

Rendezvous Under Smart Jamming

Mohammad J. Abdel-Rahman and Marwan Krunz

Sponsored by: Raytheon

Background

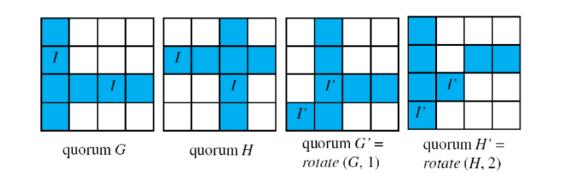
Quorum System: A collection of nonempty sets (called quorums) that pairwise overlap by one or more elements.

Example: $Q = \{ \{3, 4\}, \{2, 3\}, \{2, 4\} \}$ is a quorum system on $\{2, 3, 4\}$.

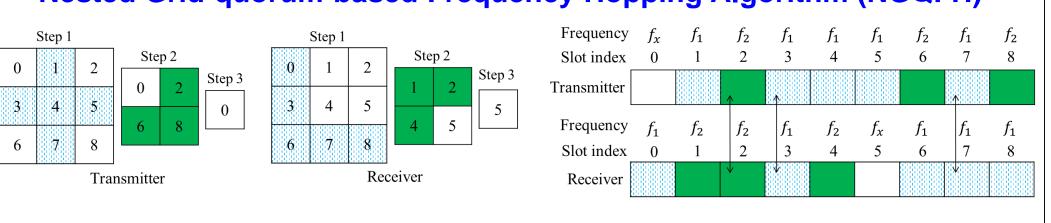
Grid Quorum System (GQS): The elements of the set are arranged into a square array. Each quorum consists of one column and one row. 1 2

Example: $Q = \{ \{1,2,3,4,7\}, \{1,2,3,5,8\}, \{1,2,3,6,9\}, \{1,4,5,6,7\}, \{2,4,5,6,8\}, \} \}$ $\{3,4,5,6,9\}, \{1,4,7,8,9\}, \{2,5,7,8,9\}, \{3,6,7,8,9\}\}\$ is a GQS on $\{1, \ldots, 9\}$.

Intersection property Rotation closure property



Nested Grid-quorum-based Frequency Hopping Algorithm (NGQFH)



Problem Statement

Two nodes aim at rendezvousing in the presence of an adversary.

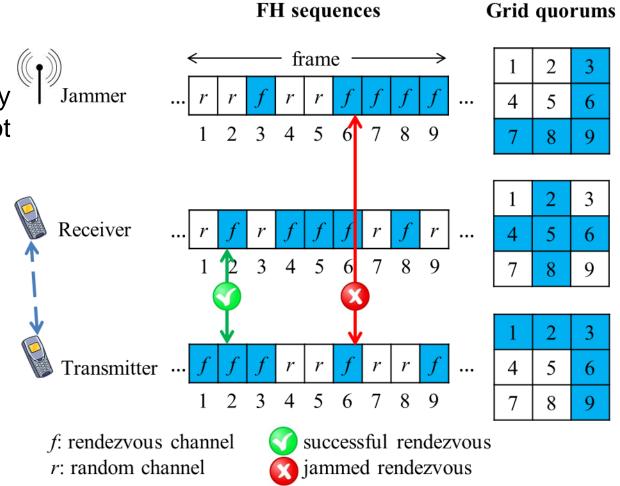
System Model: • Single link (unicast). Nodes operate in frequency

hopping mode, with slot duration T.

NGQFH algorithm is used.

Adversarial Model:

- Time-slotted jammer, with slot duration T.
- Jamming is carried out by a compromised node.
- Jammer is aware of the used NGQFH algorithm.



What does the jammer exactly know?

Frame length	Used grid quorum	Used rendezvous channel(s)
	X	

Synchronous and asynchronous cases are considered.

Jammer

Synchronous Rendezvous Over a Known Channel

4 5 6

Part I. Three-player Game

Players: Transmitter (T), Receiver (R), and Jammer (J)

Strategy: Which quorum to select

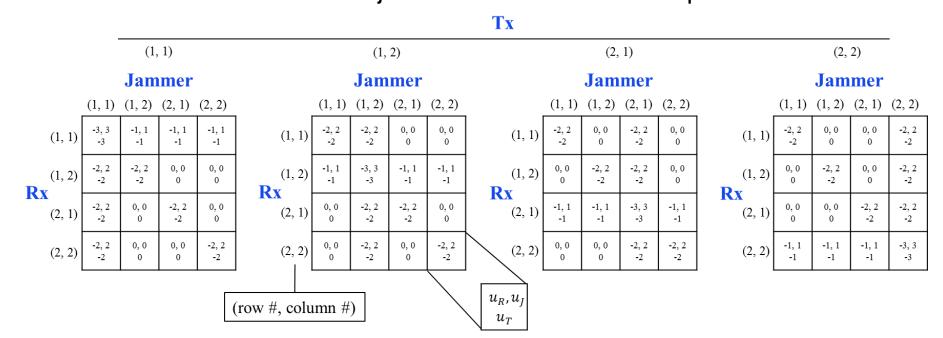
$$S_T = (s_{T,r}, s_{T,c}) \qquad S_R = (s_{R,r}, s_{R,c}) \qquad S_J = (s_{J,r}, s_{J,c})$$

$$T \text{ strategy} \qquad R \text{ strategy} \qquad J \text{ strategy}$$

$$S_{T,r}, S_{R,r}, S_{J,r} \in S_r = \{1, 2, ..., \sqrt{m}\}$$

$$S_{T,c}, S_{R,c}, S_{J,c} \in S_c = \{1, 2, ..., \sqrt{m}\}$$

Utility: $u_T(s_T, s_R, s_I)$ = number of unjammed rendezvous slots per frame - number of jammed rendezvous slots per frame.



Theorem 1: The three-player game does not have a pure-strategy NE.

Part II. Two-player Game

Theorem 2: For any $s_T = (s_{T,T}, s_{T,C})$, the $\sqrt{m} \times \sqrt{m}$ R/J game has at least $(\sqrt{m}-1)^2$ NEs, all of them result in $u_T=-2$. These NEs are given by:

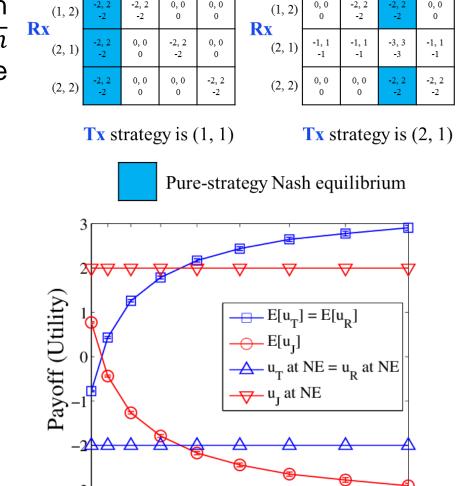
 $s_{I,r} = s_{T,r}, s_{I,c} = s_{T,c}$ $S_{R,r} \neq S_{T,r}, S_{R,c} \neq S_{T,c}$

Proposition: The $(\sqrt{m}-1)^2$ NEs in Theorem 2 are the only NEs for the $\sqrt{m} \times \sqrt{m}$ game when $m \ge 9$. When m = 4, the game has additional NEs, given by:

 $s_{T,r} = s_{R,r} = s_{I,r}$ and $s_{I,c} = s_{T,c} \neq s_{R,c}$ $s_{I,r} = s_{T,r} \neq s_{R,r}$ and $s_{T,c} = s_{R,c} = s_{I,c}$.



R and J have different beliefs about s_T R and J have a common belief about s_T



Frame Length (m)

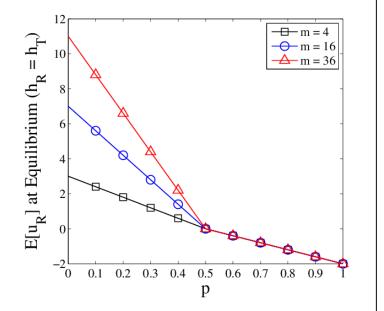
Synchronous Rendezvous Over an Unknown **Channel (Bayesian Game)**

Let h_T , h_R , and h_I denote the channels selected by T, R, and J, respectively. Then, R has two types: $h_R = h_T$ and $h_R \neq h_T$ and J has two types: $h_I = h_T$ and $h_I \neq h_T$.

Theorem 3: Let $p = \Pr\{h_I = h_T | h_R = h_T\}$, then the Bayesian NE of the above game is:

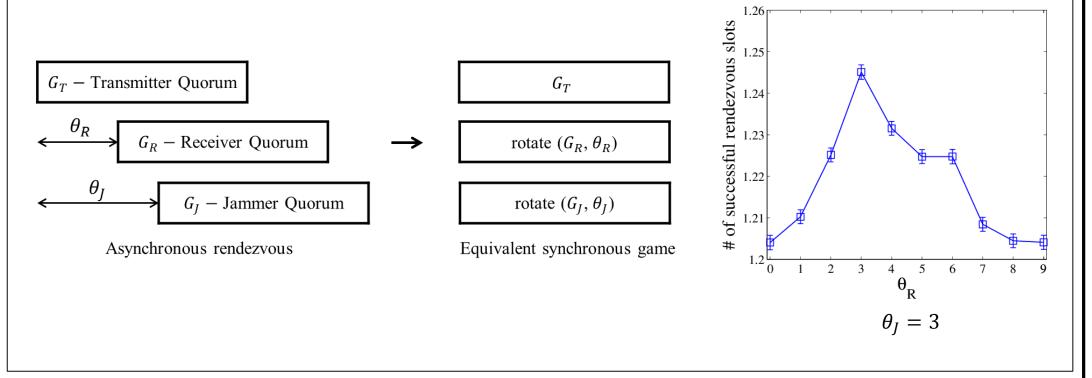
$$S_R \begin{cases} = s_T, & \text{if } p < 0.5 \\ \neq s_T, & \text{if } p > 0.5, & \text{if } h_R = h_T \\ \text{Does not matter,} & \text{if } p = 0.5 \\ \text{Does not matter,} & \text{if } h_R \neq h_T \end{cases}$$

$$S_J \begin{cases} = s_T, & \text{if } h_J = h_T \\ \text{Does not matter,} & \text{if } h_J \neq h_T. \end{cases}$$



Asynchronous Rendezvous

The strategy of the player consists of a column and a sequence of \sqrt{m} consecutive elements that do not necessarily form a row.



Main Conclusions

Synchronous Case

- R benefits from being, along with J, unaware of s_T . Furthermore, the benefits of R increase with the frame length.
- It is beneficial for R if J has the same belief about s_T as it has.

Asynchronous Case

The number of successful rendezvous slots is maximized when $\theta_R = \theta_I$.

Ongoing/Future Work

- Examine the more general case when the nesting degree is greater than one.
- Design different sequential/parallel update mechanisms, including best-response update.
- Study the convergence behavior of various updating mechanisms.
- Consider other utility functions for the game formulation.
- Consider the multicast rendezvous problem under smart jamming.