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Abstract—This paper compares the performance of two 
matched-illumination waveform design techniques for 
distinguishing between M target hypotheses.  The waveforms 
are implemented within a closed-loop, sequential-testing 
framework.  In contrast to our earlier work, in this paper the 
target hypotheses are statistically characterized by power 
spectral densities.  Thus, the waveforms are matched to the 
target class rather than to individual target realizations.  As 
the class probabilities change in response to received data, the 
waveforms are adapted, which leads to faster decisions.  

I. INTRODUCTION 
Adaptive and knowledge-based (KB) signal processing 

focus on improving radar performance through advanced 
signal processing at the receive end of the system.  However, 
rather than develop transmission waveforms and signal-
processing techniques independently, it is useful to consider 
the implementation and performance of a closed-loop radar 
system.  The closed-loop system possesses an adaptive radar 
transmitter that responds to the propagation environment and 
to previously received data. This type of system, termed 
cognitive radar in [1], can be viewed as an intelligent system 
that continually interrogates the environment in order to 
achieve its objectives. Cognitive radar uses prior 
information, measurements from other sensors, and its own 
collected data to learn about the environment and make real-
time decisions about how to proceed.   

  In [2], Bell applied information theory to design radar 
waveforms. He developed optimum waveforms for target 
detection and information extraction. Optimum detection 
waveforms focus their energy into one or two frequency 
bands where the target’s reflections are strongest, but 
optimal information extraction waveforms spread energy 
over multiple bands where the target ensemble’s so-called 
spectral variance is greatest. In [3], Guerci and Pillai develop 
a theory for the two-target ID problem and then propose an 
extension to the M-target ID problem. In [3], it is proposed 
that the average distance between received echoes should be 

maximized.  The problem of temporal waveform shaping for 
improved target detection and identification is also 
considered in [4].  

In [5-6], we have developed a closed-loop framework for 
radar target identification when the targets can each be 
characterized by a known impulse response.  In this 
framework, we use sequential hypothesis testing to 
determine when the experiment should be terminated while 
achieving a desired error rate.  Two different matched 
waveforms are compared along with basic wideband and 
narrowband waveforms.  In this work, we relax the 
assumption of known target impulse responses and instead 
assume that the target hypotheses are statistically 
characterized by known power spectral densities (PSD). 
Therefore, the actual target realization is an unknown sample 
function generated from the PSD of the true target class.  In 
Section II, we develop the problem statement, and describe 
the signal model.  In Section III, describe the closed-loop 
operational concept.  We describe the general closed-loop 
framework, use of the sequential testing procedure, and how 
the system’s understanding of the channel can be updated 
after each data collection.  In Section IV, we summarize the 
two matched waveform approaches that are used.  In Section 
V, we present simulated results, and in Section VI we make 
our conclusions. 

II. PROBLEM STATEMENT 
It is assumed that there are M channel hypotheses 

denoted as H1, H2,…, HM. Each channel hypothesis is 
characterized by a power spectral density ( ) ,i fΨ  i = 
1,2,…, M.  We will employ a real signal model, therefore, 
the PSDs are symmetric. Let the waveform transmitted by 
the system be denoted as )(ts . When )(ts  is transmitted, the 
received signal can be represented as 

 ( ) ( ) ( ) ( )y t h t s t n t= ∗ +  (1) 
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where * denotes the convolution operator, )(ty  is the 
received signal, and )(tn is additive white Gaussian noise 
(AWGN) with average power normalized to 2 1nσ = .   

In order to implement a simulation, it is convenient to 
have a discrete-time representation of the signal model.  In 
the discrete-time formulation, the transmission waveform is 
denoted by a length-Ls  vector s and the target impulse 
response is represented by a length-Lh vector h.  In order to 
facilitate implementation and manipulation of equations, we 
define a signal matrix S as [4] 
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We can then express the received signal as 

 = +y Sh n . (3) 

Next, we let ji,α  for i ≠ j be the desired probability of 
incorrectly selecting jH given that iH  is true. If multiple 
transmissions are made, and the data collected on the kth 
transmission are yk, then the likelihood ratio for a pair of 
hypotheses i and j after the kth data observation is defined as 

 1 1 2 2
,

1 1 2 2

( ) ( ) ( )
( ) ( ) ( )

k i i ik k
i j

j j jk k

p p p
p p p

Λ =
y y y
y y y

 (4) 

where ( )ik kp y  is the pdf of the kth observation under the ith 
hypothesis.  In sequential hypothesis testing, the experiment 
is terminated and mH  is selected when the condition  

 ,
,

,

1 m jk
m j

m j

α
α
−

Λ >  for all j ≠  m (5) 

is met for some m.  After a given illumination and data 
collection, if the condition in (5) is not met, then another 
transmission is made. The threshold in (5) is the threshold 
necessary to prevent the average rate of making an error in 
favor of jH  when iH is true from exceeding ji,α .  

To implement (4), the pdf of the data under each 
hypothesis is needed.  We model the impulse response vector 
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Figure 1.  Diagram of closed-loop radar 
interrogation with adaptive waveforms. 

h as a Gaussian random vector characterized under the ith 
hypothesis by mean vector ,h iµ  and covariance matrix ,h iK . 
Since the quantity Sh in (3) is clearly a linear operation on 
the Gaussian vector h, y is the sum of two Gaussian random 
vectors.  Hence, y is also Gaussian distributed.  Under the ith 
hypothesis, the mean of y is , ,y i h i=µ Sµ  and the covariance 
is T 2

, ,y i h i nσ= +K SK S I .  Hence, we have 
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III. CLOSED-LOOP OPERATION 
The closed-loop radar interrogation procedure is as 

follows.  First, we transmit a waveform matched to the initial 
ensemble of class PSDs and collect the resulting data. Once 
we have the data, we form likelihood ratios and compare to 
thresholds derived according to the theory of sequential 
hypothesis testing.  If one of the hypotheses meets the 
criterion on (5), we make a decision in favor of that 
hypothesis and conclude the experiment.  If a decision 
cannot be made, another round of data collection is required.  
However, before collecting more data, we update our 
understanding of the scenario in order to further optimize the 
transmission waveform.  Once a new waveform is computed, 
another transmission can commence, and the process repeats 
until a decision is made.  The goal of integrating the 
sequential testing procedure with closed-loop adaptation of 
the matching waveform is to reduce the number of 
transmission and energy required to make a decision.  Figure 
1 shows a diagram of the procedure. 

When a decision cannot be made, the system’s 
understanding of the channel must be updated.  In this 
application, the channel update can involve two steps.  First, 
the probabilities associated with each of the hypotheses are 
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updated via Bayes’ rule.  The probability that the ith 
hypothesis is true after the kth observation is then 

 ( ) ( ) ( )
( )

| Pr
Pr | k i i

i k
k

p H H
H

p
=

y
y

y
. (7) 

The denominator in (7) is common to each hypothesis and 
need not be calculated.  Instead, after updating each 
hypothesis, the probabilities are scaled such that their sum is 
one.  Also, the value ( )Pr iH  is the class probability prior to 
taking the kth observation.  In the proposed sequential 
procedure, we set ( ) ( )1Pr Pr |i i kH H −= y , which effectively 
accounts for all data collected prior to the kth observation.  
The matched waveforms that we implement depend on the 
class probabilities; hence, as the probabilities change, so 
does the waveform matching.  Furthermore, note that the pdf 
of the received data shown in (6) depends on a data 
covariance matrix, which in turn depends on the class 
covariance matrix and transmitted signal through the 
relationship 

 T 2
, ,y i h i nσ= +K SK S I . (8) 

This dependence means that the data pdf changes at each 
iteration as the transmission waveform is updated. 

A second potential way to update the system’s 
understanding of the channel is to consider how the received 
data affect the system’s understanding of the actual target 
realization.  Prior to collecting data, the target classes are 
characterized by the mean and covariance of their impulse 
response.  It may be possible to update the mean and 
covariance of each hypothesis in response to the received 
data.  For example, for a Gaussian data model, the sequential 
linear minimum mean square estimator (LMMSE) provides a 
method for updating a Bayesian parameter vector.  Allowing 
the signal contribution of the data vector in (3) to be the 
parameter vector, we can update the mean and covariance of 
each class.  Since the class covariance matrix is related to the 
variance of its frequency spectrum, these updates may allow 
improved waveform matching as the actual target realization 
is determined. 

Unfortunately, a couple difficulties exist when trying to 
implement this second approach.  One difficulty is that the 
statistics of the impulse responses are needed for waveform 
matching while the sequential LMMSE procedure updates 
the received signal vector, Sh.  With knowledge of 
transmitted waveforms, however, this difficulty can be 
overcome.  In initial testing, a more significant difficulty lies 
in the assumption that the sequential LMMSE makes about 
the accuracy of the data statistics.  The LMMSE update 

equations are based on the assumption that the data mean 
and covariance is accurate.  However, assuming the target 
hypotheses are distinct, this can only be true for one 
hypothesis.  For this hypothesis, refined estimates of the 
target realization are viable.  For the other hypotheses, the 
estimated target realizations must be updated with data 
generated from a different statistical distribution.  In time, 
every hypothesis will begin to believe the data despite the 
initial class statistics.  If a decision has not been made, it is 
possible to reach a state where the updated mean and 
covariance of all hypotheses are identical, thus making a 
decision impossible. 

The above issues are still being investigated.  Therefore, 
in this paper we focus on adapting waveforms via updates on 
the class probabilities.  As certain classes are ruled out or 
appear unlikely, it is less important to distinguish them, and 
the waveform is allowed to adapt.   

IV. WAVEFORM  DESIGN 
We apply two different matched waveform techniques.  

The first techique is based on maximizing mutual 
information as originally described in [2].  The second 
technique is based on SNR considerations as described in [3-
4].  Both techniques have previously been used in [5-6] to 
discriminate between known impulse responses.  We now 
briefly describe how we have applied the techniques to 
targets characterized by a PSD. 

In the information-based approach, we assume that the 
target is characterized by an impulse response that is a 
realization of a Gaussian random process.  In this case, the 
time-limited, energy-constrained waveform that maximizes 
the mutual information between the received signal and the 
target ensemble has a frequency power spectrum given by 
[2] 

 df
f
TfP

AfS
H

nn
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2

2

σ
 (9) 

where ( ) { }{ }2 2E | ( ) E ( ) |H f H f H fσ = −  is called the 
ensemble’s spectral variance.  The variable A is used to 
implement the finite energy constraint.  In [5-6], the 
ensemble was defined to be the suite of known impulse 
responses that characterized the target alternatives.  As the 
hypothesis probabilities evolved, it was simple to form a 
weighted spectral variance. 

In the current scenario, each hypothesis is itself made up 
of an ensemble of possibilities.  For zero-mean Gaussian 
target realizations, the spectral variance of a single 
hypothesis is the corresponding PSD, ( )i fΨ .  To match the 
waveform to the set of target hypotheses, we form the 
weighted average PSD according to 
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Since (9) implements the waterfilling operation, this 
waveform approach is referred to as the waterfilling 
waveform. 

The second waveform approach is based on the SNR-
maximizing approach of [3-4].  In the case of a two-target ID 
problem, SNR is maximized by maximizing the distance 
between the received echoes from the two targets.  The 
solution is based on the autocorrelation of the signal that 
results from subtracting the two impulse responses.  In the 
present case, this difference signal is random, but its 
expected value can be obtained from the relationship 
between the PSD and autocorrelation functions of random 
processes.  Letting the autocorrelation matrix obtained from 
the difference between hypotheses i and j be ,i jΩ , we 
account for the need to discriminate between all pairs of 
hypotheses by forming the quantity 

 ( ) ( ) T
, ,

1 1
Pr Pr

M M

i j i j i j
i j i

H H
= = +

= Ω Ω∑ ∑Q . (11) 

The matched waveform is taken as the principal eigenvector 
of Q normalized to have the required energy.  This 
waveform is referred to as the eigen-based waveform, or the 
eigensolution.  

V. RESULTS 
We compared the performance of three different 

waveforms for distinguishing the hypotheses.  One 
waveform was a wideband waveform that was not matched 
to the target ensemble.  The other two waveforms were the 
waterfilling waveform and the eigen-based waveform.  We 
simulated a scenario with four distinct target classes.  Each 
hypothesis was a Gaussian random processes with known 
PSD.  For each simulation, we generated 2000 different 
realizations of the true impulse response, and for each 
realization, the true target hypothesis was randomly selected 
from the four possibilities.   

The desired error rate was α =0.01; however, in the case 
where target classes are not mutually exclusive, it is difficult 
to actually achieve the desired error rate.  We took two 
measures to handle this.  First, the four different class PSDs 
were defined such that most of their energy were in non-
overlapping bands.  This minimized the number of target 
realizations, or sample functions, whose frequency spectrum 
actually resembled the PSD of an incorrect target class more 
than the PSD of the correct target class.  Second, in some 
cases we adjusted the sequential testing thresholds to get 
error rates reasonably close to the desired rate.   

We averaged the number of illuminations required to 
terminate the sequential test, and also calculated the error 
rate.  Both metrics were computed as a function of the 
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Figure 2.  Average transmissions for the 

non-adaptive approach. 
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Figure 3.  Error rate for different waveforms in  

the non-adaptive approach. 

 

Figure 2 shows the average number of illuminations to 
reach a decision when no waveform adaptation is performed.  
The two matched waveforms are matched to the initial 
ensemble with equal prior probabilities, but are not adapted 
as the probabilities change.  The waterfilling approach 
performs best because it is matched to the ensemble but also 
tends to spread its energy into multiple frequency bands.  
The eigensolution performed the worst.  Even though the 
eigensolution is a matched approach, it tends to focus its 
energy into only one or two narrow frequency bands.  What 
happens in this non-adaptive implementation is that if those 
narrow bands are aligned with the frequency spectrum of the 
true target realization, little target energy is received.  In the 
non-adaptive scenario, the waveform is not allowed to 
correct itself as the probabilities change.  Figure 3 shows the 
corresponding error rates for the non-adaptive case. 
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Figure 4.  Performance improvement when waterfilling 
waveform adapts to changing hypothesis probabilities. 
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Figure 5.  Error rates for adaptive vs. non-adaptive 

waterfilling waveform implemenation. 

 

Figures 4 and 5 compare results when the waterfilling 
waveform is used in the non-adaptive, open-loop fashion of 
the previous figures versus the proposed closed-loop 
operation complete with an adaptive transmit waveform.  

When the waveform is allowed to adapt to its changing 
understanding of the hypotheses, the required number of 
transmissions is reduced.  This is true even though the 
closed-loop operation resulted in a slightly lower error rate 
as the non-adaptive operation. 

VI. CONCLUSIONS 
We have tested two different radar transmission 

waveforms in a sequential testing procedure for identifying 
statistically characterized target classes.  We have discussed 
several issues that were not important for our previous work 
with known target impulse responses, but now must be 
considered.  These issues include modification of waveform 
matching techniques to PSD information as well as issues 
regarding how to update the system’s understanding of the 
channel.  Future work will attempt to better control error rate 
in these situations, will refine the adaptive implementation of 
the eigensolution waveform, and will investigate methods of 
exploiting estimates of the actual target realization in the 
adaptive waveform matching process.       
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