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Problem Statement Network Models/ Motivational Scenarios
Dynamic Spectrum Access Networks Networks operating in a Hostile Environment

Establishing unicast and multicast communications
between agents in satellite networks (i.e., rendezvous o»
in satellite networks).
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Control of Reconfigurable Adversaries / \

Multi-Agent Systems with disrupting t \
capabilities 1

* Limited communication
@ capabilities
) =0} SE - {3! 6! 7} (short range, no GPS)
’ * Power constraints
* Dynamic spectrum
* Adversaries

Constraints:

(1)Agents are asynchronous.
(2)Agents are uncoordinated (i.e., blind rendezvous).
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dynamic
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Network models:

/

. . .4

Static and Mobile __.»
Agents i

(1) Dynamic spectrum access (DSA) networks. Sp =1{2,8,9,4}

(2) Networks operating in a hostile environment
with multiple jammers.

Sc = {3,6}

-------- Temporal links. Connectivity is time-varying.
S.: set of channels available at node K in the current time.
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Adaptive Frequency Hopping Algorithms for Rendezvous!!] Synchronization-based Algorithms for Decentralized Rendezvous!?]
/Background (Quorum Systems) N 4 Reformulation as a Synchronization Problem General Technical Approach A
, , _ _ | Goal: Design a decentralized control algorithm that steers every S Y Agent 4 R AT
A quorum system Q is a collection of non-empty intersecting subsets of a set. Ex.. Q ={{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3} L. radio to the same communication channel, that is, for every initial 1o 5’\ P \ |
Grid Quorum System Uniform k-arbiter Quorum System Chinese Remainder Theorem (CRT) Quorum System configuration of the radios the channel selection converge to p‘l \\\ /’ ) p‘ ccf_:fgi((%,liﬂ))
Grid quorum system | Qs a uniform k-arbiter quorum under Z, if: Let X1, X2, ) Xk be k positive integers that are pairwise _ _ _ Agents.'p3
arranges the elements relatively prlme,Q anf:lI IeZt y = xlllxzd...arc]k .CF;I_'I_hen, the PL=P2=...= PN » » Each agent will have a channd sdlection state
of Z,as a v/n x +/n kn quorum system @ under Z, iIs called the quorum . . . pi € {f1,f2,...,.fn} updated discretely by
— 16| = [ |—— under the potential presence of adversaries jamming the channels. "
array. A quorum is Q {G S Zn: G| Qk+1‘+1>} system. P P J J P = he(pi, G, Uci).
formed from the 5 This is not an easy goal to accomplish since > » Aninternal controller can be dynamic, i.e.
elements of any Q =1{Gy, ..., Gy}, where G; = {x;c;,¢; = 0, ..., —1} . . . = £ ue)) Y= (0 Ue)
column plus any row Example: Xi » Common low bit-rate control channd is unavailable Gi = Tc(Gi) U, G = Gc(Gi) Uc,i
of the grid. Example: » Frequency hoping algorithms rely on common seeds and could where ; is the controller state and uc, is the input.
inz:: L0123 ini(’t 0 1 2 3 pI€. be reverse engineered by adversaries: » » The goal of the controller is to drive the channels to
. X 5. . . .
, csilm 0 1234 567 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 » Frequency hoping [Ephremides ea 87] synchronous channel switching, i.e. the set
G Go . Z: % I I l l l > Frequency rendezvous [DaSilva ar.ld.Guerrero 08] {(p, C) C pPL=pP2=...= pN}
G, otate (G 2) | » Frequency rendezvous for CR [Silvius ea 09] s rendered asymptatically stable
. G, \ » Broadcast of information should be minimized /
G, rotate (G,, 3)
| . - ~
Gs rotate (Gs, 1) ) Proposed Solution Theorem
_ _ The augmented hybrid system model of two radios on two
e _ _ o ™~ Consider the case N = M = 2 and a hybrid controller for each channels is such that
Nested Grid Quorum-Based FH Algorithm for Pairwise Rendezvous (NGQFH) radio with state
Approach: Results: €1,¢2€[0,2T] T >0 A = {(C1,p1,02,p2) © P1=p261 = G2}
2 | 3 . . . . evolving as timers triggering a channel change when reaching T . is asymptotically stable with basin of attraction containing every
—&— Nested —3— Nested . —
o 0.6 —E—No;-nested : N - bmdal ] Decentralized synchronization strategy: 2VE] 28 Y @EEeE (2= V(Y= T
5 25t » Each radio timer ; increases until it reaches T . Lyapunov Function given as a piecewise defined function
2 0.5 @ _ _ . . T :
B 2 20 » When it reaches T, the radio sends a packet, resets its timer ] \ / , Basin of
© 04 e 15] - : - —~ attraction
g e B to zero, and switches channel. Rl 1\ / S /‘
D e .. . o - —
B T 10| - » If any other radio is on the same channel and receives the > Y \ / \ G1 =Gz
03l 2l - & packet, then itstimer is advanced by some value € > 0. ey
&— = R s, : it
A { X ] D'-.'—‘v—ﬁ_‘_?fﬁ—_. i c1 5 ’ 1(2 C1 > - - -~ “is
! - 4 0 16 25 4 : 16 25 36 \_ w0 -/
K Frame Length Frame Length /
/Dynamical Properties of Synchronization Algorithm N

@orum-Based FH Algorithms for Multicast Rendezvous (AMQFH, CMQFH, and nested-CMQFH) \ Temporal response: Performance as a function of ¢: Robustness to adversarial packets:

30,

Step 3: Construct an FH sequence w using Procedure 1.—
Step 4: Repeat Step 3 to construct the other FH sequences.

Common Approach > Procedure 1 - /~ I3 7(// (f)]// (f- INRENNENE , %12 .g ) _Percentag_e of time on the same channel_
. (1) Select a quorum G from the quorum system Q. N e T T £ T
Step 1: Construct a universal setZ_ = {0,1,...,n — 1}. : S T 2
Step 5 Construct 2 qUOrum svstem Q{under 7 J (2) Assign frequency h to the FH slots that correspond to G, and O 0 0 AR TN i
. . . vl e e e (@) ook
X 9 y n assign a random frequency h, to the other slots, where h and et L ”
=
£

0.85pp

hy € {1 for oo fL}-

(3) Repeat the above procedure for the other frames.
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g (h)e=01 (i) € = 0.3
Uniform k-arbiter Based FH Algorithm (AMQFH) Nested CRT Based FH Algorithm (Nested-CMQFH) R S Sy |
CMQFH: Similar to AMQFH 7
frame index : 1 2 3 4 e - T
slot indexs: ° : ’ ’ : i ° ’ ° L B NeSted-CMQFH E C2 : “C1 CQ : “Ci 0 ; Numbel-(r)of randor1;51 injected é)ackets : :
W (j) € = 0.6 (K) e=1
slotindex s g 1 2 3 4 5 67 8 9 1011 121314 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 k
y X [ ] [ "HRRED ] /" Algorithm for multiple agents (cooperative and adversarial settings)
y Proposed algorithm: Desynchronizing from jammers:
Y/ . . . .
z » If no packet was received in the T window, agent | jumps to a In adversarial settings, cooperative =
random channel. agents can desynchronize N
» Radios get an ACK once they transmit a packet at the end of themselves from the channels | V4
. : . . . selections of adversarial jammers. L
Results: 3r o | - : - e— their period (if their packed was received). Time [s]
—— Nested- 2 80} —— ested- ! . . . ) ] ] . .
—E— AMQFH £ —H— AMQFH » If a transmitted packet is recelved by another radio and its For the case of two cooperative agents and one jammer, the goal is to
25l g - . d corresponding ACK was received by the transmitter, then zlynchr(;]nize_ the ac;ions_ of tP]le cooEerativfe ?‘ge_nts and, simultaneously,
;% E 3————~‘_® these radiosjump to the next Channel. esyncnronize such actions rrom those ot the jammer.
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