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Abstract
SCHOOL OF SCIENCES AND ENGINEERING

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Master of Science

by Mohamed Adel Attia

The topic of this thesis is on the application of multilayer transmission using the broadcast

approach on a relay-assisted channel. Unlike single layer transmission, where all transmitted

information bits have the same protection level by the channel coding scheme, multilayer

transmission schemes combine successive refinement layered source coding with ordered

protection levels of the source layers. Consequently, the receiver will be able to decode some

information when the channel is faded and all information when the channel is good. The

multilayer transmission schemes have gained a lot of interest in the information theory and

the communication theory literature, where most researchers are interested in the broadcast

approach since it is the optimal transmission strategy.

In this thesis, we consider a fading relay channel where the source uses layered source coding

with successive refinement. The source layers are transmitted using superposition coding at

the source with optimal resource allocation. The destination applies successive interference

cancellation after optimally combining the direct and relayed signals. The resource allocation

for the layers is subject to optimization in order to maximize the expected user satisfaction

that is usually defined by a differentiable concave increasing utility function of the total

decoded rate at the destination. As special cases, we consider two utility functions; namely,

the expected total decoded rate at the receiver and the expected rate distortion of a Gaussian

source. We also assume that only the channel statistics are known at the receiver. The relay is

half-duplex and applies different relaying strategies, and we have investigated the Amplify-

and-Forward, and Decode-and-Forward strategies in particular.
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First, we consider the case of Decode-and-Forward relays where we consider two layers only

with predetermined rates for simplicity, and we solve the problem of optimal power alloca-

tion among the two layers at the source and the relay using random search methods. After

that, we solve the optimal power allocation problem for any number of layers with fixed

rates over an Amplify-and-Forward relays. An approximation for the end-to-end channel

quality is presented in terms of the statistics of the three links of the channel model. Fur-

thermore, we obtain that for some conditions, it is optimal to send only one layer. Finally,

we solve the joint optimal power and rate allocation problem for any number of layers over

an Amplify-and-Forward relays. We also consider the theoretical case of infinite number

of layers representing an upper bound for the performance. Moreover, we show that with a

small number of layers, we can approach the performance upper bound. We provide many

numerical examples for the three cases above to show the prospected gains of using the relays

on the expected utility for different channel conditions.
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Chapter 1

Introduction

Large demands for high Quality of Service QoS for new multimedia applications has in-

creased the attention towards replacing the conventional single-layer transmission with new

transmission schemes, in order to overcome some technical challenges related to the impair-

ments of the wireless medium. Wireless networks are suffering from fading effects caused by

multi-path propagation and shadowing over the wireless medium. Therefore, it is infeasible

to maintain a constant QoS for all users in every instantaneous moment.

1.1 Wireless Fading Channels

Wireless medium is suffering from many impairments due to the fading nature of the chan-

nels. Fading is the random fluctuations in the amplitude and the phase of the received signals

due to the reflections of the transmitted signals [1], [2]. These reflections are caused by

many obstacles in the Line Of Sight LOS between the transmitter and the receiver as shown

in Figure 1.1. If the tansmitted signal is x(t), then the received signal y(t) can be expressed

as

y(t) =
L∑
`=1

h`(t)x(t− τ`) + n(t), (1.1)

where L is the number of paths, n(t) is the additive noise, and τ` and h`(t) are the delay and

the channel coefficient for `-th path, respectively. The fading of the wireless channel can be

classified to flat-fading or multipath fading according to the value of the delay spread of the

channel ∆τ , which is the difference between the maximum and the minimum values of the

delay spread ∆τ = max` τl −min` τl.
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FIGURE 1.1: The Wireless Fading Channel

If the delay spread is small compared to the symbol duration then is channel is known as flat

(frequency non-selective) fading. Otherwise, the fading is known as multipath (frequency

selective) fading, where different fading values are assigned for different frequency compo-

nents, and this will result in Inter Symbol Interference ISI. Due to this impairments of the

wireless channel, it is infeasible to maintain a constant QoS for all users.

1.2 Single Layer Transmission

Single-layer transmission has been widely used in the last few decades. From an informa-

tion theoretic perspective, the information in the codeword is either decoded successfully

or unsuccessfully as a whole, depending on the channel condition, usually described as the

“On-Off” nature for the codewords. If the channel capacity is lower than the rate of the code-

word (i.e., channel is in deep fade), an error occurs and the codeword as a whole will not be

decoded reliably. On the other hand, the codeword is decoded successfully and reliably if the

channel capacity exceeds the rate. Consequently, due to the dispersive nature of the channel,

rate adaptation is usually sought to compensate for the variation in the channel capacity over

the time, in order for the receiver to decode the data reliably.

However, rate adaptation in order to avoid the events of outage requires a complete knowl-

edge of the channel at the transmitter (i.e., Channel State Information CSI). For multimedia

systems, this approach may be impractical. The CSI may be not available at the transmitter,

especially for delay-constrained applications where feedback latency is intolerable. More-

over, for multicast systems and for all users to decode the information successfully, it is
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needed to maintain the rate lower than the capacity of the worst channel in the system. This

implies that all users will be receiving the worst QoS, which is related to the source informa-

tion rate, even if their channel state is good.

Therefore, for the multimedia multicast applications using single layer transmission, a trade-

off exists between maintaining high QoS, and reducing the outage probability at the receivers.

Restricting the rate lower than the capacity of the worst channel in the system will decrease

the outage events while maintaining the worst QoS for all the users. Conversely, transmit-

ting with high source rates will enhance the opportunity of receiving high quality in good

channel conditions but with high probability of outage for users suffering from bad channel

conditions.

1.3 Multilayer Transmission

Unlike the “On-Off” nature for the single layer transmission, “multilayer” transmission

schemes combine Successive Refinement SR layered source coding [3], [4] with ordered pro-

tection levels at the physical layer. Therefore, the “base” source layer is given higher priority

and protected more than the “enhancement” source layers even by allocating more power or

reducing the allocated rate so that they can be decoded at relatively low Signal to Noise Ratio

SNR thresholds, while the enhancement source layers are decoded at higher SNR thresholds.

Consequently, Multilayer transmission makes it possible to partially decode the information

when the channel is not good. Thus, the receiver will be able to get an “acceptable but not

perfect” QoS when the channel is faded and “perfect” QoS when the channel is good. Of

course, this is better than the “all or nothing” scenario that is inherent in the conventional

single-layer transmission schemes.

In addition to its practical merits in multimedia broadcasting and multi-casting applications,

the multilayer transmission schemes have gained a lot of interest in the information theory

and the communication theory literature, where most researchers are interested in the “broad-

cast approach” since it is the optimal transmission strategy. In this case, the source layers

are protected independently using different channel codewords and transmitted jointly using

superposition coding at the physical layer [5], [6], [7] with Successive Interference Cancel-

lation SIC at the receiver. Therefore, the first layer is decoded first, and the upper layers in

3



this case are treated as interference. Once the layer is decoded, it is subtracted from the total

received signal, and this process is repeated up to the supported layer by the channel quality.

Other possible approaches for the multilayer transmission including coupling SR source cod-

ing with “orthogonal transmission” of the layers was considered in [8] with predetermined

rates for the source layer. In [9] a comparison was done assuming equal rates of the source

layers between the approach of combining SR coding with broadcast strategy and other cross

layer approaches including progressive (i.e. orthogonal) transmission of the source layers

and hybrid analog/digital schemes [10].

The design parameters that are subject to optimization in the broadcast approach are the

allocated rates and power ratios of the different source layers. By changing the allocated rate

and power ratio for the layer, the SNR threshold for this layer changes. Thus, the adaptation

of the design parameters produces a lot of trade-offs in the system performance. In order to

decrease the SNR threshold for the layer so as to be decoded more reliably, it required to

decrease the rate for the layer which affects the over-all QoS, or allocate more of the total

power budget for this layer which will cause, as a consequence, an increase in the SNR

threshold for the remaining layers. Therefore, an optimization over the design parameters

(rates and power ratios) is required in order to optimally enhance the long-term performance.

The performance can be described by a utility function of the decoded rates at the receiver.

There are several measures for the system performance. Two of the common objectives are

maximizing the expected rate e.g. [11], [12]. and minimizing the expected distortion of the

Gaussian source, e.g. [13], [14].

1.4 Thesis Contribution and Organization

Our main interest in this work is in the application of multilayer transmission using the broad-

cast approach in the context of relay-assisted networks [15], [16]. Our initial contribution in

this topic was by considering Decode and Forward DF relays [17]. We have also inves-

tigated the Amplify and Forward AF scenario for the multilayer transmission later in [18],

where we extended the solution algorithm presented in [19] for fixed and predetermined rates

of the source layers. Then, we examined recently the extension of the optimization frame-

work for jointly optimal rate and power allocation presented in [20] to the AF relay channel
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case. As well known, relaying and cooperative communication schemes are involved in LTE-

Advanced systems and they have been a very active research area recently. For brevity, we

refer here to only few examples of important contributions in this interesting topic [18, 21–

26].

The remainder of this thesis is organized as follows; we consider a simple case of two layer

transmission and solve the optimal power allocation problem assuming DF relays in Chap-

ter 2. In Chapter 3, we examine the case of the AF relays and solve the optimal power

allocation problem for any number of layers. Next, we solve the optimal jointly rate and

power allocation for the AF relaying case and for any number of layers in Chapter 4. Finally,

we summarize the main conclusion and some directions for future research in Chapter 5.

1.4.1 Power Optimization for Layered Transmission Over DF Relay
Channels (Chapter 2)

In Chapter 2, we consider layered source transmission over a single-node half-duplex relay

channel. Therefore, the transmission is done over two consecutive time slots with equal du-

ration and bandwidth. The layers are transmitted at the source with optimal power allocation

to both the relay and the destination in the first time slot. The relay is transmitting using

DF relaying strategy, where the relay decodes the information received from the source and

only forwards the layers decoded successfully with new optimal power allocation. We char-

acterize the expected utility function describing the average user satisfaction for two cases;

namely, the expected total decoded rate at the receiver and the expected rate distortion of a

Gaussian source. The optimal power allocation problem is solved so that the average utility

function is maximized.

Obtaining the closed form expression for the end-to-end channel condition is not feasible in

this case, then we consider a simple case of two layer transmission with fixed rates. Since the

optimal power allocation at the relay may not necessarily follow the same power allocation

at the source. Hence, the optimal power allocation at the relay should be considered as well,

and we need to find the optimal power allocation for the two layers at both the source and

the relay. As a result, the number of optimization variables increases considerably (since the

power allocation at the relay will be conditional on the number of layers decoded at the re-

lay). Hence, the number of optimization variables becomes M(M+3)
2
−1, where M is the total
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number of layers. Furthermore, the solution presented in [19] cannot be applied. So, numer-

ical random search methods should be applied which becomes inefficient and expensive in

terms of the computation load as the number of optimization variables increases. We provide

several numerical results describing the gain for using the relay with different positions.

1.4.2 Optimal Power Allocation for Layered Broadcast Over AF Relay
Channels (Chapter 3)

In Chapter 3, we describe a layered source transmission aided with AF single node relay.

The transmission is done over two consecutive time slots with equal duration and bandwidth.

In the first time slot, the source transmits the layers with optimal power allocation to both the

relay and the destination. The relay forwards the information received in the first time slot

from the source to the destination with the same power ratios in the second time slot. Note

that the relay here only forwards the data after amplifying without the need to decode the

date. The advantage of AF relays is that there is no error propagation as in the DF strategies,

because the relays do not perform any hard-decision operation on the received signal. Also,

the relays is transmitting the layers with the same power ratios as the source. Therefore, it

is feasible in this case to obtain the end-to-end channel quality in order to use the solution

algorithm presented in [19] for any number of layers with linear complexity. However, in the

AF protocol noise accumulates with the desired signal along the transmission path.

We solve the optimal power allocation problem for M number of layers with predetermined

rates, so that the utility function is maximized. We also consider two special cases of max-

imizing the average rate, or minimizing the expected distortion of a Gaussian source. An

approximation is proposed for the end-to-end channel quality given that all three links in our

channel model are Rayleigh faded. Consequently, we can use the algorithm proposed in [19]

to solve the problem, and we provide several numerical results describing the gain of using

the relay with different relay position. We also show that it may be optimal not to transmit

all the layers depending on the channel condition. Furthermore, we show that using the AF

relays may achieve lower values for the maximized utility function than the no-relay case

because of the multiplexing loss of transmitting over two time slots.
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1.4.3 Jointly Optimal Power and Rate Allocation for Layered Broad-
cast Over AF Relay Channels (Chapter 4)

The jointly optimal rate and power allocation for multi-layer transmission over AF relays

is considered in Chapter 4. It is true that the predetermined rate allocation is considered

more practical, where the joint source-channel coding is not feasible. However, the fixed rate

scenarios considered in Chapter 3 are considered sub-optimal compared to the flexible rate

allocation case considered in this chapter. We use the same channel approximation proposed

in Chapter 3, so that we can apply the solution algorithms presented in [20]. Furthermore,

we consider the theoretical case of infinite number of layers, which gives an upper bound

for the performance and is considered the global optimal solution. However, it is shown that

this upper bound can be achieved even with small number of layers. Numerical results are

provided showing the gain of using the AF relay for different relay positions, and the gain of

using optimally joint rate and power allocation over other suboptimal schemes.
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Chapter 2

Power Optimization for Layered Transmission Over DF Relay
Channels

2.1 Introduction

Our contribution of this chapter is on the investigation of multilayer transmission on a relay

channel, where we consider a layered transmission scheme with optimal power allocation at

the source and the relay. This work is already published in [17] where we assume that the

relay applies the selection-relaying Decode-and-Forward DF strategy [21]. We consider a

utility function as a measure for the user satisfaction. This function can be defined flexibly

for many cases; such as maximizing the expected rate or minimizing the expected distortion.

The optimization problem is formulated as utility maximization with known layers rates.

The expected utility function in our problem is a function of the channel statistics of the

three links in the channel (i.e., source-destination, source-relay and relay-destination).

In this chapter, we show that finding the end-to-end channel quality as in [19] is infeasible.

Therefore, we only find the solution in a special case of two-layer transmission with pre-

determined rates. The extension into more than two layers in the DF relay case becomes

prohibitively more complex. We characterize the expected utility function and use it in the

power optimization problem. Also, we apply the “random search” method [27, Chapter 14]

to solve this optimization problem, and we provide several numerical examples to show the

gains in the maximum expected utility when relaying is applied. The random search method

is not considered an efficient way in solving the problem, as it is time consuming and needs

high number of iterations to find an accurate solution. However, it is simple and suits the

objective function under optimization, which is found to be extremely complex. Other pos-

sible methods in finding the optimal solution is found in [27], such as Gradient and Steepest

Ascent methods where we move closer and faster to the maximum. However, it needs ex-

tra mathematical manipulations and approximations in order to find a closed form for the

objective function.
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2.2 System Model and Problem Formulation

2.2.1 System Model and Transmission Scheme

We consider a system that consists of three nodes; source, destination and relay. We assume

that the source is Gaussian and it is encoded into two layers, L1 and L2, with rates R1 and R2

respectively. L1 is the base layer, and L2 is the enhancement layer that refines the description

in L1. The relay is half-duplex and applies selection-relaying DF strategy. Therefore, the

transmission is carried over two consecutive time slots of equal duration and bandwidth. In

the first time slot, the source broadcasts L1 and L2 to the relay and the destination using

superposition coding, where L1 should be decoded first then L2 using SIC. If the relay is

able to decode one or both layers, it forwards the decoded layer(s) to the destination using

new complementary1 codewords in the second time slot. Otherwise, the source re-transmits

L1 and L2 in the second time slot using new complementary codewords. In both cases, the

destination tries to decode L1 first and then L2 based on the received codewords in the two

time slots of the transmission.

We assume that the three nodes are equipped with a single antenna. Also, we assume that

the source and the relay transmit using constant power Ps and Pr respectively. We use the

notation |h|
2P
σ2 to represent the Signal-to-Noise-Ratio (SNR) of the channel, where |h| is the

magnitude of the channel gain and σ2 is the received noise variance. Therefore, the SNR over

the three links of the relay channel can be denoted using γsr, γsd and γrd for the source-relay,

source-destination, and relay-destination links, respectively, and they are given as

γsr =
|hsr|2Ps
σ2
sr

, γsd =
|hsd|2Ps
σ2
sd

, γrd =
|hrd|2Pr
σ2
rd

. (2.1)

Furthermore, we assume that the channel gains, and consequently the SNRs, stay constant

for the duration of one transmission block, which consists of two consecutive time slots.

However, γsr, γsd and γrd vary from one channel block to another randomly. Furthermore,

we assume that the source and the relay do not know the instantaneous values of the SNRs

while transmitting.

1We assume that the codewords achieves the information-theoretic maximum achievable rates of decode-
and-forward over the relay channel.
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In the numerical results in Section 2.4, we assume that the variation (i.e., fading) of the

channels’ gain is Rayleigh distributed2. Hence, the Probability Density Function PDF of the

channels follow an exponential distribution, and they are given as

fsd (γsd) =
1

γ̄
exp

(
−γsd
γ̄

)
, (2.2a)

fsr (γsr) =
1

mγ̄
exp

(
−γsr
mγ̄

)
, (2.2b)

frd (γrd) =
1

mγ̄
exp

(
−γrd
mγ̄

)
, (2.2c)

for the source-destination, source-relay and relay-destination links, respectively. In (2.2),

γ̄ is the average SNR for the direct source-destination link and m is the ratio between the

average SNR of the source-relay and the relay-destination links to the source-destination

link. We assume that γ̄ and m are known at the source and the relay and they are used in

the optimization of the power allocation over the two layers L1 and L2 at these two nodes to

maximize the expected utility function, denoted U , of the total decoded rate, denoted R̄, at

the destination.

The optimization variables are denoted α1 and α2 for the ratios of the total power at the

source that are allocated to L1 and L2, respectively. Additionally, we have β1 and β2 for the

ratios of the total power at the relay that are allocated to L1 and L2, respectively, when the

relay transmits both layers. However, when the relay can decode only L1, it forwards only

this layer, and hence it allocates all of its power to it.

2.2.2 Mathematical Notation and Problem Formulation

First, we define the following functions because we will use them frequently in the sequel.

C1(γ, ε) = log

(
1 +

(1− ε)γ
1 + εγ

)
, (2.3a)

C2(γ, ε) = log (1 + εγ) . (2.3b)

2The extension of the results of this thesis into other channel fading models is straightforward.
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The functions in (2.3) define the information-theoretic maximum achievable rates for the

transmission of two layers over a Gaussian channel with SNR γ, and power ratio of the

enhancement layer equals ε.

Γ1(x, ε) =
x− 1

1− εx
, (2.4a)

Γ2(x, ε) =
x− 1

ε
. (2.4b)

Also, we use the functions in (2.4) to denote the information-theoretic minimum SNR thresh-

old that is required in order to be able to decode two layers over a Gaussian channel with x a

function of the layer rate as will be explained in the sequel, and ε is the power ratio allocated

to the enhancement layer.

In this thesis, our objective is to maximize the expected user satisfaction determined by the

utility function U(R̄). The utility function U(R̄) can be flexibly defined to employ many

special cases such as minimizing the expected distortion of a Gaussian source or maximizing

the expected rate. The optimization problem is to optimally allocate the power among the

two layers such that the expectation of the utility function E[U(R̄)] is maximized. The

expectation of the utility function can be described as

E
[
U(R̄)

]
= U(R1).Pd1 + U(R1 +R2).Pd2, (2.5)

where Pd1 and Pd2 are defined as

Pd1 ≡ Pr (Destination can decode L1 only) , (2.6a)

Pd2 ≡ Pr (Destination can decode both L1 and L2) . (2.6b)

These probabilities can be characterized as

Pd1 = Pd1|r0.Pr0 + Pd1|r1.Pr1 + Pd1|r2.Pr2. (2.7)

Similarly, we have

Pd2 = Pd2|r0.Pr0 + Pd2|r1.Pr1 + Pd2|r2.Pr2, (2.8)
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where the following notations are used

Pr0 ≡ Pr (Relay cannot decode L1 and L2) , (2.9a)

Pr1 ≡ Pr (Relay can decode L1 only) , (2.9b)

Pr2 ≡ Pr (Relay can decode both L1 and L2) , (2.9c)

Pd1|r0 ≡ Pr (Destination can decode L1 only|Relay cannot decode L1 and L2) , (2.10a)

Pd1|r1 ≡ Pr (Destination can decode L1 only|Relay can decode L1 only) , (2.10b)

Pd1|r2 ≡ Pr (Destination can decode L1 only|Relay can decode both L1 and L2) , (2.10c)

Pd2|r0 ≡ Pr (Destination can decode both L1 and L2|Relay cannot decode L1 and L2) ,

(2.11a)

Pd2|r1 ≡ Pr (Destination can decode both L1 and L2|Relay can decode L1 only) , (2.11b)

Pd2|r2 ≡ Pr (Destination can decode both L1 and L2|Relay can decode both L1 and L2) .

(2.11c)

Notice that Pri depends on γsr while Pdi|rj depends on γsd and γrd. We assume that the

channels are fading independently.

The main optimization problem is

max
α2,β2

E[U(R̄)], (2.12a)

subject to 0 ≤ α2, β2 ≤ 1, (2.12b)

where α1 and β1 are equal to

α1 = 1− α2, β1 = 1− β2 (2.13)

The first step to solve (2.12) is to find the probability that the destination is able to decode

only layer L1 correctly, then find the probability that the destination is able to decode both

12



layers L1 and L2 correctly. These two probabilities will be substituted in (2.5), and then it

is required to find optimal power ratios α2 and β2 to solve (2.12) using “random search”

numerical method.

2.3 Characterizing the Successful Decoding Probabilities

2.3.1 Successful Decoding Probabilities at the Relay

Pr0 = Pr

(
R1 >

1

2
C1(γsr, α2)

)
(2.14a)

= Pr
(
γsr < Γ1(22R1 , α2)

)
(2.14b)

= Fsr

(
Γ1(22R1 , α2)

)
(2.14c)

where Fsr denoted the cumulative distribution function (CDF) of γsr.

Pr1 = Pr

(
R1 ≤

1

2
C1(γsr, α2) and R2 >

1

2
C2(γsr, α2)

)
(2.15a)

= Pr
(

Γ1(22R1 , α2) ≤ γsr < Γ2(22R2 , α2)
)

(2.15b)

= Fsr

(
max

(
Γ1(22R1 , α2),Γ2(22R2 , α2)

))
− Fsr

(
Γ1(22R1 , α2)

)
(2.15c)

The maximum of Γ1(22R1 , α2) and Γ2(22R2 , α2) is taken in order to take into consideration

the cases when Γ2(22R2 , α2) < Γ1(22R1 , α2). In this case, the probability of decoding L1

only is zero.

Pr2 = Pr

(
R1 ≤

1

2
C1(γsr, α2) and R2 ≤

1

2
C2(γsr, α2)

)
(2.16a)

= Pr
(
γsr ≥ max

(
Γ1(22R1 , α2),Γ2(22R2 , α2)

))
(2.16b)

= 1− Fsr

(
max

(
Γ1(22R1 , α2),Γ2(22R2 , α2)

))
(2.16c)
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2.3.2 Case: The Relay cannot decode any Layer

Next, we characterize the conditional probabilities starting with the case when the relay is not

able to decode any layer. In this case, the source re-transmits L1 and L2 using new codewords

and with the same power ratios α1 and α2.

Pd1|r0 = Pr (R1 ≤ C1(γsd, α2) and R2 > C2(γsd, α2)) (2.17a)

= Pr
(

Γ1(2R1 , α2) ≤ γsd < Γ2(2R2 , α2)
)

(2.17b)

= Fsd

(
max

(
Γ1(2R1 , α2),Γ2(2R2 , α2)

))
− Fsd

(
Γ1(2R1 , α2)

)
(2.17c)

Pd2|r0 = Pr (R1 ≤ C1(γsd, α2) and R2 ≤ C2(γsd, α2)) (2.18a)

= Pr
(
γsd ≥ max

(
Γ1(2R1 , α2),Γ2(2R2 , α2)

) )
(2.18b)

= 1− Fsd

(
max

(
Γ1(2R1 , α2),Γ2(2R2 , α2)

))
(2.18c)

2.3.3 Case: The Relay can decode Only One Layer

In this case when the relay can decode only L1, it transmits only this layer using a new

codeword in the second time slot. Therefore, L1 is allocated the full power of the relay in

this case.

Pd1|r1 = Pr
(
R1 ≤

1

2
C1(γsd, α2) +

1

2
C2(γrd, 1) and R2 >

1

2
C2(γsd, α2)

)
(2.19)

The region defined by the condition R1 ≤ 1
2
C1(γsd, α2) + 1

2
C2(γrd, 1) can be characterized in

terms of γsd and γrd as

γrd ≥ max

(
0,Γ2

(
22R1(1 + α2γsd)

1 + γsd
, 1

))
(2.20)
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Equivalently, this region can be characterized as

γsd ≥ max

(
0,Γ1

(
22R1

1 + γrd
, α2

))
(2.21)

Furthermore, the condition R2 >
1
2
C2(γsd, α2) is equivalent to

γsd < Γ2

(
22R2 , α2

)
(2.22)

Therefore, based on (2.20) and (2.22), we can write (2.19) as

Pd1|r1 =

∫ Γ2(22R2 ,α2)

0

fsd(γsd)

∫ ∞
ω(γsd)

frd(γrd)dγrddγsd (2.23a)

=

∫ Γ2(22R2 ,α2)

0

fsd(γsd) (1− Frd (ω(γsd))) dγsd, (2.23b)

where ω(γsd) is defined as

ω(γsd) = max

(
0,Γ2

(
22R1(1 + α2γsd)

1 + γsd
, 1

))
(2.24)

Equivalently, based on (2.21) and (2.22), we can write (2.19) as

Pd1|r1 =

∫ ∞
0

frd(γrd)

∫ Γ2(22R2 ,α2)

ζ(γrd)

fsd(γsd)dγsddγrd, (2.25)

where ζ(γrd) is defined as

ζ(γrd) = min

(
Γ2

(
22R2 , α2

)
,max

(
0,Γ1

(
22R1

1 + γrd
, α2

)))
(2.26)

In a similar way, we can obtain Pd2|r1

Pd2|r1 = Pr
(
R1 ≤

1

2
C1(γsd, α2) +

1

2
C2(γrd, 1) and R2 ≤

1

2
C2(γsd, α2)

)
(2.27a)

=

∫ ∞
Γ2(22R2 ,α2)

fsd(γsd) (1− Frd (ω(γsd))) dγsd, (2.27b)

where ω(γsd) is defined in (2.24). Equivalently, we can characterize Pd2|r1 as
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Pd2|r1 =

∫ ∞
0

frd(γrd)

∫ ∞
η(γrd)

fsd(γsd)dγsddγrd, (2.28)

where η(γrd) is defined as

η(γrd) = max

(
0,Γ1

(
22R1

1 + γrd
, α2

)
,Γ2

(
22R2 , α2

))
(2.29)

2.3.4 Case: The Relay can decode Both Layers

When the relay can decode both layers, it forwards both layers using power ratios β1 and β2,

respectively. The conditional probabilities in this case are characterized as follows.

Pd1|r2 = Pr
(
R1 ≤

1

2
C1(γsd, α2) +

1

2
C1(γrd, β2) and

R2 >
1

2
C2(γsd, α2) +

1

2
C2(γrd, β2)

)
(2.30)

The region defined by the condition R1 ≤ 1
2
C1(γsd, α2) + 1

2
C1(γrd, β2) can be characterized

in terms of γsd and γrd as

γrd ≥ max

(
0,Γ1

(
22R1(1 + α2γsd)

1 + γsd
, β2

))
(2.31)

Equivalently, this region can be characterized as

γsd ≥ max

(
0,Γ1

(
22R1(1 + β2γrd)

1 + γrd
, α2

))
(2.32)

Similarly, the region defined by the condition R2 >
1
2
C2(γsd, α2) + 1

2
C2(γrd, β2) can be char-

acterized in terms of γsd and γrd as

γrd < max

(
0,Γ2

(
22R2

1 + α2γsd
, β2

))
(2.33)
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Equivalently, this region can be characterized as

γsd < max

(
0,Γ2

(
22R2

1 + β2γrd
, α2

))
(2.34)

Therefore, based on (2.31) and (2.33), we can write (2.30) as

Pd1|r2 =

∫ Γ2(22R2 ,α2)

0

fsd(γsd)
(
Frd (max (σ(γsd), ξ(γsd)))

− Frd (σ(γsd))
)
dγsd, (2.35a)

where σ(γsd) is defined as

σ(γsd) = max

(
0,Γ1

(
22R1(1 + α2γsd)

1 + γsd
, β2

))
, (2.36)

and ξ(γsd) is defined as

ξ(γsd) = max

(
0,Γ2

(
22R2

1 + α2γsd
, β2

))
(2.37)

Equivalently, based on (2.32) and (2.34), we can write (2.30) as

Pd1|r2 =

∫ Γ2(22R2 ,β2)

0

frd(γrd)
(
Fsd (max (θ(γrd), φ(γrd)))

− Fsd (θ(γrd))
)
dγrd, (2.38a)

where θ(γrd) is defined as

θ(γrd) = max

(
0,Γ1

(
22R1(1 + β2γrd)

1 + γrd
, α2

))
, (2.39)

and φ(γrd) is defined as

φ(γrd) = max

(
0,Γ2

(
22R2

1 + β2γrd
, α2

))
(2.40)
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In a similar way, we can obtain Pd2|r2

Pd2|r2 = Pr
(
R1 ≤

1

2
C1(γsd, α2) +

1

2
C1(γrd, β2) and

R2 ≤
1

2
C2(γsd, α2) +

1

2
C2(γrd, β2)

)
(2.41a)

=

∫ ∞
0

fsd(γsd)
(

1− Frd

(
max (σ(γsd), ξ(γsd))

))
dγsd (2.41b)

where σ(γsd) and ξ(γsd) are defined in (2.36) and (2.37). Equivalently, we can characterize

Pd2|r2 as

Pd2|r2 =

∫ ∞
0

frd(γrd)
(

1− Fsd (max (θ(γrd), φ(γrd)))
)
dγrd, (2.42a)

where θ(γrd) and φ(γrd) are defined in (2.39) and (2.40).

2.4 Numerical Results

We present several numerical results in this section with the assumption that the fading dis-

tribution of the channels follows (2.2), where the average SNR for the source-relay and the

relay-destination links are m times the average SNR for the source-destination link. We con-

sider a scalable video source example consisting of two layers with a sum rate of 3 bps/Hz.

The rates of the two source layers are respectively 1 and 2 bps/Hz. We consider two dif-

ferent utility functions; namely, U(R̄) = 1 − 2−2R̄, which corresponds to minimizing the

expected distortion of a Gaussian source and U(R̄) = R̄, which corresponds to maximizing

the expected total rate at the destination.

Figures 2.1 and 2.2 show the relative power ratios of the layers at the source and the relay

respectively, for different values of m, with the target of minimizing the expected distortion

of a Gaussian source over Rayleigh fading channels. The optimal power ratios are plotted

against the average SNR of the source-destination channel. It can be seen that for low average

SNR values it is optimal to send only one layer. This is because the enhancement layer

cannot be decoded reliably in this case. Therefore, it is better to discard it in order to get rid

of its interference on the base layer, which enables the reception of the base layer at lower

SNR values. On the other hand, when the average SNR is above a certain value, it becomes
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FIGURE 2.1: The relative power ratios of the layers at the source versus the average SNR
value of a Rayleigh fading channel with U(R̄) = 1− 2−2R̄.
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FIGURE 2.2: The relative power ratios of the layers at the relay versus the average SNR
value of a Rayleigh fading channel with U(R̄) = 1− 2−2R̄.

optimal to send the two layers. This value for the average SNR is the same for the source and

the relay. It is obvious that as the ratio m increases, the curves are shifted to the left, which

means that for higher values of m it is optimal to send the two layers for lower values of the

average SNR. This is intuitive because as m increases, the relay becomes more capable of

enhancing the end-to-end performance, and hence the destination becomes more capable of

decoding the enhancement layer even when its direct channel with the source has low SNR.

Figures 2.3 and 2.4 show the relative power ratios of the layers at the source and the relay

respectively, for different values of m, with the target of maximizing the expected rate over

Rayleigh fading channels. Since the utility function for maximizing the rate is linear, the

19



10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Objective: Maximize Expected Rate

Average SNR γ
sd

 (Log Scale)

Po
w

er
 R

at
io

s 
of

 th
e 

La
ye

rs
 a

t t
he

 S
ou

rc
e Layer 1 (m=1)

Layer 2 (m=1)

Layer 1 (m=5)

Layer 2 (m=5)

Layer 1 (m=10)

Layer 2 (m=10)

FIGURE 2.3: The relative power ratios of the layers at the source versus the average SNR
value of a Rayleigh fading channel with U(R̄) = R̄.
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FIGURE 2.4: The relative power ratios of the layers at the relay versus the average SNR
value of a Rayleigh fading channel with U(R̄) = R̄.

enhancement layer has more importance than in the case of distortion minimization. Con-

sequently, a higher ratio of the power is allocated to the enhancement layer in this case.

Furthermore, it becomes optimal to send both layers for lower values of the average SNR.

In comparison, the solution for minimizing the average distortion gives more importance to

the base layer, and hence it becomes optimal to send both layers for higher values of the

average SNR. That is why the curves are shifted to the left in Figures 2.3 and 2.4 compared

to Figures 2.1 and 2.2. Moreover, it is obvious that as the the ratio m increases, the curves

are shifted to the left similar to the distortion minimization case.
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FIGURE 2.5: The maximized average utility function versus the average SNR value of a
Rayleigh fading channel with U(R̄) = 1− 2−2R̄.
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FIGURE 2.6: The maximized average utility function versus the average SNR value of a
Rayleigh fading channel with U(R̄) = R̄.

In a comparison between relay-assisted transmission and direct channel with no relay assis-

tance, over Rayleigh fading channels with different values of m, we can see from Figures 2.5

and 2.6 that there is an obvious gain in the maximum expected utility when the relay is in-

volved. This is valid for both cases U(R̄) = 1 − 2−2R̄ and U(R̄) = R̄. Furthermore, as m

increases, the gain with respect to the no-relay case increases as well, as expected. For the

case when m = 1, it can be seen that the maximum expected utility is close (and maybe less

than) the no-relay case. This is because the channel gains of the relay channel are not high

in this case. Therefore, the prospected gain due to channel diversity of the relay channel will

be opposed by the multiplexing loss due to the transmission over two time slots.
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Chapter 3

Optimal Power Allocation for Layered Broadcast Over AF Relay
Channels

3.1 Introduction

In this chapter we are interested in the application of multilayer transmission using the broad-

cast approach, and how to optimally allocate power among the layers in the context of AF

relay networks. This work is already published in [18], where we extended the solution al-

gorithm presented in [19] for fixed and predetermined rates of the source layers. In [19] and

originally in [28], [29], the problem of optimal power allocation for multilayer transmission

was considered with fixed and predetermined rates for the source layers.

We also show in this chapter, unlike the DF relay case presented in Chapter 2, the application

of the algorithm presented in [19] to solve the optimization problem assuming AF relaying

is feasible. This means that we can solve both the optimal power allocation problem for the

fixed rate case and the joint rate and power allocation problem for any number of source lay-

ers while maintaining a linear computation complexity with respect to the number of source

layers. On the other hand, in the DF case the solution is obtained using numerical random

search methods and for two source layers only [17]. The extension into more than two layers

in the DF relay case becomes prohibitively more complex. Notice that the expected utility

function in the AF case is a function of the channel statistics of the three links in the chan-

nel (i.e., source-destination, source-relay and relay-destination). So, we need to analytically

characterize the end-to-end channel statistics in terms of the statistics of the three links of the

channel model in order to be able to apply the algorithm presented in [19]. This is the main

bottleneck in the problem. However, we proposed a simple and useful approximation of the

end-to-end channel quality given that all three links in our channel model are Rayleigh faded.

Furthermore, we provided several numerical examples to show both the optimal power allo-

cation for the fixed rate case and the joint optimal rate and power allocation for two different
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utility functions and to demonstrate the gains of relaying over the case when the relay is not

utilized.

3.2 System Model and Problem Formulation

3.2.1 System Model and Transmission Scheme

We consider a system that consists of three nodes: source, destination and relay. We as-

sume that the source signal is Gaussian and it is encoded into independent M layers, L =

[L1, L2, . . . , LM ], with fixed rates R = [R1, R2, . . . , RM ], with power ratios α = [α1, α2, . . . ,

αM ] of the total source power Ps, and with each layer successively refining the information

from the lower layers. Therefore, the source transmits layer Li with a power Pi = αiPs.

The relay is half-duplex and applies AF strategy [21]. Therefore, the transmission is carried

over two consecutive time slots of equal duration and bandwidth. The source broadcasts the

layers to the relay and the destination using superposition coding in the first time slot. In

the second time slot, the relay forwards the signal that was received from the source after

amplifying it. The power of the relay is denoted by Pr. Notice that the power ratios of the

source layers at the relay preserve the same ratios like the source node since the relay just

amplifies the layers without decoding and regenerating them.

Two copies of the layers are received at the destination in the two time slots. The destination

utilizes both copies in order to decode the source information up to the number of layers that

can be decoded reliably based on the end-to-end instantaneous channel quality. The layers

are decoded with SIC. Thus, in order for the destination to decode layer Li, it must be able

to decode all “higher priority” layers first (i.e., all Lj where j < i).

We assume that the three nodes are equipped with a single antenna. We also denote the

SNR over the three links of the relay channel using γsr, γsd and γrd for the source-relay,

source-destination, and relay-destination links, respectively. We assume that the source and

the relay transmit using constant power. Furthermore, we assume that the channel gains,

and consequently the SNRs, stay constant for the duration of one transmission block, which

consists of two consecutive time slots. However, γsr, γsd and γrd vary from one channel block

to another randomly. Furthermore, we assume that the source and the relay do not know the

instantaneous values of the SNRs while transmitting.
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In this work, we assume that the variation (i.e. fading) of the channels’ gain is Rayleigh

distributed. Hence, the PDF of the channels follow an exponential distribution, and they are

given as

fsd (γsd) =
1

γ̄
exp

(
−γsd
γ̄

)
, (3.1a)

fsr (γsr) =
1

m1γ̄
exp

(
−γsr
m1γ̄

)
, (3.1b)

frd (γrd) =
1

m2γ̄
exp

(
−γrd
m2γ̄

)
, (3.1c)

for the source-destination, source-relay and relay-destination channels, respectively. In (3.1),

γ̄ is the average SNR for the direct source-destination link and m1 and m2 denote the ratios

between the average SNR of the source-relay and the relay-destination links to the source-

destination link, respectively. We assume that γ̄, m1 and m2 are known at the source node

which utilizes its knowledge of the average channel qualities of the three links in the opti-

mization of the power allocation αi’s over the layers in order to maximize the expected utility

function, denoted U , of the total decoded rate, denoted R̄, at the destination.

Since the quality of service of any link increases with the total decoded rate at the receiver,

and since the lower layers are more important than the upper (enhancement) layers, we will

assume that the utility function U(R̄) that represents the user satisfaction is differentiable

concave increasing.

3.2.2 End-to-End Channel Condition

The two copies of the layers ysd and yrd received from the source and the relay in the two

time slots, respectively, are combined at the destination using Maximum Ratio Combining

MRC. Therefore, the combined signal can be given as

yc = aysd + byrd, (3.2)

where a and b are the combining ratios, and

ysd = hsdΣ
M
i=1Li + nsd, (3.3a)

ysr = hsrΣ
M
i=1Li + nsr, (3.3b)

yrd = hrdArysr + nrd, (3.3c)
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where hsd, hsr and hrd are the independent channel gains, nsd, nsr and nrd are the indepen-

dent noise levels with variance No for the three links, and Ar is the amplifying gain at the

relay node that is a function of the power constraint at the relay Pr. Hence,

Ar =

√
Pr

|hsr|2Ps +No

. (3.4)

It can be shown that the signal to noise ratio SNR(Li)
c of the combined signal with SIC for

layer Li can be easily written as

SNR(Li)
c =

|ahsd + bhrdhsrAr|2 αiPs
No

(
|a|2 + |b|2 + |bhrdAr|2

)
+ |ahsd + bhrdhsrAr|2

∑M
m>i αmPs

. (3.5)

In order to get the MRC, we need to find the combining ratios a and b that will maximize

SNR(Li)
c . Therefore, we differentiate SNR(Li)

c with respect to a∗, where a∗ is the conjugate

value of the combining ratio a, and find the values of a and b for the derivative δSNR(Li)
c

δa∗
to be

equal zero, which can be found after some mathematical derivations, that are omitted here

for brevity, as

a = Ch∗sd
(
|hsr|2Ps + |hrd|2Pr +No

)
, (3.6a)

b = Ch∗srh
∗
rd

√
Pr (|hsr|2Ps +No), (3.6b)

where C is an arbitrary constant, and h∗ is the conjugate value of the channel gain h. By

substituting with (3.6) in (3.5), we can find the maximum SNR value for the layer Li denoted

by SNR(Li)
MRC, which yields

SNR(Li)
MRC =

αi
1
γ

+
∑M

m>i αm
, (3.7a)

γ = γsd +
γsrγrd

γsr + γrd + 1
, (3.7b)

where γ denotes the end-to-end SNR (i.e. the SNR at the destination after combining the

direct and relayed signals optimally).

Since the receiver decodes the layers one by one using SIC, then for the destination to decode

and make use of layerLi, it must be able to decode this layer as well as all the previous layers.
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Therefore, the value of γ must satisfy the relation

Rj ≤
1

2
log

(
1 +

αj
1
γ

+
∑M

m>j αm

)
∀j ≤ i. (3.8)

This can be written as

γ ≥ γ̄i = max{γ1, γ2, . . . , γi}

= max

{
γ̄i−1,

1
αi

22Ri−1
−
∑M

m>i αm

}
,

(3.9)

where γ̄i, named as γ threshold, is the constraint on γ for the destination to be able to decode

all the layers up to layer Li, and γj is the minimum value for γ required to decode the layer

Lj only after correctly cancelling all the previous layers, and can be written as

γj =
1

αj

22Rj−1
−
∑M

m>j αm
, (3.10)

and hence the required γ decoding threshold would be the maximum of the γ threshold

required to decode Layer i and that required to decode all of its previous layers.

It can be seen that the γ threshold values depends on the power allocated to each layer. The

destination only decodes the layers whose thresholds are below the instantaneous end-to-end

channel condition γ.

3.2.3 Problem Formulation

In this chapter, we need to find the optimal power allocation in order to maximize the ex-

pected user satisfaction that is defined by a utility function U(R̄) of the total decoded rate R̄

at the destination, where R̄ = {R̄1, R̄2, . . . , R̄M}, and R̄i =
∑i

j=1Rj .

The algorithm used in this work can be utilized to employ many special definitions for the

utility function such as minimizing the expected distortion of a Gaussian source or maximiz-

ing the expected rate. The optimization problem is to optimally allocate the power among

the layers, i.e., α′is, such that we can obtain the maximum value of the expectation of the

utility function E[U(R̄)]. Hence, we can formulate the optimization problem Similar to [19]
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as follows

max
α

∫ ∞
0

fγ(γ) U
(
R̄(γ, α)

)
dγ (3.11a)

subject to
M∑
i=1

αi = 1, αi ≥ 0 ∀i, (3.11b)

where fγ(γ) is the PDF of the end-to-end channel quality γ, R̄(γ, α) is an indication that the

total rate decoded successfully at a certain value of γ is a function of the power ratios α′is of

the layers.

Since the user only decodes the layers whose thresholds are below the received value of γ,

then we have M possible levels for the total rate decoded successfully, and hence we can

write the objective function in (3.11a) as:

(
U1

∫ γ̄2

γ̄1

fγ(γ)dγ + . . .+ UM

∫ ∞
γ̄M

fγ(γ)dγ

)
, (3.12)

where Ui = U
(∑i

m=1Rm

)
, and U0 = 0. Now we can write the problem in (3.11) using

(3.12) as:

min
α,γ̄

M∑
i=1

ci Fγ(γ̄i(γ̄i−1, α)) (3.13a)

subject to
M∑
i=1

αi = 1, αi ≥ 0 ∀i, (3.13b)

γ̄i = max

{
γ̄i−1,

1
αi

22Ri−1
−
∑M

m>i αm

}
∀i, (3.13c)

where ci = Ui−Ui−1, and Fγ(γ) is the Cumulative Distribution Function CDF of the end-to-

end channel quality γ. The constraint (3.13c) can be intuitively replaced with the following

two constraints

γ̄i ≥ 1
αi

22Ri−1
−
∑M

m>i αm
∀i, (3.14a)
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γ̄M ≥ γ̄M−1 ≥ . . . ≥ γ̄1 > 0. (3.14b)

It can be shown that the two constraints (3.14a) and (3.14b) are sufficient to guarantee that

the constraints αi ≥ 0, ∀i in (3.13b) are satisfied. This becomes clear if we start by i = M

and apply (3.14a) and (3.14b), we find that αM must be greater than or equal zero. Then,

by applying (3.14a) and (3.14b) for i = M − 1, and using the fact that αM ≥ 0 from the

previous step, we find that αM−1 must also be greater than or equal zero. Repeating this

process until i = 1, we can show that the constraint αi ≥ 0, ∀i is implicitly satisfied by the

constraints (3.14a) and (3.14b).

Notice that the optimization problem in (3.13) has two variables α, and γ̄. Since each vari-

able is a function of the other one γ̄(α), then for simplicity we can eliminate the variable γ̄

from the optimization problem. Similar to what have been done in [19], it was shown that

the constraint (3.14a) must be satisfied with equality, and by applying some simple manipu-

lations on the constraint as in Appendix A, it can be shown that the optimization problem in

(3.13) can be written as

min
α,γ̄

M∑
i=1

ci Fγ(γ̄i), (3.15a)

subject to
M∑
i=1

∆bi
γ̄i
− 1 ≤ 0, (3.15b)

where bi = 22R̄i − 1, b0 = 0, and ∆bi = bi − bi−1. The constraint (3.14b) is removed, and

will be implicitly considered when searching for the optimal values for the thresholds γ̄′is.

Now there is only one optimization parameter for the problem γ̄i, and after solving the prob-

lem (3.15), we can calculate the optimal power ratios for each layer recursively starting from

α1 using the following relation derived in [19],

αi =
bi − bi−1

1 + bi

(
1−

i−1∑
j=1

αj +
1

γ̄i

)
. (3.16)
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TABLE 3.1: k values for different values of m1γ̄, and m2γ̄

m1γ̄,m2γ̄ <0.5 0.5 0.8 1.2 2.2 4 7 10 25 50 70 150 250 500 1000 2000 6500 ≥20000

<0.5 0.4 0.4 0.45 0.45 0.55 0.625 0.7 0.75 0.85 0.9 0.925 0.95 0.975 1 1 1 1 1

0.5 0.4 0.4 0.45 0.45 0.55 0.625 0.7 0.75 0.85 0.9 0.925 0.95 0.975 1 1 1 1 1

0.8 0.45 0.45 0.45 0.5 0.55 0.6 0.675 0.725 0.825 0.9 0.9 0.95 0.95 1 1 1 1 1

1.2 0.45 0.45 0.5 0.5 0.55 0.6 0.65 0.7 0.8 0.875 0.9 0.95 0.95 0.975 1 1 1 1

2.2 0.55 0.55 0.55 0.55 0.55 0.575 0.625 0.65 0.75 0.825 0.85 0.9 0.95 0.95 0.975 1 1 1

4 0.625 0.625 0.6 0.6 0.575 0.575 0.6 0.625 0.7 0.775 0.8 0.875 0.9 0.95 0.95 0.975 1 1

7 0.7 0.7 0.675 0.65 0.625 0.6 0.6 0.6 0.675 0.725 0.75 0.85 0.875 0.925 0.95 0.95 1 1

10 0.75 0.75 0.725 0.7 0.65 0.625 0.6 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.95 1 1

25 0.85 0.85 0.825 0.8 0.75 0.7 0.675 0.65 0.675 0.675 0.7 0.75 0.8 0.85 0.9 0.95 1 1

50 0.9 0.9 0.9 0.875 0.825 0.775 0.725 0.7 0.675 0.65 0.675 0.7 0.75 0.8 0.875 0.9 1 1

70 0.925 0.925 0.9 0.9 0.85 0.8 0.75 0.75 0.7 0.675 0.675 0.7 0.75 0.8 0.85 0.9 0.95 1

150 0.95 0.95 0.95 0.95 0.9 0.875 0.85 0.8 0.75 0.7 0.7 0.7 0.75 0.8 0.85 0.9 0.95 1

250 0.975 0.975 0.95 0.95 0.95 0.9 0.875 0.85 0.8 0.75 0.75 0.75 0.75 0.8 0.85 0.9 0.95 1

500 1 1 1 0.975 0.95 0.95 0.925 0.9 0.85 0.8 0.8 0.8 0.8 0.8 0.85 0.9 0.95 1

1000 1 1 1 1 0.975 0.95 0.95 0.95 0.9 0.875 0.85 0.85 0.85 0.85 0.85 0.9 0.95 1

2000 1 1 1 1 1 0.975 0.95 0.95 0.95 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 1

6500 1 1 1 1 1 1 1 1 1 1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1

≥20000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.3 End-To-End Channel Approximation

Since obtaining the exact formula for the PDF of γ is not straightforward. So, alternatively,

we propose to use an approximation for it. We aim in this Section to find the PDF (or

equivalently CDF) for γ, given in (3.7b), in terms of the PDFs of γsr, γsd and γrd.

It can be easily shown that the value of γ can be bounded as

γsd < γ ≤ γsd + min (γsr, γrd) . (3.17)

The upper bound is obtained when the average SNR value for the source-relay link m1γ̄ or

the relay destination link m2γ̄ (or both) is considerably high (around 104). While the lower

bound is the case of low values (around 0.5) for both m1γ̄ and m2γ̄.

So, intuitively, we can in general rewrite the definition of γ approximately as

γ ≈ γsd + k min (γsr, γrd) , (3.18)

where the appropriate value for k should be used (0 < k ≤ 1) such that the CDF of γ as

defined in (3.18) becomes as close as possible to the exact CDF of γ as defined in (3.7b). We

have done this task for different values of m1 and m2, and we have constructed Table 3.1 to
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show the most appropriate values for k for different values of m1γ̄, and m2γ̄ to get as close

as possible approximation for the CDF of γ.

Notice that form1γ̄ < 0.5 orm2γ̄ < 0.5, we find that we can choose any value for 0 < k ≤ 1

and get very close approximation for γ. Therefore, while constructing Table 3.1, we treated

the case for m1γ̄ < 0.5 as m1γ̄ = 0.5 (m2γ̄ < 0.5 as m2γ̄ = 0.5). We assume that the PDF

of the channels follows an exponential distribution as shown in (3.1).

Based on the proposed approximation formula, γ will be the sum of two independent ex-

ponential random variables, then we can easily write the CDF using the definition in (3.18)

as

Fγ(γ) = 1− β1

β1 − β′
e−γβ

′
+

β′

β1 − β′
e−γβ1 , (3.19)

where β′ = β2+β3
k

, β1 = 1
γ̄

, β2 = 1
m1γ̄

, and β3 = 1
m2γ̄

. Figures 3.1 and 3.2 show the CDF for

the approximated γ in (3.19) compared to the CDF of the exact γ as defined in (3.7b), which

is obtained numerically, for different values of γ̄, m1, and m2. The two figures demonstrate

that the approximation given by (3.18) is appropriate. It can be also noticed that as the

values of m1γ̄ and m2γ̄ decreases, the two curves of k = 0 and k = 1 get closer, and when

the average SNR values decrease below a certain value (around 0.5), the two curves almost

coincide. That is why we choose any value of 0 < k ≤ 1 when m1γ̄ < 0.5 or m2γ̄ < 0.5

and get very close approximation for γ.

3.4 Solution Structure

In this section we will apply the algorithm that was proposed in [20] to solve this problem.

We can notice that the solution without the constraint (3.15b) satisfied with equality is not

optimal. The reason is that in this case we can decrease the values of γ′is to have the constraint

satisfied with equality while getting a lower value for the objective function. And since the

constraint (3.15b) is equivalent to the constraint in (3.13b), then it is optimal to use the total

power.

Now we can the write the dual problem as

max
λ

g(λ), (3.20)
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FIGURE 3.1: The approximated CDF Vs. the true CDF for γ with γ̄ = 10, m1 = 10,
m2 = 5, and k = 0.675.
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FIGURE 3.2: The approximated CDF Vs. the true CDF for γ with γ̄ = 8, m1 = 0.8,
m2 = 0.3, and k = 0.575.

where λ is the Lagrangian dual variable, and

g(λ) = min
γ̄

L(γ̄, λ), (3.21)

where L(γ̄, λ) is the Lagrangian of (3.15) and can be written as L(γ̄, λ) =
∑M

i=1 ci Fγ(γ̄i) +

λ(
∑M

i=1
∆bi
γ̄i
−1). It is important to notice that the value of γ̄′isminimizing the Lagrangian are

constrained to the region in (3.14b). The perturbation function can be defined as the solution
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FIGURE 3.3: Changing λ to maximize g(λ).

of the following problem as a function of q.

S(q) = min
α,γ̄

M∑
i=1

ci Fγ(γ̄i), (3.22a)

subject to
M∑
i=1

∆bi
γ̄i
≤ q, (3.22b)

In Figure 3.3, where the perturbation function is plotted against q, the solution of the primal

problem in (3.15) is the intersection of the perturbation curve with the y-axis (i.e., q = 1).

The value of g(λ) can be found by drawing a line tangent to the perturbation curve with slope

−λ, and the value of g(λ) is the intersection of the line with the y-axis. By changing λ and

noticing the corresponding values of g(λ), we can find that the value of g(λ) will increase

until it reach a maximum value and then decrease again. Therefore, g(λ) is a quasi-concave

function, and hence we can find the optimal value of λ using a one-dimensional bisection

search.

Since the primal problem in (3.15) is not convex, then the solution of the dual problem in

(3.20) will be less than or equal the solution for the primal one (i.e., gives a lower bound).

In order to find the solution of the primal problem we need to do an exhaustive study for the

global perturbation curves.
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Since the values of γ̄′is minimizing the Lagrangian for a given value of λ must satisfy the

region in (3.14b), then these values must be either on the gradient’s null of the Lagrangian

(i.e., gradient equals zero) or on one of the region boundaries defined by (3.14b); i.e., γ̄i =

γ̄i+1. In Appendix B, it is shown that the Lagrangian will be increasing towards the region

boundaries defined by (3.14b), when the following condition is satisfied

cm
∆bm

>
cm+1

∆bm+1

,∀m ∈ {1, 2, . . . ,M − 1} (3.23)

This condition is always satisfied if the utility function is concave increasing in the total

decoded rate; i.e., U(R̄j), which is assumed in our case. Therefore, the values of γ′is min-

imizing the Lagrangian in this case must be inside the region and have the gradient of the

Lagrangian equal to zero as follows

∂L

∂γ̄i
= cifγ(γ̄i)− λ

∆bi
γ̄i2

= 0, (3.24a)

λ =
ci

∆bi
γ̄i

2fγ(γ̄i) ∀i = {1, 2, . . . ,M}, (3.24b)

where fγ(γ̄i) is the PDF of γ defined in (3.18) and can be easily found as the first derivative

of the CDF expression given in (3.19) as follows

fγ(γ) =
β3β

′

β3 − β′
(e−γβ

′ − e−γβ3). (3.25)

It can be seen that γ̄i =∞ is a valid solution for (3.24a), which means allocating zero power

for the layer i, and that results in allocating zero power for all the layers above because of

the constraint in (3.14b). Therefore, It may be optimal not to send all the layers.

Using the relation in (3.24b), the value of λ can be plotted against γ̄′is as seen in Figure 3.4

forM = 3. It can be seen that the value of λ is increasing until it reaches a point of maximum

λmaxi for a corresponding value γ̄(p) then it decreases again. The value of γ̄(p) can be found

from the relation dλ
dγ̄

= 0, which yields

γ̄(p) = −2
fγ̄(γ̄

(p))

f ′γ̄(γ̄(p))
, (3.26)
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FIGURE 3.4: Sets of γ̄′s that minimize the Lagrangian for different λ′s..

and the we can get the corresponding values of λmaxi from the relation

λmaxi =
ci

∆bi
(γ̄(p))2fγ̄(γ̄

(p)) ∀i = {1, 2, . . . ,M}, (3.27)

Also, it can be noticed that for a certain value of λ, there is two corresponding values of γ̄i;

one on the rising edge and the other on the falling edge. Therefore, if we denote the maximum

possible number of layers for a given value of λ as Nmax(λ), then for a transmitted number

of layers N ≤ Nmax(λ), there are two possible values of γ̄′is satisfying (3.14b) and (3.24b);

either we take all the values of γ̄′is on the rising edges, or we take γ̄N on the falling edge

and the rest of γ̄′is on the rising edges. Therefore, for a certain value of λ, we have possible

2Nmax(λ) number of solutions for γ̄′is, then we need an exhaustive search to find the solution

minimizing the Lagrangian.

However, we can always find that the solution taking all γ thresholds on the rising edges

results in lower value for the Lagrangian. Also, we can see in Appendix C that there is a

unique value for γ threshold, denoted by γ̄(w), to decide the number of layers N . Therefore,

if we define λ(w)
i as the values of λ corresponding to the value of γ̄(w)

λ
(w)
i =

ci
∆bi

(γ̄(w))2fγ̄(γ̄
(w)) ∀i = {1, 2, . . . ,M}, (3.28)
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then if λ(w)
m ≥ λ > λ

(w)
m+1 it is optimal to send only m layers and to set γ̄i =∞, ∀i > m. The

value of the unique threshold γ̄(w) can be obtained as the solution of the following relation

in (0, γ̄(p))

1− Fγ̄(γ̄(w))− γ̄(w)fγ̄(γ̄
(w)) = 0. (3.29)

Now we need do an exhaustive study for the perturbation curve to find the optimal solution

for the primal problem (3.15). Although the perturbation function for a given number of

layers is differentiable convex decreasing depicted in Figure 3.3, this might not be the case

for the global perturbation function of the general problem which assumes that the optimal

solution may involve any number of layers between 1 and M . In this case the perturbation

function will be the minimum of all perturbation functions corresponding to different number

of layers. This can be done by assuming first the case of sendingN ≤M layers. Considering

the rising edges solution that minimizes the Lagrangian while changing λ from zero to λmaxN

will result in the solid part of the curve in Figure 3.5. Then if we change λ from λmaxN to zero

and consider the solution with γ̄N is on the falling edge will result in the dashed part of the

curve in Figure 3.5. Therefore, taking the minimum values of all the perturbation functions

for N = 1, 2, . . . ,M will result in the global perturbation function.

FIGURE 3.5: Changing λ to maximize g(λ).

The global perturbation curve can take one of the two forms in Figures 3.6(a) and 3.6(b).

The first form in Figure 3.6(a) corresponds the strong duality case where the solution for

the primal problem in (3.15) is equal to the solution for the dual problem in (3.20). In this
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case, the optimal solution is the intersection of the global perturbation curve with the y-axis

and can be found using bisection search over λ ∈ [λ
(w)
m+1, λ

(w)
m ] to find λ that satisfies the

constraint (3.15b) with equality.

(a) Case: Strong Duality.

(b) Case: Weak Duality.

FIGURE 3.6: Global Perturbation Function for Strong and Weak Dualities

The second form in Figure 3.6(b) corresponds the weak duality case where the solution for

the dual problem in (3.20) only gives a lower bound for the optimal solution of (3.15). In

this case, the dual problem will have two solutions corresponding to transmit two successive
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TABLE 3.2: Algorithm to Solve The Problem

1) INITIALIZATION:

(a) Obtain c and ∆b form R and U(R̄).

(b) Obtain γ̄(p) by solving the relation in (3.26).

(c) Obtain γ̄(w) by solving the relation in (3.29) in [0, γ̄(p)].

(d) Declare the variable m as the index for the optimal number of transmitted layers and set m=M as an initial value.

2) CHECK DUALITY CASE AND FIND OPTIMAL NUMBER OF LAYERS:

(a) If m=1, then γ̄1 = ∆b1 and γ̄i =∞, ∀i 6= 1. GO TO step 5).

(b) Use λ = λ(w)
m using (3.28), and get the corresponding γ̄′is by solving the relation (3.24b) in [0, γ̄(p)].

(c) Check if
∑m
i=1

∆bi
γ̄i

< 1, GO TO step 3). Otherwise continue.

(d) Check if
∑m−1
i=1

∆bi
γ̄i

< 1, GO TO step 4). Otherwise, decrement m by 1, and repeat step 2).

3) STRONG DUALITY
Using bisection search method, search for λ ∈ [λ

(w)
m+1, λ

(w)
m ] that satisfies

∑m
i=1

∆bi
γ̄i

with equality. and we get the corresponding γ̄′is, ∀λ by solving

the relation (3.24b) in [0, γ̄(p)].

4) WEAK DUALITY

(a) Obtain Solution A, which has m − 1 transmitted layers, using bisection search for λA ∈ [0, λ(w)
m ] that satisfies

∑m−1
i=1

∆bi
γ̄i

with equality. and

we get the corresponding γ̄′is by solving the relation (3.24b) in [0, γ̄(p)].

(b) Obtain Solution B (if exists), which hasm transmitted layers, by searching for λB ∈ [λ(w)
m , λ(p)

m ] that satisfies
∑m
i=1

∆bi
γ̄i

with equality.

i. If λ = λ(p)
m will cause

∑m
i=1

∆bi
γ̄i

< 1, then use bisection search for λ over region λB that satisfies
∑m
i=1

∆bi
γ̄i

= 1, and we get the

corresponding γ̄′is by solving the relation (3.24b) in [0, γ̄(p)], then GO TO (c). Otherwise continue.

ii. Search for λ over region λB that satisfies
∑m
i=1

∆bi
γ̄i

= 1, and we get the corresponding γ̄m by solving the relation (3.24b) in [γ̄(p),∞]

and the rest of γ̄′is by solving the relation (3.24b) in [0, γ̄(p)]. In this case, the sum constraint will be monotonically increasing then at some
point it will change to become monotonically decreasing. Therefore, either no solution at all exists, or there are two solutions in λB . In this
case, choose the solution with the larger λ.

(c) Compare solution A with solution B (if exists) and choose the minimum objective in (3.15a)

5) OPTIMAL POWER RATIOS
Use (3.16) to obtain the values of the optimal power ratios for the layers.

layers m and m− 1, with
∑M

i=1
∆bi
γ̄i
> 1 and

∑M
i=1

∆bi
γ̄i
< 1 respectively. Then both solutions

will not satisfy the constraint (3.22b) with equality. Therefore, we need to search for the

solution that satisfies the constraint (3.22b) with equality in the case of sending m− 1 layers

with rising edges using bisection over λ ∈ [0, λ
(w)
m ], and in the case of sending m layers

using bisection over λ ∈ [λ
(w)
m , λ

(p)
m ], then take the solution with the minimum objective. It is

important to notice that we may not find a solution that satisfies the constraint (3.22b) with

equality in the case of sending m layers with rising edges. It happens if the value of λ = λ
(p)
m

will cause
∑M

i=1
∆bi
γ̄i

> 1. Then, we will need to find the solution that satisfies the constraint

(3.22b) with equality in the case of sending m layers with γ̄m is on the falling edge which

also may not exist. If the minimum sum
∑M

i=1
∆bi
γ̄i

of transmitting m layers is greater than
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one, then the optimal solution will be on the (m− 1)-layers perturbation curve.

Now the previous algorithm steps to solve the primal optimization problem in (3.15) can be

summarized in Table 3.2.

3.5 Numerical Results

In this section we present some numerical results for the case of Rayleigh fading channels

described in (3.1). The proposed algorithm in Table 3.2 is applied for a scalable video source

example consisting of four layers with a sum rate of 1 Mbps and transmitted over 1 MHz

bandwidth. The rates of the source layers (obtained from Table IV in [30]) are 75.5, 80.4,

240 and 642 Kbps respectively. We consider two different utility functions; namely, U(R̄) =

1− 2−2R̄, which corresponds to minimizing the expected distortion of a Gaussian source and

U(R̄) = R̄, which corresponds to maximizing the expected total rate at the destination.

Figures 3.7 and 3.8 show the optimal γ thresholds for the layers with the target of minimizing

expected distortion and maximizing expected rate respectively, while Figures 3.9 and 3.10

show the optimal power ratios for these cases. The power ratios and γ thresholds are plotted

against average SNR of the source-destination channel. The solid curves corresponds the

case when the relay is used with (m1,m2) = (16, 16) which is the best case for the relay

position (i.e., relay in the mid point of the LOS between source and destination), with the

assumption that the power of the signal P ∝ 1
d4

, where d is the distance. The dashed curves

corresponds the case when no relay is used for comparison.

It can be seen that for some average SNR values it might be optimal to send only one layer,

and as the average SNR value exceeds certain thresholds the number of layers increases. That

is because as the average SNR increases, the channel condition becomes better, and the upper

layers will be decoded reliably. It is obvious that the solid curves are shifted versions to the

left for the dashed curves. Which means that it is optimal to send higher number of layers

for lower values of SNR average when a relay is used even in the worst case. Therefore,

the destination becomes more capable of decoding more layers refining the information even

when its direct channel with the source has low SNR. However, we can notice that the γ

threshold values for the layers when no relay is used are lower compared to the case for the

relay-assisted. The reason is the multiplexing loss due to transmitting over two time slots.

That becomes clear when comparing the expression for γ threshold in (3.10) with the case
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FIGURE 3.7: The threshold γ values of the layers versus the average SNR value of a
Rayleigh fading channel with U(R̄) = 1− 2−2R̄.
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FIGURE 3.8: The threshold γ values of the layers versus the average SNR value of a
Rayleigh fading channel with U(R̄) = R̄.

when no relay is used

γj =
1

αj

2Rj−1
−
∑M

m>j αm
. (3.30)

Since the utility function for maximizing the rate is linear, then the solution gives more

importance for the higher layers as expected. This can be translated by allocating more

power for the higher layers as seen in Figures 3.8 and 3.10. On the other hand, the solution for

minimizing the average distortion gives more importance to the lower layers as in Figures 3.7

and 3.9, and hence the lower layers are allocated more power, and it becomes optimal to send

39



10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Objective: Minimize Expected Distortion

Average SNR γ
sd

 (Log Scale)

O
p

ti
m

a
l 
P

o
w

e
r 

R
a

ti
o

s
 F

o
r 

L
a

y
e

rs

 

 

Layer 1

Layer 2

Layer 3

Layer 4

FIGURE 3.9: The relative power ratios of the layers versus the average SNR value of a
Rayleigh fading channel with U(R̄) = 1− 2−2R̄.
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FIGURE 3.10: The relative power ratios of the layers versus the average SNR value of a
Rayleigh fading channel with U(R̄) = R̄.

the higher layers for higher values of the average SNR compared to the case of maximizing

the expected rate.

In Figures 3.11 and 3.12 we plot the maximized utility function with the target of minimizing

expected distortion and maximizing expected rate respectively. It can be shown for the worst

relay position case with (m1,m2) = (100, 1) (i.e., relay near source or near destination),

that the maximum expected utility is close(and maybe less than) the no-relay case. This

is because the channel gains of the relay channel are not high in this case. Therefore, the
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FIGURE 3.11: The maximized average utility function versus the average SNR value of a
Rayleigh fading channel with U(R̄) = 1− 2−2R̄.
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FIGURE 3.12: The maximized average utility function versus the average SNR value of a
Rayleigh fading channel with U(R̄) = R̄.

prospected gain due to channel diversity of the relay channel will be opposed by the multi-

plexing loss due to the transmission over two time slots. Furthermore, the gain with respect

to the no-relay case increases for the relay-assisted case with (m1,m2) = (7, 6), and with

(m1,m2) = (16, 16) which is the best case (Relay in the mid point of the LOS between

source and destination).
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FIGURE 3.13: The maximized average utility function versus the average SNR value for
different relaying strategies.

3.6 Comparison Between Different Relaying Strategies

Before we end this chapter we would like to study the effect of using different relaying

strategies on the utility function. In Figure 3.13 we can see the average utility function

is plotted versus the average source-destination channel quality for three different cases of

relaying usage. We use the same example used in Chapter 2, where the source is transmitting

using two layers only. The rates of the two source layers are respectively 1 and 2 bps/Hz.

We consider U(R̄) = R̄, which corresponds to maximizing the expected total rate at the

destination. Also, we use m1 = m2 = 16 which is the ratio between the average SNR of the

source-relay and the relay-destination links to the source-destination link.

As discussed before, the DF relays is suffering from the error propagation because the relay

node is decoding the layers before transmitting which is not the case for AF relays, because

the AF relays do not perform any hard-decision operation on the received signal. However,

in the AF protocol noise accumulates with the desired signal along the transmission path.

That is why a better performance is obtained for DF relays. In both cases of AF and DF

relays using no relays would be of lower values of expected utility function.

Another way to compare is by noting the small notches in the curves in Figure 3.13 , which

corresponds the transition from sending one layer only to sending the two layers. For the DF

relays, it can be noticed that it is optimal to send the enhancement layer for lower values of

SNR compared with AF relays, which means better channel condition.
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Chapter 4

Jointly Optimal Power and Rate Allocation for Layered
Broadcast Over AF Relay Channels

4.1 Introduction

The joint power and rate allocation problem was considered in [31] and independently in

[32], [33]. The authors solved the problem of minimizing the expected distortion of a Gaus-

sian source with predetermined and fixed SNR thresholds of the source layers. The restriction

of the SNR thresholds makes the source rates and power ratios dependent and hence finding

one of them yields to the other. In [19] and originally in [28], [29], the problem was con-

sidered with fixed and predetermined rates for the source layers with no restrictions on the

SNR thresholds. The solution algorithm proposed in [32], [33] has the worst case complexity

O(2M), while the solution structure in [31], [19] has a linear complexity O(M), where M

is the number of layers. That is because the formulation in [31], [19] involves a change in

optimization variables, where the power ratios of the layers were presented in terms of the

rates and the SNR thresholds of the source layers. Other contributions include [34] in which

the joint optimization problem was considered for the case of two layers with the objective

of maximizing the expected rate. However, the global optimality is not guaranteed, and the

solution proposed is not be extended for any number of layers greater than two. One possible

solution for the optimal jointly power and rate allocation problem is by using the proposed

solution algorithms considered in [31] and [19] iteratively; i.e., fix the rates and obtain the

optimal SNR thresholds, then apply the obtained SNR thresholds from the previous step and

solve for the rates. This can be repeated for many iterations until it converges to a solution.

A similar idea was proposed in [35]. However, this algorithm is not optimal necessarily and

can converge to a local maximum.

An efficient and generic algorithm for optimally joint rate and power allocation was con-

sidered in [20] for any finite number of layers with no restrictions on the source rates or

SNR decoding thresholds, for any concave increasing utility function, and for any channel
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statistical model that fits some conditions. Moreover, the solution structure has a linear com-

plexity with respect to the number of layers O(M). The Lagrangian dual problem is applied

where a two-dimensional bisection search is used to obtain the optimal solution satisfying the

Karush Kuhn Tucker KKT conditions.[36–38]. The outer bisection search is done over the

Lagrangian dual variable, while the inner bisection search is done over the SNR threshold of

the last layer. Numerical results were provided for the objective of maximizing the long-term

expected rate and minimizing the long-term average distortion. The case of infinite number

of layers was considered in [20] providing an upper bound for the performance. However, it

was shown that this upper bound can be approached for relatively small number of layers.

The analysis done in Chapter 3 is limited for pre-specified and un-controllable source layers.

Although using fixed rates may be more practical specially when adapting the source coder

is not feasible, it is a sub-optimal solution. In this chapter we extend the analysis done

in Chapter 3 to the case of jointly optimal power and rate allocation among the layers in

the context of AF relay networks. We use the same approximation done for the end-to-end

channel statistics, so that we would be able to apply the algorithm presented in [20]. Also, the

case of infinite number of layers is considered providing an upper bound for the performance.

4.2 System Model and Problem Formulation

We consider in this chapter the same system model as in Chapter 3. However, we assume

the case of variable rates instead of fixed for the source layers. The relay is half-duplex and

applies AF strategy, and the end-to-end channel quality is described using the same equations

in (3.7). We need to find the jointly optimal power and rate allocation in order to maximize

the expected user satisfaction. Therefore, the problem can be formulated similar to (3.13) as

max
α,R,γ̄

M∑
i=1

U(R̄i) (Fγ(γ̄i+1(α,R))− Fγ(γ̄i(α,R))) (4.1a)

subject to
M∑
i=1

αi = 1, αi ≥ 0 ∀i, (4.1b)

γ̄i ≥
1

αi

22Ri−1
−
∑M

m>i αm
∀i, (4.1c)

γ̄M ≥ γ̄M−1 ≥ . . . ≥ γ̄1 > 0, (4.1d)
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R̄M ≥ R̄M−1 ≥ . . . ≥ R̄1 > 0, (4.1e)

where γ̄M+1 =∞ for M number of layers, and Fγ(γ) is the CDF of the end-to-end channel

quality γ obtained in (3.19). The constraint (4.1e) was not considered before in Chapter 3,

because the rates of the layers were predetermined.

Notice that the optimization problem in (3.13) has three variables α, R, and γ̄. Since the

the third variable is a function of the two other variables γ̄(α,R), then for simplicity we can

eliminate the variable γ̄ from the optimization problem. Using the same procedures done

in Chapter 3 to change the optimization variables, and using the same results obtained in

Appendix A, we can reformulate the problem as follows

max
b,γ̄

M∑
i=1

U(bi) (Fγ(γ̄i+1)− Fγ(γ̄i)) (4.2a)

subject to
M∑
i=1

bi − bi−1

γ̄i
= 1, (4.2b)

γ̄M ≥ γ̄M−1 ≥ . . . ≥ γ̄1 > 0, (4.2c)

bM ≥ bM−1 ≥ . . . ≥ b1 > 0, (4.2d)

where bi = 22R̄i − 1, and b0 = 0.

Now, the optimization problem is function only of the two variables bi and γi, and after

solving the problem (4.2), we can easily calculate the optimal rates for each layer using the

relations R̄i = 1
2

log2(1 + bi), and Ri = R̄i − R̄i+1. Similarly, we can calculate the optimal

power ratios for each layer recursively starting from α1 using the following relation derived

in [19],

αi =
bi − bi−1

1 + bi

(
1−

i−1∑
j=1

αj +
1

γ̄i

)
(4.3)

Now, we can replace the optimization variables γ̄′is with their reciprocal n̄′is for simplicity.

In this case, we have Fγ(γ̄i) = 1 − Fn(n̄i), where Fn is the CDF of n = 1
γ

. Therefore, we

can modify (4.2) to be
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max
b,n̄

M∑
i=1

U(bi) (Fn(n̄i)− Fn(n̄i+1)) (4.4a)

subject to
M∑
i=1

bi(n̄i − n̄i+1) = 1, (4.4b)

0 < n̄M ≤ n̄M−1 ≤ . . . ≤ n̄1, (4.4c)

bM ≥ bM−1 ≥ . . . ≥ b1 > 0, (4.4d)

Where nM+1 = 0. The utility function U(bi) can have various definitions to employ many

special cases for user satisfaction. For example, we use the definition U(bi) = 1
2

log2(1 + bi)

in order to maximize the expected rate. Also, if the main target is to minimize the expected

distortion of the Gaussian source, we the definition U(bi) = 1− 2−2( 1
2

log2(1+bi)) = 1 + (1 +

bi)
−1. The CDF (and equivalently the PDF) of n can be easily obtained using (3.19). as

Fn(n) =
β1

β1 − β′
e−β

′/n − β′

β1 − β′
e−β1/n, (4.5a)

fn(n) =
1

n2

β1β
′

β1 − β′
(
e−β

′/n − e−β1/n
)
. (4.5b)

where fn is the PDF of n.

We can rearrange (4.4) by expanding the objective function and taking Fn(n̄i) as a common

factor. The problem can be written in this case as follows

min
b,n̄

M∑
i=1

Fn(n̄i) (U(bi)− U(bi−1)) (4.6a)

subject to
M∑
i=1

n̄i(bi − bi−1) = 1, (4.6b)

0 < n̄M ≤ n̄M−1 ≤ . . . ≤ n̄1, (4.6c)

bM ≥ bM−1 ≥ . . . ≥ b1 > 0. (4.6d)

By fixing the values of γ̄i, and hence n̄i in (4.4), we get a similar problem formulation to

[31], where a discrete channel model was considered. We can also get the same problem
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formulation as in Chapter 3, by fixing the rates for the layers in (4.6).

4.3 Problem Analysis

In this section we will apply the proposed solution algorithm in [20]. This solution is based

on applying the KKT conditions to the dual problem. We start by removing the two con-

straints (4.4c) and (4.4d), and we can apply them implicitly when searching for the optimal

values of n̄′is and b′is. Therefore, the optimization problem can be written as

max
b,n̄

M∑
i=1

U(bi) (Fn(n̄i)− Fn(n̄i+1)) (4.7a)

subject to
M∑
i=1

bi(n̄i − n̄i+1) = 1. (4.7b)

Then, The Lagrangian dual problem of (4.7) can be written as

min
λ

g(λ), (4.8)

subject to λ ≥ 0, where

g(λ) = max
n̄,b

L(n̄, b, λ), (4.9)

where λ is the Lagrangian dual variable, and the Lagrangian L(n̄, b, λ) can be expressed in

two equivalent forms according to the formulation of the optimization problem as

L(n̄, b, λ) = λ+
M∑
i=1

(Fn(n̄i)∆Ui − λn̄i∆bi) , (4.10a)

L(n̄, b, λ) = λ+
M∑
i=1

(U(bi)∆Fi − λbi∆n̄i) , (4.10b)

where ∆Ui = U(bi) − U(bi−1), ∆Fi = Fn(n̄i) − Fn(n̄i+1), ∆bi = bi − bi−1, and ∆n̄i =

n̄i − n̄i+1, and where we apply the two constraints (4.4c) and (4.4d) when searching for
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b′is and n̄′is maximizing the Lagrangian. The formula in (4.10a) corresponds the problem

formulation in (4.7), and (4.10b) corresponds the formulation in (4.6).

The solution of the Lagrangian problem in (4.8) must satisfy the KKT conditions, and the

solution of the primal problem in (4.7) must satisfy the power constraint. Therefore we have

the following 2M + 1 equations

∆Ui
∆bi

fn(n̄i) = λ ∀i, (4.11a)

∆Fi
∆n̄i

U ′(bi) = λ ∀i, (4.11b)

M∑
i=1

bi(n̄i − n̄i+1) = 1, (4.11c)

where U ′(bi) is the first derivative of the utility function U(bi) with respect to bi. We have in

the dual problem (4.8) the Lagrangian variable λ in addition to the 2M variables (b′is, n̄
′
is)

contained implicitly in g(λ) as shown in (4.9). Therefore, we have 2M + 1 variables must

satisfy the 2M + 1 equations in (4.11).

According to [20, Theorem 1] which states that:

Theorem (Existence and Uniqueness of the Solution). For Rayleigh fading channels, and for

any differentiable concave increasing utility function U(b), a strong duality exists between

the primary and the dual problems.

Therefore, we have only one solution for (4.11), and an efficient algorithm can be developed

to find the solution of the joint power and rate allocation, as explained in Section 4.5.

4.4 Infinite Number Of Layers

In this section we will discuss the jointly optimization problem in the case of infinite number

of layers, which guarantees achieving the upper bound for the utility function. Using infinite

number of layers is not feasible, however, it gives us an indication for the maximum user

satisfaction that can be achieved, and then we can use large number of layers sufficient to

approach the upper bound as close as possible. In this section, we show that the framework
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developed in this thesis, for the case of finite number of layers, can be extended to the case of

infinite number of layers with any differentiable concave increasing objective function U(b).

In the case of infinite number of layers, we assume that each layer has infinitesimal small

power ratio and rate. We will have a continuous range for the γ threshold γ̄, and hence its

reciprocal n̄. Therefore, the decoding thresholds will be in the range [n̄L, n̄F ], where n̄F is

the maximum value of n sufficient to decode the first layer at least, and n̄L is the maximum

value of n in order to decode all the layers. The problem in this case turns to be finding the

distribution of the sum rates R̄ and its corresponding exponential b = 22R̄ − 1 as a function

of the decoding thresholds; i.e., the solution will take the form b(n̄). Therefore, the variable

b will also have a continuous range [bF , bL], where bF = 22R̄1 − 1 corresponding the case of

decoding the first layer only, and bL = 22R̄sum − 1 is the exponential in case of decoding all

layers reliably.

Based on the continuous nature of the layers, we can replace ∆n̄, ∆b, ∆F/∆n̄, and ∆U/∆b

with dn̄, db, fn(n̄), and U ′(b) respectively. Then the problem formulation in (4.4) can be

rewritten for the case of continuum of layers as

max
n̄L,n̄F ,b(n̄)

U(b(n̄L))Fn(n̄L) +

∫ n̄F

n̄L

U(b(n̄))Fn(n̄)dn̄ (4.12a)

subject to

n̄Lb(n̄L) +

∫ n̄f

n̄L

b(n̄)dn̄ = 1, (4.12b)

d

dn̄
b(n̄) ≤ 0, (4.12c)

where (4.12b) replaces the power constraint (4.4b), and (4.12c) replaces both the constraints

(4.4c) and (4.4d). The constraint (4.12c) is satisfied when the objective utility function U(b)

is differentiable concave increasing, which is assumed in this work.

Similar to the case for finite number of layers, the KKT conditions must be satisfied in

addition to the power constraint in (4.12b), and can be written as

U ′(b(n̄))fn(n̄) = λ, n̄ ∈ (n̄L, n̄F ) (4.13a)

U(b(n̄F ))

b(n̄F )
fn(n̄F ) = λ, (4.13b)

49



Fn(n̄L)

n̄L
U ′(b(n̄L)) = λ, (4.13c)

n̄Lb(n̄L) +

∫ n̄F

n̄L

b(n̄)dn̄ = 1. (4.13d)

From (4.13a) and (4.13c) with n̄ = n̄L, it can be shown that Fn(n̄L) = n̄Lfn(n̄L), and using

the proposed approximation formulas of the Fn(n) and fn(n) found in (4.5) for Rayleigh

fading channels, we can show that n̄L is the solution for the relation

e−(β1−β′)/n̄L − β1

β′

(
n̄L − β′

n̄L − β1

)
= 0, (4.14)

which can be solved numerically. Also, it can be shown from (4.13a) and (4.13b) with

n̄ = n̄F that U(b(n̄F )) = b(n̄F )U ′(b(n̄F )), and since we assume for our work the utility

function to be differential concave increasing function, then we must have

b(n̄F ) = 0. (4.15)

Therefore, substituting with n̄ = n̄F in (4.13a), we have

U ′(0)fn(n̄F ) = λ. (4.16)

Finally, we can obtain the following relation

U(b(n̄)) =
fn(n̄F )

fn(n̄)
U ′(0). (4.17)

For a given definition of the utility function U(b) and using the relation in (4.17), we can

obtain an expression for b(n̄). For example, If we consider the case of maximizing the

expected rate, where U(b) = 1
2
log2(1 + b), then using the definition of fn(n) in (4.5b) we

obtain

b(n̄) =
n̄2
F

n̄2

e−β3/n̄ − e−β′/n̄

e−β3/n̄F − e−β′/n̄F
− 1, n ∈ [n̄L, n̄F ] (4.18)
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FIGURE 4.1: The optimal b(n̄) versus the end-to-end quality for the case of infinite number
of layers over a Rayleigh fading channel with (m1,m2) = (16, 16).

Also, if we consider the case of minimizing the expected distortion of a Gaussian source,

where, U(b) = 1 + (1 + bi)
−1, then we can obtain b(n̄) as follows

b(n̄) =
n̄F
n̄

(
e−β3/n̄ − e−β′/n̄

e−β3/n̄F − e−β′/n̄F

)1/2

− 1, n ∈ [n̄L, n̄F ], (4.19)

where n̄L is obtained by solving the relation in (4.14), and n̄F is obtained so that the power

constraint in (4.13d) is achieved. This can be solved numerically using bisection search to

obtain n̄F . Notice that b(n̄) = b(n̄L) for n = [0, n̄L], and b(n̄) = 0 for n = [n̄F ,∞].

Figure 4.1 shows a numerical example for the optimal b(n̄) with the objective of maximizing

the expected rate and minimizing the expected distortion. The dotted curves represent the

no-relay case, while the solid curves represent the AF relay case with m1 = m2 = 16, which

is the best case for the relay position (i.e., relay in the mid point of the LOS between source

and destination), with the assumption that the power of the signal P ∝ 1
d4

, where d is the

distance. It can be observed that the curves with the objective of maximizing the expected

rate have a narrower range of SNR, which means lower values for n̄F (higher values for γ

to decode the first layer), however, higher total rates are distributed among the layers. This

is due to the nature of the utility function in that case which gives more importance for the

higher layers.

Also, if we compare the solid curves with the dotted ones, we can notice lower values of

n̄ (higher values of γ thresholds) and higher total rates distributed among the layers for the

case of the solid curves representing the AF relay case. The higher values for γ thresholds
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is due to the multiplexing loss due to transmitting over two time slots. We can easily prove

that when comparing the expression for γ threshold for the case of AF relay in (3.10) with

the case when no relay is used

γj =
1

αj

2Rj−1
−
∑M

m>j αm
, (4.20)

while the higher total rates for the AF relay case are due to the enhancement in the end-to-end

performance.

4.5 Search Algorithm

In this section, we will apply a two-dimensional bisection search to find the solution of the

equations in (4.11). We use an outer bisection search over λ to find the value satisfying the

power constraint (4.11c) with equality. For each value of λ, we need to find the values of

b′is and n̄′is that satisfy the KKT conditions. Therefore, an inner bisection search is done to

find the values satisfying the 2M equations in (4.11a) and (4.11b). First, we set an arbitrary

value for n̄M , then we can get bM from (4.11b) with i = M . The next step is to get bM−1

from (4.11a) by applying the values of n̄M and bM with i = M . Then, using n̄M and bM−1

in (4.11b) with i = M − 1 we can obtain n̄M−1. We can continue this procedure in the same

manner until we get b1 and n̄1 after solving 2M − 1 equations. There will be one remaining

equation which is (4.11a) with i = 1. Therefore, the inner bisection search is done over n̄M
until we reach the values of b1 and n̄1 satisfying this remaining equation. The algorithm for

the inner and the outer bisection search is shown in Tables 4.1 and 4.2.

TABLE 4.1: Outer Bisection Search over λ

Initialize λL and λU (lower and upper bounds for bisection search).
Given a tolerance ε,

1. Set λ0 = (λL + λU )/2.

2. Given λ0, apply inner bisection in Table 4.2 to find bi, n̄i, i = 1, . . . ,M .

3. Calculate q =
∑M
i=1 bi(n̄i − n̄i+1).

4. If q > 1 + ε, set λL = λ0, return to Step 1.

5. If q < 1− ε, set λU = λ0, return to Step 1.

Return λ = λ0, and bi, n̄i, i = 1, . . . ,M .
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TABLE 4.2: Inner Bisection Search over n̄M

Initialize n̄M L and n̄M U (lower and upper bounds for bisection search).
Given a tolerance ε and λ0,

1. Initialize i = M.

2. Set n̄M 0 = (n̄M L + n̄M U )/2.

3. Calculate bM using (4.11b) given n̄M 0 and knowing that n̄M+1 = 0.

4. Set i = i− 1.

5. Calculate bi using (4.11a) given bi+1 and n̄i+1 obtained from previous steps.

6. Calculate n̄i using (4.11b) given bi and n̄i+1 obtained from previous steps.

7. If i > 1, return to Step 4.

8. Calculate ω =
U(b1)
b1

fn(n̄1)− λ0.

9. If ω > ε, set n̄M L = n̄M 0, return to Step 1.

10. If ω < −ε, set n̄M U = n̄M 0, return to Step 1.

Return bi, n̄i, i = 1, . . . ,M .

The choice of the upper and lower bounds for both inner and outer bisection search is com-

pletely arbitrary. However, it was shown by experiment that as the number of layers M

increases, the optimal value of λ increases. Therefore, a suitable choice for the upper bound

λU is the optimal λ for the case of infinite number of layers given by (4.16), and a suitable

choice of the lower bound λL is the optimal λ for the one-layer case. Otherwise, we can

choose λL = 0 and λU large enough such that the solution at λU results in a power q < 0.

Also, a suitable choice for the lower bound n̄M L for a Rayleigh channels can be given by

(4.14), which is the minimum non-zero value of n̄i independent from the number of layers

M . While, the upper bound n̄M U can be chosen arbitrarily high enough so that ω < 0.

4.6 Numerical Results

In this section we present some numerical results for the case of Rayleigh fading channels

described in (3.1). The search algorithm presented in Section 4.5 is applied for a source

example consisting of three layers to find the optimal joint power and rate allocation. We use

the proposed end-to-end channel approximation presented in Section 3.3. We also consider

two different utility functions; namely, minimizing the expected distortion of a Gaussian

source and maximizing the expected sum rate decoded at the destination.
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Figures 4.2, 4.3, 4.4, and 4.5 show the optimal power ratios, rates, rate ratios, and γ̄ decoding

thresholds for the three layers respectively with (m1,m2) = (16, 16), which is the best case

for the relay position (Relay in the mid point of the LOS between source and destination),

where the solid curves represent the case with the objective of maximizing the expected sum

rate, and the dotted curves represent the case with the objective of minimizing the average

distortion. Figure 4.2 shows the optimal power ratios for the three layers. It can be shown

that the first layer for both cases of utility functions is given higher power allocation than

the upper layers. This is clear since the multilayer systems give more protection for the first

layer which is the base layer. Also, we can see that as γ̄ increases the power ratio for the first

layer increases.
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FIGURE 4.2: The optimal power ratios of the layers versus γ̄ for three layers transmitted
over a Rayleigh fading AF relay-assisted channel with (m1,m2) = (16, 16).
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FIGURE 4.3: The optimal rates of the layers versus γ̄ for three layers transmitted over a
Rayleigh fading AF relay-assisted channel with (m1,m2) = (16, 16).
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FIGURE 4.4: The optimal rate ratios of the layers versus γ̄ for three layers transmitted over
a Rayleigh fading AF relay-assisted channel with (m1,m2) = (16, 16).
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FIGURE 4.5: The optimal γ thresholds of the layers versus γ̄ for three layers transmitted
over a Rayleigh fading AF relay-assisted channel with (m1,m2) = (16, 16).

We can notice from Figures 4.3 and 4.4 that Layer 1 is given lower rates, and Layer 3 is

given higher rates for the case of minimizing the average distortion compared with the case

of maximizing the expected sum rate. This is due to the nature of the utility function for

both cases. The utility function for the former case is more convex in γ̄ than the latter case.

This gives more importance for the lower layers for the former case, which corresponds to

lower rates for Layer 1 to increase the protection. On the other hand, the utility function for

maximizing the rate is linear, then the solution gives more importance for the higher layers

as expected. This can be represented by allocating lower rates for the higher layers.

Figure 4.5 shows the decoding thresholds γ̄ for the three layers. It can be seen that the

lower layers in the case of minimum distortion have lower SNR decoding thresholds than
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FIGURE 4.7: The expected sum rate versus γ̄ for various number of layers transmitted over
a Rayleigh fading AF relay-assisted channel with (m1,m2) = (16, 16) with the objective of

maximizing the expected sum rate.

the corresponding layers in the case of maximizing the expected rates. This is consistent

with the previous results where the case of minimum distortion gives more importance for

the lower layers. Therefore, the power ratios for Layer 1 in this case is lower compared with

the case of maximum sum rate as shown in Figure 4.2 because it has lower rate. Moreover,

It can be seen that at optimality the γ threshold value of Layer 1 is lower than those of the

upper layers. This is due to the fact that the base layer must be given the highest protection.

In Figures 4.6 and 4.7, It can be shown the effect of increasing the number of layers for the

case of minimum average distortion and maximum expected sum rate respectively. For the
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FIGURE 4.8: The average distortion versus γ̄ over a Rayleigh fading AF relay-assisted
channel with (m1,m2) = (16, 16) with the objective of minimizing the average distortion.

former case, by increasing the number of layers, the average distortion decreases until we

reach the lower bound achieved theoretically by transmitting infinite number of layers, while

for the latter case, by increasing the number of layers, the expected sum rate increases until

we reach the upper bound achieved theoretically by transmitting infinite number of layers.

However, we can notice that we can achieve a close values to the lower and upper bounds by

transmitting a small number of layers.

Figure 4.8 shows a comparison for the minimum average distortion in a four layer system

between the optimal power and rate allocation, fixed power and rate allocation, and optimal

power allocation with fixed sub-optimal equal rates. We can see that the jointly optimal

power and rate allocation decreases the average distortion compared with the other sub-

optimal allocations. We can also notice that the infinite number of layers provide a theoretical

lower bound for the average distortion which was considered in [31].

Figure 4.9 shows a comparison for the maximum expected sum rate in a four layer system

between the optimal power and rate allocation, fixed power and rate allocation, and optimal

power allocation with fixed sub-optimal equal rates. We can see that the jointly optimal

power and rate allocation increases the expected sum rate compared with the other sub-

optimal allocations. We can also notice that the infinite number of layers provide a theoretical

upper bound for the expected sum rate.

In Figures 4.8 and 4.9, we can notice that for low values of γ̄ that the equal allocation of

power and/or rate gives a close utility function to the optimal power and rate allocation, and

as γ̄ increases, the optimal solution moves away from the equal allocation. This is because
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FIGURE 4.9: The expected sum rate versus γ̄ over a Rayleigh fading AF relay-assisted
channel with (m1,m2) = (16, 16) with the objective of maximizing the expected sum rate.

for low values of γ̄ the optimal solution for rates and power ratios are close for all the layers

and nearly equal; Therefore, the optimal solution will be close to the equal allocation, and

as γ̄ increases, the gap between the optimal rates and power ratios for the layers increases,

and hence the performance of the equal allocation becomes gradually worse than the optimal

allocation at high SNR.

In Figure 4.10, we plot the minimum average distortion for different cases of relay positions.

It can be shown that for the worst relay position case with (m1,m2) = (100, 1) (i.e., relay

near source or near destination), that the minimum average distortion is close the no-relay

case. This is because the channel gains of the relay channel are not high in this case. There-

fore, the prospected gain due to channel diversity of the relay channel will be opposed by the

multiplexing loss due to the transmission over two time slots. Furthermore, the gain with re-

spect to the no-relay case increases and the average distortion decreases for the relay-assisted

case with (m1,m2) = (8, 4), and with (m1,m2) = (16, 16) which is the best case (Relay in

the mid point of the LOS between source and destination).

In Figure 4.11, we plot the maximum expected sum rate for different cases of relay positions.

It can be shown that even for the best relay position case with (m1,m2) = (16, 16) that the

maximum expected sum rate is greater than the no-relay case only for low values of γ̄, and as

γ̄ increases above a certain level, the expected sum rate for the no-relay case will be greater

than the relay-assisted channel case. This can be explained by comparing the relation in (3.8)

which gives the layer rates for the case of the relay-assisted channel with the relation (4.21)
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FIGURE 4.10: The average distortion versus γ̄ with infinite number of layers transmitted
over a Rayleigh fading channel with and without using a relay with the objective of mini-

mizing the average distortion.
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over a Rayleigh fading channel with and without using a relay with the objective of maxi-
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for the no-relay case.

Rj ≤ log

(
1 +

αj
1
γ

+
∑M

m>j αm

)
∀j ≤ i. (4.21)

Due to the concave nature of the log function, and for high values of γ̄, the gain due to the

enhancement in the end-to-end channel quality caused by using the relay will be less than

the multiplexing loss presented by the multiplication by 1
2

in (3.8). Therefore, the expected

sum rate decreases for high γ̄ values.
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Chapter 5

Conclusion and Future Work

In this work, we considered a fading relay channel where the source uses layered source

coding with successive refinement. The layers are transmitted using superposition coding at

the transmitter with successive interference cancellation at the receiver. We considered three

cases of optimal resource allocation for different relaying strategies. We have investigated

the Amplify-and-Forward, and Decode-and-Forward strategies in particular.

The first case, a relay has been considered to assist the channel using selection relaying DF

strategy. The random search method has been applied to find the optimal power allocation at

the source and at the relay in order to maximize the expected user satisfaction that is defined

by a utility function of the total decoded rate at the destination. Several numerical examples

were obtained for two different utility functions, which are maximizing the expected rate

and minimizing the expected distortion of a Gaussian source. It has been shown that it may

be optimal not to transmit both layers for low average SNR values of the channels. In this

case, all the power is allocated to the base layer and the enhancement layer is discarded. An

obvious gain was observed for the relay channel in comparison with the direct transmission

case with no relay assistance. These gain increases as the ratio between the average SNR

of the source-relay and relay-destination links to the average SNR of the source-destination

link increases.

For the second case, the transmission is relay-aided, and the relay applies AF strategy. The

optimal power allocation over the source layers can be obtained for any number of layers

using the algorithm that is known in the literature for this class of problems. The objective

is to maximize the expected user satisfaction that is defined by a utility function of the total

decoded rate at the destination. However, we needed to obtain the end-to-end channel statis-

tics analytically. So, we have proposed a simple and appropriate approximation for the AF

relay scenario. We also obtained several numerical examples for two different utility func-

tions, which are maximizing the expected rate and minimizing the expected distortion of a

Gaussian source. Furthermore, we obtained that for some cases, it is optimal not to send all
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the layers depending on the channel condition. The numerical results demonstrate the gains

of relaying for different relay positions.

In the final case, the relay applies AF strategy, and we solve the optimal rate and power al-

location problem over the source layers using an algorithm that is known in the literature.

We used the same approximation done for the end-to-end channel statistics from the pre-

vious case. The objective was to maximize a utility function that represents the receiver

satisfaction. Moreover, we have shown that with a relatively small number of layers, we can

approach the upper bound corresponding the infinite number of layers case. Several numer-

ical examples were obtained for two different utility functions, which are maximizing the

expected rate and minimizing the expected distortion of a Gaussian source. The numerical

results demonstrate that relaying causes gain for the case of minimizing the expected distor-

tion. However, it was shown that for high values of SNR and for the objective of maximizing

the expected rate, the no-relay case shows better performance.

Future work for the problem considered in this thesis may include finding an approximation

and a closed form for the end-to-end channel quality for the DF relay case, so that the optimal

power allocation problem can be solved for any number of layers and with linear complexity.

Some other directions for future research may be using different relaying strategies such as

the dynamic DF strategy, and trying to solve the optimal resource allocation for these cases.
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Appendix A

Change of Optimization Variables

We can reformulate the optimization problem in (3.13) such that the γ thresholds are the

only optimization parameter, which would renders the problem easier to solve. Therefore,

we reformulate the constraints (3.14a) and (3.13b) by assuming that all layers above layer

i are allocated zero power, which means that layer i is decoded with no interference, as

follows:

γ̄i ≥ 22Ri − 1

αi
(A.1a)

=
22Ri − 1

1−
∑

m<i αm
(A.1b)

=
bi − bi−1

1−
∑

m<i
bm−bm−1

γ̄m

∀i, (A.1c)

where bi = 2
∑

m<i 2Rm − 1 and b0 = 0. Then we can easily rewrite this constraint as:

∑
m<i

bm − bm−1

γ̄m
≤ 1 ∀i ≤M. (A.2)

It can be shown that if the constraint in (A.2) is satisfied for i = M , then it will be satisfied

for all i < M . Therefore, the constraint can now be written as

M∑
i=1

∆bi
γ̄i
− 1 ≤ 0, (A.3)

where ∆bi = bi − bi−1.
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Appendix B

No Solution On The Boundary

At any point on the boundary γ̄i = γ̄i+1, we move towards the infeasible region if either γ̄i is

increasing or γ̄i+1 is decreasing. Thus, in order for the Lagrangian L(γ̄, λ) to be increasing

towards the boundaries (i.e., no solution on the boundaries), it must be increasing either as

γ̄i increases or as γ̄i+1 decreases ∀i. This can be expressed as

∂L

∂γ̄i
|γ̄i=γ̄i+1

> 0 OR
∂L

∂ ¯γi+1

|γ̄i=γ̄i+1
< 0. (B.1)

Substituting with the Lagrangian in (B.1), we get the following condition

ci
∆bi

γ̄i
2fγ(γ̄i)− λ > 0 OR

ci+1

∆bi+1

γ̄2
i+1fγ(γ̄i+1)− λ < 0. (B.2)

We can see if the condition (3.23) is satisfied, then if one of the conditions in (B.2) is satisfied,

then the other one must be not satisfied. This can be shown by considering the first condition

in (B.2) is not satisfied as follows

ci
∆bi

γ̄i
2fγ(γ̄i)− λ < 0, (B.3a)

ci
∆bi

<
λ

γ̄i2fγ(γ̄i)
, (B.3b)

then for ci
∆bi

> ci+1

∆bi+1
,

ci+1

∆bi+1

<
ci

∆bi
<

λ

γ̄i2fγ(γ̄i)
, (B.4a)

ci+1

∆bi+1

¯γi+1
2fγ( ¯γi+1)− λ < 0. (B.4b)
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Therefore, the other condition is satisfied. In a similar way, we can prove if the second

condition is not satisfied, the first one is satisfied. We can conclude that if the condition (3.23)

is satisfied, then the Lagrangian will be increasing towards the boundaries (i.e., infeasible

regions). In other words, no solution will be on the boundaries γ̄i = γ̄i+1, ∀i.
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Appendix C

Unique SNR Threshold to Decide Number of Layers

First we can reformulate the Lagrangian in (3.21) as L(γ̄, λ) =
∑M

i=1 Li(γ̄i, λ) − λ, where

Li(γ̄i, λ) can be expressed as

Li(γ̄i, λ) = ci Fγ(γ̄i) + λ
∆bi
γ̄i

(C.1)

Substituting with the critical points in (3.24b) of λ minimizing the Lagrangian, we can write

(C.1) as

Li(γ̄i, λ) = ci (Fγ(γ̄i) + γ̄ifγ(γ̄i)) (C.2)

It was shown that γ̄i = ∞ is a valid solution for (3.24a), which corresponds Li(γ̄i, λ) = ci,

and Fγ(γ̄i) + γ̄ifγ(γ̄i) = 0. However, making γ̄i = ∞ implies as well that γ̄j = ∞, ∀j > i

Another possible solution for γ̄i is on the rising edges satisfying (3.24b) as seen in Figure 3.4,

which corresponds Li(γ̄i, λ) satisfying (C.2). The solution on the falling edges will always

results in higher values for the Lagrangian. So we need Fγ(γ̄i) + γ̄ifγ(γ̄i) < 0, for γ̄i to be

on the rising edges so that the Lagrangian is minimized. Also, for the same reason, it must

be that Fγ(γ̄j) + γ̄jfγ(γ̄j) > 0, for γ̄j =∞, ∀j > i.

We can define the following function Y (γ̄) = 1− Fγ(γ̄j)− γ̄jfγ(γ̄j). Let’s define γ̄w where

Y (γ̄w) = 0. It can be easily shown that Y (γ̄) is a quasi convex function with a single zero

value for bounded γ̄w. We can also observe that Y (0) = 1 and Y (∞) = 0. Thus, we can

conclude that Y (γ̄) starts with a positive value at γ̄ = 0 and decreases monotonically until it

reaches zero at γ̄w. Then, it reaches a global minimum value at γ̄p defined by (3.26), and then

starts to increase approaching zero at γ̄ = ∞. Also, Y (γ̄) is positive-valued for the region

[0, γ̄w[, and negative in ]γ̄w,∞[.
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Therefore, we can have the following conclusion as described in [19]. If for a given λ, the

critical point obtained by (3.24b) results in γ̄i ∈ [0, γ̄w[, then using this finite γ̄i is better than

using γ̄ = ∞. On the other hand, if at the critical point (3.24b), γ̄i > γ̄w, then for all layers

j ≥ i, using the infinite threshold results in a lower value for Li(γ̄i, λ) and thus a lower value

for the Lagrangian (3.21).

By looking at Figure 3.4, it can be seen that increasing λ causes the values of all γ̄i on

the rising edges to increase while keeping their order, and hence the optimal number of

transmitted layers will decrease gradually by one layer at a time as we increase λ.
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