions to
this norm include the ISM bands. However, these bands are
reaching their capacity limit, as more traffic is being pushed
through them. OSA tries to address the rising demand by al-
lowing spectrum-agile devices with cognitive radio capabilities

Fig. 1: With no changes to the macro eNB or to the handset, an
FD-enabled small cell can provide its own backhaul, eliminating the
need for additional out-of-band resources for backhaul [4].

to operate opportunistically as secondary users over certain
licensed bands. Hence, improving the spectrum utilization
considerably.

Parallel to OSA, in-band FD wireless is expected to have
a significant impact on enabling 5G networks. Several stud-
ies [5]–[8] have successfully demonstrated the feasibility of FD
communications using SIC techniques. As proposed in [4], SIC
can allow LTE-A small cells to leverage the same radio spec-
trum for simultaneously communicating with the user equip-
ments (UEs) and the macro eNB (see Figure 1), eliminating the
need for additional out-of-band channels for backhaul, which
significantly improves the spectrum utilization. As illustrated
in Figure 1, in the downlink channel, the small cell receives
data from the macro eNB while simultaneously transmitting
to the UE. In the uplink channel, the small cell receives data
from the UE while simultaneously transmitting to the macro
eNB.

Our Contributions–In this paper, we consider the prob-
lem of composing an opportunistic LTE-A network using a
set of existing base stations (BSs) with heterogeneous SIC
capabilities and costs. The opportunistic LTE-A network is
intended to support multiple users with different probabilistic
rate demands. Our objective is to build the opportunistic LTE-
A network that can support user demands with the least cost.
To achieve this objective, we propose novel stochastic joint
channel and BS allocation schemes that account for uncertainty



in channel availability. Specifically,

• We develop two static (proactive) ‘chance-
constrained’ joint channel and BS allocation
models. We refer to these models as Het-SMKP1 and
Hom-SMKP. In these models, the allocation is done
once such that the user demands are probabilistically
met. The chance constraint is introduced to limit the
probability of under-satisfying the user demand to a
certain threshold. In Het-SMKP1, a user can request
different probabilistic rates for different small cells,
whereas in Hom-SMKP each user requests the same
rate for the entire network. In our allocation schemes,
a user, say l, requests a rate Rl (in Mbps) to be
satisfied with probability at least αl ∈ (0, 1).

• We propose an adaptive (proactive and reactive) two-
stage allocation model for heterogeneous rate de-
mands, which we refer to as Het-SMKP2. The adaptive
model allows for correcting the initial resource allo-
cation once the channel availability uncertainties are
partially resolved; channels are released from over-
satisfied users (if any) and allocated to under-satisfied
users (if any), reducing both user under-satisfaction
as well as user over-satisfaction. Despite its compu-
tational complexity, Het-SMKP2, due to its recourse
(adaptive) capability, (i) increases the probability of
demand satisfaction considerably, and (ii) reduces the
cost of composing an opportunistic LTE-A network
by returning the additional resources (if any) after
fulfilling user demands.

Recently, the authors in [9], [10] proposed stochastic chan-
nel allocation schemes for dynamic spectrum access networks.
The schemes in [9], [10] neither consider BS allocation nor
account for SIC. To the best of our knowledge, this is the
first paper that applies stochastic programming techniques for
joint allocation of channels and BSs in OSA networks, while
accounting for heterogeneous SIC capabilities of the BSs.

Finally, our proposed stochastic formulations can be easily
extended to model the resource allocation problem in other
network settings, such as:

• LTE-U networks. Recently, Qualcomm and other
companies have proposed extending 3GPP LTE-A to
the unlicensed 5 GHz U-NII band (referred to as LTE-
U) by exploiting supplemental downlink and carrier
aggregation features in LTE-A systems [11], [12].
In such LTE-U networks, the ability to successfully
access a channel in the 5 GHz band is only stochas-
tic. Our proposed stochastic allocation schemes can
be extended to optimally provide some probabilistic
guarantees to LTE-U users.

• Spectrum-licensed networks that opportunistically
access other licensed spectra. A spectrum-licensed
network may enhance its throughput by opportunis-
tically accessing other licensed spectra. In this case,
some of the network resources (channels) are deter-
ministic while others are stochastic. Our stochastic
resource allocation formulations can also be applied
in such a setting.

Paper Organization–The rest of the paper is organized as
follows. We present the system model in Section II. The static
channel and BS allocation schemes are formulated and solved
in Section III. We develop the adaptive stochastic allocation
scheme in Section IV. All proposed schemes are numerically
evaluated in Section V. Finally, in Section VI we conclude the
paper and provide directions for future research.

II. SYSTEM MODEL

We consider a geographical area that is divided into a

set N
def
= {1, 2, . . . , N} of small cells. A heterogeneous

set of BSs, denoted by S
def
= {1, 2, . . . , S}, exists in each

small cell; each BS has a different SIC capability and cost.
The SIC capability of BS s in cell n is characterized by
ηsn ∈ [0, 1]. ηsn = 0 means complete SIC (i.e., perfect
FD) and ηsn = 1 represents the case when the BS does
not have the SIC capability, i.e., half-duplex (HD). The cost
of BS s in cell n is denoted by csn (csn decreases with
ηsn). While FD BSs are self-backhauled (i.e., a single channel
can be used to simultaneously communicate with the UE and
macro eNB), HD BSs require two channels to simultaneously
communicate with the UE and macro eNB. Equivalently, the
spectrum efficiency of a FD BS is twice that of a HD BS. We
define f (ηsn) ∈ [ 12 , 1] to represent the normalized effective
per-channel rate that BS s in cell n can support. f (ηsn)

is a decreasing function in ηsn, with f(1)
def
= 1

2f(0) and

f(0)
def
= 1. As an example, in Section V we evaluate the

proposed allocation schemes assuming f (ηsn) = 1− 1
2ηsn.

We assume that there are M users, with M
def
=

{1, 2, . . . ,M} representing the set of users. Each user, say
m, requests a certain probabilistic rate, i.e., a rate (denoted by
Rm) to be satisfied with a minimum prespecified probability.
In this paper, we consider two models for probabilistic rate de-
mands: Heterogeneous and homogeneous. In the heterogeneous
model, a user, say m ∈ M, requests (in general) different
probabilities, denoted by αnm ∈ (0, 1], for different small cells
n ∈ N . In contrast, in the homogeneous model, a user, say
m, requests one probability, denoted by αm, for the entire
network. In both models, Rm is the same across all small
cells1. The set of channels that can be used by the opportunistic
LTE-A network (i.e., when they are available) is denoted by

K
def
= {1, 2, . . . ,K}. The opportunistic LTE-A network adopts

frequency reuse with factor one (i.e., reuse-1), in which the
entire set of channels K can be used (when they are available)
in all small cells. We associate with each channel k ∈ K a
cell-dependent binary random variable w̃kn, k ∈ K, n ∈ N ,
which describes its availability. Let pkn be the probability that
channel k is available in small cell n. Then, w̃kn equals one
with probability pkn and zero otherwise.

1There are several scenarios under which the objective may be providing
a given user with a constant rate across all cells, but with different (cell-
dependent) probabilistic guarantees. One such scenario is when a user, say
m, is using an app that requires a particular rate, Rm, and wants to limit
outage probability. If the user’s mobility pattern is well known, we may want
to particularly guarantee performance in the cells where the user is most likely
to be (e.g., achieving an outage probability of below 5% in a handful of cells
and 20% in the rest may be much cheaper than achieving an outage probability
of below 7% in all cells).



Next, we propose two static stochastic joint channel and
BS allocation schemes for heterogeneous and homogeneous
demands, which we refer to as Het-SMKP1 and Hom-SMKP,
respectively. Then, we develop Het-SMKP2, a two-stage adap-
tive channel and BS allocation scheme for heterogeneous
demands.

III. STATIC JOINT CHANNEL AND BS ALLOCATION

In this section, we formulate the joint channel and BS allo-
cation problem, following the static (non-corrective) stochastic
optimization model. In this model, the allocation is performed
once, and cannot be corrected after observing the availability of
the assigned channels. The objective of the allocation problem
is to minimize the cost of composing an opportunistic LTE-A
network that probabilistically fulfills all user demands.

A. Heterogeneous (Per-cell) Allocation

Because in the heterogeneous case, a user requests (in gen-
eral) different probabilistic rates for different small cells, we
formulate the joint allocation problem in this case considering
a single cell.

If each channel’s availability is assumed to be known,
the heterogeneous (per-cell) joint channel and BS allocation
problem can be formulated as a multiple knapsack problem
(MKP) [13] with an additional constraint, as follows. Each
(channel, BS) pair, say (k, s), represents an ‘item’ in MKP.
The ‘cost’ of item (k, s) is cks and its ‘weight’ is w̃k×f (ηs).
The ‘capacity’ of the mth knapsack is Rm. The constraint
that the joint allocation problem adds to MKP is that each
channel (item) is prevented not only from being assigned to
multiple users (knapsacks) simultaneously, but also from being
simultaneously assigned to multiple BSs.

Adding the uncertainty in the channel availability to the
allocation problem causes the feasibility region of the problem
to be uncertain. Different stochastic optimization approaches
have been proposed in the literature to deal with the uncertainty
of the feasibility region of an optimization problem [14].
In this section, we adopt a ‘chance constraint approach.’ In
the following, we develop two chance-constrained stochastic
MKP formulations to model the allocation problem under
uncertainty; one (in this subsection) for the heterogeneous case
(which we refer to as Het-SMKP1) and the other (in the next
subsection) for the homogeneous case (which we refer to as
Hom-SMKP).

1) Problem Formulation:
Let xksm, k ∈ K, s ∈ S,m ∈ M, be a binary decision variable
that is defined as follows:

xksm =

{

1, if channel k will be used in BS s to serve
user m

0, otherwise.

Then, the Het-SMKP1 formulation is given by:

Problem 1 (Het-SMKP1):

minimize
{xksm,k∈K,s∈S,m∈M}

{

K
∑

k=1

S
∑

s=1

M
∑

m=1

cks xksm

}

(1)

subject to:

Pr

{[

K
∑

k=1

S
∑

s=1

xksm w̃k f (ηs)

]

≥ Rm

}

≥ αm,

∀m ∈ M (2)

S
∑

s=1

M
∑

m=1

xksm ≤ 1, ∀k ∈ K (3)

xksm ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S, ∀m ∈ M (4)

where w̃k, ηs, and αm are as defined in Section II,
after dropping the small-cell index. The objective (1) is to
minimize the cost of the opportunistic LTE-A network, and
the chance constraint (2) enforces satisfying the demand of
user m with probability ≥ αm. While the chance constraint
probabilistically accounts for user under-satisfaction, it does
not hedge against the problem of user over-satisfaction2. Over-
satisfying one user may result in under-satisfying other users.

In Section V, we implement a variant of Het-SMKP1,
which we call Het-SMKP∗

1. In Het-SMKP∗
1, we replace the

objective function in (1) with the following objective function:

minimize
{xksm,k∈K,s∈S,m∈M}

{

S
∑

s=1

cs 1{
∑

K
k=1

∑

M
m=1 xksm≥1}

}

(5)

which can be equivalently represented by the following linear
formulation:

minimize
{xksm,k∈K,s∈S,m∈M}

{

S
∑

s=1

cs δs

}

(6)

subject to:

δs ≤
K
∑

k=1

M
∑

m=1

xksm ≤ max{M,K} δs, ∀s ∈ S. (7)

In Het-SMKP∗
1, the cost of using a certain BS does not

increase with the number of channels assigned to this BS.
Accordingly, Het-SMKP∗

1 tends to select cheaper BSs and use
more channels compared to Het-SMKP1. In Section V, we
numerically compare between Het-SMKP1 and Het-SMKP∗

1.

2) Problem Reformulation and Solution Approach:
Our approach to solving the proposed stochastic optimization
problems is to derive their deterministic equivalent programs
(DEPs). The DEP is an equivalent reformulation of the
original stochastic program, but contains only deterministic
variables [14].

To obtain the DEP of Het-SMKP1, we need to reformulate
the chance constraint (2), so that it does not include the
probability term or the random variables: w̃k, k ∈ K. Let p(ω)

be the probability of scenario ω ∈ Ω, where Ω is the set of
“scenarios,” various realizations of the channels availability. To

2In Het-SMKP1, under certain scenarios (i.e., realizations of the channels
availability), a user, say m, may receive more than its demand, Rm.



Fig. 2: A two-cell network, with one FD BS in each cell. Each BS
is assigned one channel that is available with probability 0.7.

reformulate the chance constraint, we will introduce a binary

variable u
(ω)
m for each user m ∈ M and each scenario ω ∈ Ω.

u
(ω)
m = 0 only if the joint channel and BS allocation satisfies

the demand Rm under scenario ω. Then, (2) is equivalent to
constraints (9) and (10). The DEP of Het-SMKP1 is given by:

Het-SMKP1 (DEP):

minimize
{

xksm,k∈K,s∈S,m∈M

u(ω)
m ,ω∈Ω

}

{

K
∑

k=1

S
∑

s=1

M
∑

m=1

cks xksm

}

(8)

subject to:

K
∑

k=1

S
∑

s=1

xksm w
(ω)
k f (ηs) ≥ Rm

(

1− u(ω)
m

)

,

∀m ∈ M, ∀ω ∈ Ω (9)
∑

ω∈Ω

p(ω)
(

1− u(ω)
m

)

≥ αm, ∀m ∈ M (10)

S
∑

s=1

M
∑

m=1

xksm ≤ 1, ∀k ∈ K (11)

xksm ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S, ∀m ∈ M (12)

u(ω)
m ∈ {0, 1}, ∀m ∈ M, ∀ω ∈ Ω. (13)

B. Homogeneous (Multi-cell) Allocation

In this section, we consider the homogeneous (multi-cell)
allocation problem. This problem cannot be formulated by
simply repeating constraint (2) in Problem 1 for each small
cell. To illustrate this, consider the simple example in Figure 2.
In this example, our objective is to compose a two-cell network
that supports a rate of R Mbps with probability ≥ 0.7. There
exists one FD BS in each cell (i.e., f (η) = 1) and two
channels. Each channel can support a rate of R Mbps (when
it is available), and it is available with probability 0.7. If each
BS is assigned one of these channels, then although each cell
can support the requested rate with probability 0.7, the entire
two-cell network supports the demand R only with probability
0.49.

1) Problem Formulation:
To formulate the homogeneous multi-cell allocation problem,

we introduce the following binary variables, d̃nm, n ∈ N ,m ∈
M:

d̃nm =

{

1, if
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) ≥ Rm

0, otherwise
(14)

where xksmn is as defined in Problem 1, after adding the cell
index. Then, the multi-cell allocation problem is formulated

by replacing (2) with the following constraint:

Pr

{

[

D̃m
def
= d̃1m AND . . . AND d̃Nm

]

≥ 1

}

≥ αm,

∀m ∈ M.

(15)

Next, we derive equivalent linear formulations for the indi-
cator function (14) and the AND operation (15). Equation (14)
can be reformulated as follows:

First, d̃nm = 1 ⇒
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) ≥ Rm

can be reformulated as:

K
∑

k=1

S
∑

s=1

xksmn w̃kn f (ηsn) +m d̃nm ≥ m+Rm (16)

where m is a lower bound of
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) − Rm. Selecting m to

be −Rm, (16) reduces to
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) ≥

Rm d̃nm.

The second part of (14),
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) ≥ Rm ⇒ d̃nm = 1,

can be reformulated as:

K
∑

k=1

S
∑

s=1

xksmn w̃kn f (ηsn)−M d̃nm ≤ Rm (17)

where M is an upper bound of
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) − Rm. Selecting M to be

K − Rm, (17) reduces to
∑K

k=1

∑S
s=1 xksmn w̃kn f (ηsn) ≤

(K −Rm) d̃nm +Rm.

Therefore, (14) can be equivalently written as:

Rm d̃nm ≤
K
∑

k=1

S
∑

s=1

xksmn w̃kn f (ηsn) ≤ (K−Rm) d̃nm+Rm.

(18)

The equivalent linear representation of D̃m in (15) is the
following set of inequalities:

D̃m ≤ d̃nm, ∀n ∈ N

D̃m ≥
N
∑

n=1

d̃nm − (N − 1)

D̃m ≥ 0. (19)

Then, the Hom-SMKP formulation is given by:



Problem 2 (Hom-SMKP):

minimize










xksmn,d̃nm,

D̃m,
k∈K,s∈S,
m∈M,n∈N











{

N
∑

n=1

K
∑

k=1

S
∑

s=1

M
∑

m=1

cksn xksmn

}

(20)

subject to:

Pr
{

D̃m ≥ 1
}

≥ αm, ∀m ∈ M (21)

D̃m ≤ d̃nm, ∀n ∈ N , ∀m ∈ M (22)

D̃m ≥
N
∑

n=1

d̃nm − (N − 1), ∀m ∈ M (23)

D̃m ≥ 0, ∀m ∈ M (24)

Rm d̃nm ≤
K
∑

k=1

S
∑

s=1

xksmn w̃kn f (ηsn)

≤ (K −Rm) d̃nm +Rm,

∀n ∈ N , ∀m ∈ M (25)

S
∑

s=1

M
∑

m=1

xksmn ≤ 1, ∀k ∈ K, ∀n ∈ N (26)

xksmn ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S,

∀m ∈ M, ∀n ∈ N (27)

d̃nm, D̃m ∈ {0, 1}, ∀n ∈ N , ∀m ∈ M. (28)

2) Problem Reformulation and Solution Approach:
Similar to Het-SMKP1, we solve Hom-SMKP by deriving its
DEP. Similar to (9) and (10), constraint (21) is equivalent
to constraints (30) and (31). Furthermore, in the DEP, con-
straints (22)-(25) are defined for each scenario ω ∈ Ω, as
in (32)-(35). The DEP of Hom-SMKP is given below.

IV. ADAPTIVE JOINT CHANNEL AND BS ALLOCATION

In this section, we formulate the adaptive (corrective)
joint channel and BS allocation problem. The channels and
BSs are initially allocated such that the chance constraint
is satisfied. After observing the actual channel availability,
additional channels (if any) are released from over-satisfied
users, and added to under-satisfied users (if any). In this
section, we only formulate the heterogeneous (per-cell) adap-
tive allocation problem. The homogeneous multi-cell adaptive
allocation problem is left for future research.

Hom-SMKP (DEP):

minimize


















xksmn,d
(ω)
nm,

D(ω)
m ,u(ω)

m ,
k∈K,s∈S,

m∈M,n∈N ,
ω∈Ω



















{

N
∑

n=1

K
∑

k=1

S
∑

s=1

M
∑

m=1

cksn xksmn

}

(29)

subject to:

D(ω)
m ≥ 1− u(ω)

m , ∀ω ∈ Ω, ∀m ∈ M (30)
∑

ω∈Ω

p(ω)
(

1− u(ω)
m

)

≥ αm, ∀m ∈ M (31)

D(ω)
m ≤ d(ω)

nm, ∀n ∈ N , ∀m ∈ M, ∀ω ∈ Ω (32)

D(ω)
m ≥

N
∑

n=1

d(ω)
nm − (N − 1), ∀m ∈ M, ∀ω ∈ Ω (33)

D(ω)
m ≥ 0, ∀m ∈ M, ∀ω ∈ Ω (34)

Rm d(ω)
nm ≤

K
∑

k=1

S
∑

s=1

xksmn w
(ω)
kn f (ηsn)

≤ (K −Rm) d(ω)
nm +Rm,

∀n ∈ N , ∀m ∈ M, ∀ω ∈ Ω (35)

S
∑

s=1

M
∑

m=1

xksmn ≤ 1, ∀k ∈ K, ∀n ∈ N (36)

xksmn ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S,

∀m ∈ M, ∀n ∈ N (37)

d(ω)
nm, D(ω)

m , u(ω)
m ∈ {0, 1}, ∀n ∈ N ,

∀m ∈ M, ∀ω ∈ Ω. (38)

A. Problem Formulation

The adaptive heterogeneous (per-cell) allocation problem
is formulated as a two-stage stochastic MKP with recourse,
which we refer to as Het-SMKP2. The first stage is similar to
Het-SMKP1. The objective of the second stage is to maximize
the number of extra channels/BSs that can be taken from over-
satisfied users. These extra resources will be added to under-
satisfied users (if any), or released (otherwise). By doing so,
we (i) maximize the probability of user demands satisfaction,
and (ii) minimize the cost of composing an LTE-A network
(by releasing the extra resources). Let yksm and zksm, k ∈
K, s ∈ S,m ∈ M, be binary variables; yksm = 1 if channel k
operating in BS s is released from user m, and zero otherwise,
and zksm = 1 if channel k operating in BS s is added to user
m, and zero otherwise. Then, the objective function of the
second stage of Het-SMKP2 can be expressed as in (45), where
γks ∈ [0, 1) is a discount factor. We assume that the value of
the resource at the second-stage (i.e., when it is released after it
was previously assigned) is strictly smaller than its first-stage
value, i.e., γks < 1. This way, we avoid having an allocation
where all resources will be allocated in the first stage (when
γks = 1).

The constraints of the second-stage problem of Het-SMKP2

can be summarized as follows:

1. A channel can be released only if it has been already



assigned in the first stage.
2. A channel can be taken only from over-satisfied users.
3. A channel can be assigned only to under-satisfied users.
4. A channel can be assigned to an under-satisfied user only

if it can be released from an over-satisfied user.
5. A released channel can be assigned only to one under-

satisfied user.

Constraint 1 is enforced by adding:

yksm ≤ xksm, ∀k ∈ K, ∀s ∈ S, ∀m ∈ M. (39)

Constraint 2 is enforced by adding:

K
∑

i=1

S
∑

j=1

(xijm − yijm) w̃i f (ηj) ≥ Rm yksm,

∀k ∈ K, ∀s ∈ S, ∀m ∈ M.

(40)

Constraint 3 is ensured by adding:

K
∑

i=1

S
∑

j=1

(xijm − yijm + zijm) w̃i f (ηj) <

(K −Rm − f (ηs)) (1− zksm) +Rm + f (ηs) ,

∀k ∈ K, ∀s ∈ S, ∀m ∈ M.

(41)

Constraint 4 is ensured by adding:

zksm ≤
M
∑

i=1

yksi, ∀k ∈ K, ∀s ∈ S, ∀m ∈ M. (42)

Finally, constraint 5 is ensured by adding:

M
∑

i=1

zksi ≤ 1, ∀k ∈ K, ∀s ∈ S. (43)

The Het-SMKP2 formulation is summarized below.

Problem 3 (Het-SMKP2):

minimize
{

xksm,k∈K,
s∈S,m∈M

}

{

K
∑

k=1

S
∑

s=1

M
∑

m=1

cks xksm + E [h(x, w̃)]

}

(44)

subject to:

(2), (3), and (4)

where h(x, w̃) is the optimal value of the second-stage
problem, which is given by:

minimize
{yksm,zksm

k∈K,s∈S,
m∈M

}

{

−
K
∑

k=1

S
∑

s=1

M
∑

m=1

γks cks (yksm + zksm)

}

(45)

subject to:

(39), (40), (41), (42), (43), and

yksm, zksm, βksm ∈ {0, 1}, ∀k ∈ K,

∀s ∈ S, ∀m ∈ M. (46)

We note that Het-SMKP2 has a relatively complete re-
course, i.e., for every feasible first-stage decision, xksm, there
exists a feasible solution to the second-stage problem under
each scenario ω ∈ Ω. For example, yksm = zksm = 0, ∀k ∈
K, ∀s ∈ S, ∀m ∈ M, is always a feasible solution to the
second-stage problem.

B. Problem Reformulation and Solution Approach

Similar to Het-SMKP1 and Hom-SMKP, we solve Het-
SMKP2 by deriving its DEP. The second-stage objective
function is substituted in (44) and constraints (39)-(43) are
evaluated for each scenario ω ∈ Ω. The DEP of Het-SMKP2

is given below.

Het-SMKP2 (DEP):

minimize






xksm,y
(ω)
ksm

,z
(ω)
ksm

,u(ω)
m

k∈K,s∈S,m∈M,
ω∈Ω







{

K
∑

k=1

S
∑

s=1

M
∑

m=1

cks xksm

−
∑

ω∈Ω

p(ω)

(

K
∑

k=1

S
∑

s=1

M
∑

m=1

γks cks

(

y
(ω)
ksm + z

(ω)
ksm

)

)}

(47)

subject to:

(9), (10), and

y
(ω)
ksm ≤ xksm, ∀k ∈ K, ∀s ∈ S, ∀m ∈ M, ∀ω ∈ Ω

(48)

K
∑

i=1

S
∑

j=1

(

xijm − y
(ω)
ijm

)

w
(ω)
i f (ηj) ≥ Rm y

(ω)
ksm,

∀k ∈ K, ∀s ∈ S, ∀m ∈ M, ∀ω ∈ Ω (49)

K
∑

i=1

S
∑

j=1

(

xijm − y
(ω)
ijm + z

(ω)
ijm

)

w
(ω)
i f (ηj) <

(K −Rm − f (ηs)) (1− zksm) +Rm + f (ηs) ,

∀k ∈ K, ∀s ∈ S, ∀m ∈ M, ∀ω ∈ Ω (50)

z
(ω)
ksm ≤

M
∑

i=1

y
(ω)
ksi , ∀k ∈ K, ∀s ∈ S, ∀m ∈ M, ∀ω ∈ Ω

(51)

M
∑

i=1

z
(ω)
ksi ≤ 1, ∀k ∈ K, ∀s ∈ S, ∀ω ∈ Ω (52)

xksm, y
(ω)
ksm, z

(ω)
ksm, u(ω)

m ∈ {0, 1},

∀k ∈ K, ∀s ∈ S, ∀m ∈ M, ∀ω ∈ Ω. (53)

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed allocation
schemes. All schemes are implemented in CPLEX. The nu-
merical values of various parameters are listed in Table I.

A. Static Joint Channel and BS Allocation

1) Heterogeneous (Per-cell) Allocation:
In Figure 3, we compare between Het-SMKP1 and Het-
SMKP∗

1 based on the total cost of the BSs used in composing



TABLE I: Numerical values of various parameters.

Parameter Het-SMKP1, Het-SMKP∗

1 , and Het-SMKP2 Hom-SMKP

K 8 5
S 3 3
N 1 2

ηj , j ∈ S [0, 0.5, 1] [0, 0.5, 1]
f (ηj) , j ∈ S [1, 0.75, 0.5] [1, 0.75, 0.5]

cj , j ∈ S [1, 0.3, 0.2] [1, 0.3, 0.2]
wi, i ∈ K [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] [0.2, 0.4, 0.6, 0.8, 0.9]

cij , i ∈ K, j ∈ S cj × wi for Het-SMKP1 and Het-SMKP2, and cj for Het-SMKP∗

1 cj × wi

γij , i ∈ K, j ∈ S 0.8 for Het-SMKP2 –
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Fig. 3: Total cost of the LTE-A network in Het-SMKP1 and Het-
SMKP∗

1 as a function of Rm for different values of α (M = 1).

an LTE-A network for satisfying the same probabilistic user
demand. Figure 3 depicts the values of the objective function
in equation (5) for both Het-SMKP1 and Het-SMKP∗

1 as a
function of Rm when M = 1. As shown in the figure, Het-
SMKP∗

1 incurs less BSs cost compared to Het-SMKP1; because
in Het-SMKP∗

1 the cost of using a particular BS does not
increase with the number of channels assigned to this BS.

The reduction in the total cost of allocated BSs in Het-
SMKP∗

1 comes at the expense of increasing the number of
allocated channels, as can be observed by comparing Figures 4
and 5. Figures 4 and 5 illustrate the number of channels as-
signed to each BS according to Het-SMKP1 and Het-SMKP∗

1,
respectively.

In the following, we only consider Het-SMKP1. In Fig-
ure 6, we study the effect of increasing M on the objective
function value of Het-SMKP1 (i.e., equation (1)). As shown in
the figure, increasing M (while fixing the total rate demand) re-
duces the cost of the composed LTE-A network. Furthermore,
when the total requested rate exceeds a certain threshold, the
allocation problem becomes infeasible when M = 1. This is
because when M = 1 the total rate demand is required to
be available with probability > α, whereas when M > 1,
only rate Rm is required to be available for each user m with
probability > α (i.e., when M > 1, it is not required that the
total requested rate by all users is simultaneously available for
α fraction of the scenarios).

In Figure 7, we plot the admission rate (defined as the

Rate demand (R
m

) (Mbps)

1 2 3 4 5

N
u

m
b

er
 o

f 
ch

an
n

el
s 

as
si

g
n

ed
 t

o
 e

ac
h

 B
S

0

1

2

3

4

5

6

7

8

η = 1 (HD)

η = 0.5

η = 0 (FD)

total

Fig. 4: Number of channels assigned to each BS in Het-SMKP1 as
a function of Rm (M = 1).
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percentage of satisfied users) of Het-SMKP1 vs. α for different
values of Rm when M = 8. As expected, the admission rate
decreases with both α and Rm.

2) Homogeneous (Multi-cell) Allocation:
In Figure 8, we study the effect of increasing M on the
objective function value of Hom-SMKP (i.e., equation (20)).
Similar to Figure 6, increasing M (for the same total rate
demand) reduces the cost of composing the LTE-A network.



Total rate demand (Σ
m

 R
m

) (Mbps)

1 2 3 4 5 6 7 8

O
b

je
ct

iv
e 

fu
n

ct
io

n
 (

to
ta

l 
co

st
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M = 1, α = 0.2

M > 1, α = 0.2

M = 1, α = 0.4

M > 1, α = 0.4

Fig. 6: Total cost of the LTE-A network vs. Rm for different values
of α.

α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
d

m
is

si
o

n
 r

at
e 

(%
)

0

10

20

30

40

50

60

70

80

90

100

R
m

 = 1 Mbps

R
m

 = 2 Mbps

Fig. 7: Admission rate of Het-SMKP1 vs. α for different values of
Rm (M = 8).

Furthermore, when the total requested rate exceeds a certain
threshold, the allocation problem becomes infeasible when
M = 1.

The admission rate of Hom-SMKP is compared with that
of Het-SMKP1 in Figure 9. As explained in the example in
Figure 2, the admission rate of Hom-SMKP is expected to be
lower than that of Het-SMKP1.

B. Adaptive Joint Channel and BS Allocation

In this section, we study the performance gain achieved by
Het-SMKP2 compared to Het-SMKP1.

In Figure 10, we increase the value of α for one user
while fixing the demands of the others, and plot the proba-
bility of demand dissatisfaction of both Het-SMKP1 and Het-
SMKP2. As shown in the figure, Het-SMKP1 satisfies the
chance constraint. Furthermore, the reduction in the demand
dissatisfaction achieved by Het-SMKP2 increases when α3

decreases; because the reduction in α3 results in more resource
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swapping (from an over-satisfied user to an under-satisfied
user) in the second stage of Het-SMKP2.

Moreover, we show in Figure 11 the average demand
shortage of both Het-SMKP1 and Het-SMKP2. The demand
shortage is averaged over all scenarios under which the demand
of user 3 was not satisfied. Again, the reduction in the average
demand shortage achieved by Het-SMKP2 increases when α3

decreases.

VI. CONCLUSIONS AND FUTURE RESEARCH

We studied the problem of joint channel and BS allocation
in OSA networks with heterogeneous self-interference cancel-
lation (SIC) capabilities. We developed static (proactive) as
well as adaptive (proactive and reactive) stochastic allocation
models. In the static models, the allocation is done once such
that the user demands are probabilistically met. In contrast, the
adaptive model allows for correcting the initial allocation once
uncertainties are partially resolved. We numerically evaluated
our proposed static and adaptive allocation schemes under
various system parameters. Our results corroborate the ability
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of the proposed schemes to guarantee the probabilistic user
demands are met optimally (i.e., while incurring the minimum
cost). The adaptive scheme also shows significant performance
gains due to its corrective/reactive capability.

The proposed formulations in this paper represent stochas-
tic versions of the multiple knapsack problem, which are at
least NP-hard (as the deterministic knapsack problem itself is
NP-hard) [13]. Furthermore, our adaptive stochastic resource
allocation scheme is limited to only two stages (present and
future). In future research, we plan to:

• Develop approximate stochastic resource alloca-
tion schemes that are simple but close to optimal.
One approach to do this is to significantly reduce
the number of considered scenarios in the stochastic
allocation problem while limiting the performance
degradation. We aim to adopt some of the existing
scenario reduction techniques, such as [15]–[17], as
well as design new techniques that are specific to our

proposed resource allocation problems.

• Extend the proposed two-stage allocation formula-
tion to multiple stages to account for several decision
making stages in the future, at which the resource
allocation can be adjusted.
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