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Abstract – In this paper, transmission waveforms for an 
M-target ID problem are compared and analyzed under 
a hypothesis testing framework. Waveforms based on 
mutual information between a target ensemble and the 
received waveforms, under time and energy constraints, 
have already been determined. They are applied to the 
M-target ID problem, and compared with the solution 
obtained by maximizing the average distance between 
hypotheses. A single illumination is considered first with 
regard to the binary and the M-ary target ID problem. A 
new iterative transmission scheme is proposed that 
calculates the probability of each hypothesis and updates 
the transmission waveform at each step. This is coupled 
with a sequential multi-hypotheses testing procedure and 
shown that for the same error rate, the proposed 
iterative scheme combined with an information-based 
waveform can reduce the number of iterations to reach a 
decision. 
 

I. INTRODUCTION 
 
There have been various attempts in the past to determine 
the optimum transmission waveforms for various 
applications. One such application is the M-target ID 
problem, where one needs to discriminate a target from other 
possible targets. In general, this is a hypotheses testing 
problem in which one needs to identify one of M (≥ 2) as the 
true target. 
 

Transmit-receive optimization theory was shown as an 
application to the target ID problem in [5].  The solution is 
shown to be optimal in case of two targets, and an extension 
to the M-target problem is mentioned, but not proved or 
analyzed. This solution is determined by maximizing the 
weighted average distance between the output signals 
associated with the hypotheses. Another potential criterion 
for selecting a finite set of transmitter signals for radar is 
shown in [6]. This criterion maximizes the minimum 
divergence between hypothesis pairs being tested at the 

receiver. Furthermore, it is shown that the average 
divergence is bounded below by twice the information rate 
of the channel.  It is claimed in [7] that the average 
divergence is a reasonable criterion for optimality of signal 
sets, and probing signals are designed for M-ary 
identification of linear channels using this criterion. Various 
signal design criteria and conditions for signal optimality for 
a communication system in a coherent Gaussian channel are 
derived in [4] and compared with different cases of 
constraints on average energy and message probabilities. In 
general, the regular simplex sets prove to be optimum at 
relatively all SNR with equal probabilities and either equal 
energy or bounded average power of the signals. 
 

Information theory was applied to radar waveform design in 
[2] where optimal detection and estimation waveforms have 
been determined. It is shown that putting as much energy as 
possible into the mode with the largest eigenvalue may not 
be the best way to obtain information for identifying the 
target or estimating its parameters. Instead, the best 
estimation waveforms maximize the mutual information 
between the target responses (ensemble) and the received 
waveform. 
 

In this paper, we look at applying the waveform determined 
in [2] to an M-target ID problem and compare with the 
approach given by [5] and other standard procedures using a 
hypothesis-testing framework. First, we consider a single 
illumination for binary and the M-ary cases. The receiver 
makes its decision using maximum likelihood. The 
difference in performance is studied. It is shown that one 
method maximizes the average distance between the target 
echoes, while the other is observed to be better at 
maximizing the minimum distance between echoes. 
 

A new iterative scheme is proposed where the probabilities 
of the hypotheses are updated at each stage along with 
updating the transmit waveform. This scheme is coupled 
with the standard sequential multi-hypotheses testing 
procedure and different transmit waveforms are compared.  
In the sequential procedure, the figure of merit is the number 
of iterations to reach a decision for a fixed probability of 
misclassification. It will be shown that the number of 
iterations is considerably reduced by choosing a waveform 



samples. Our problem of interest is as follows: given a 
known set of target impulse responses, find the waveforms 

 that maximize the probability of correct classification 
of the targets. 

)(ts

that can extract more information about a target. In addition, 
it is consistent with the fact that the overall number of 
iterations will reduce only if you transmit the best waveform 
at each stage.  
 

  In Section II, we formulate the problem and describe the 
signal model and parameters. Section III deals with the 
background of the M-target ID problem. The solution for 
M=2 and the general form of the M-ary solution assumed in 
[5] are described. Also, the waveform that maximizes the 
mutual information between a Gaussian target ensemble and 
the received waveform is illustrated. In Section IV, we show 
results for the single-illumination case. We compare the 
error performance of different waveforms starting with 
binary and subsequently multiple hypotheses. Section V 
describes sequential testing applied to multiple hypotheses. 
An iterative scheme is introduced, describing the update of 
the probabilities and the transmit waveform at each step. 
This scheme is combined with the sequential multi-
hypotheses testing. Results show the relative performance of 
different transmission techniques and the reduced number of 
iterations obtained by transmitting the waveform that 
maximizes mutual information. In Section VI, we make our 
conclusions. 

III. WAVEFORM DESIGN 
 
The M-target ID problem has been considered in the 
literature in different ways. The transmit-receiver 
optimization theory in [5] was shown to be an application to 
the target ID problem with two targets. In the case of just 
two targets in AWGN, the problem transforms into 
maximizing the L2 norm distance between the target echoes 
in signal space. 
 

Therefore the problem becomes  
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where )()()( 21 tytyty −= . The solution to this turns out to 
be the eigenfunction associated with the largest eigenvalue 
of the Fredholm integral equation of the second kind, 
namely  
 II. PROBLEM FORMUALTION AND SIGNAL MODEL 
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It is assumed that we have M targets characterized by their 
impulse responses Mithi ,...,3,2,1),( = .The impulse 
responses are real, time-limited and chosen as sample 
functions of a Gaussian random process with a specified 
power spectral density (PSD). The received signals are 
assumed to be corrupted by additive white Gaussian noise 
(AWGN). 
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where )()()( 21 ththth −= , maxλ  is the maximum eigenvalue 
of the kernel K, (t) is the optimum transmit signal to be 
determined, and K is the kernel formed from the impulse 
responses as shown in (3).  

opts
 

Our aim is to identify the true target from among all possible 
targets. In a basic sense, it can be viewed as a hypothesis 
testing problem, where one needs to choose a hypothesis 
based on the received signal.  

 

Furthermore, it has been suggested that this can be extended 
to an M-target ID problem by maximizing the weighted 
average separation between hypotheses. The solution will 
then have the same form as (2) with the kernel being 

 
The received signal can be represented as  
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where represents the received signal, the transmit 
signal, the impulse response of the true target, and  
is AWGN. The discrete-time version of the above equation 
is used in our simulations. All impulse responses are 
normalized to have unit energy such that 
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The weights to be assigned to the individual pairs of 
hypotheses are not described in [5]. Moreover, there is no 
proof that (4) provides the optimal solution for an M-target 
ID problem. This particular solution will be referred to as the 
eigensolution in the later parts of this paper. 
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where is the sampling interval and N is the number of sT



 

Given a Gaussian target ensemble of random impulse 
responses g(t) with spectral variance , the 
waveforms confined to the symmetric time-interval [-
T/2,T/2] that maximize the mutual information between the 
received waveform and the ensemble in additive Gaussian 
noise with one sided power spectral density , is 
derived in [2]. The solution has the magnitude-squared 
spectrum given by  
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and A is found by solving the equation 
 Fig.1 Error rate for two targets 
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where is the energy of the transmit signal and  is 
the probability of hypothesis i. An interesting observation is 
that (7) performs waterfilling [3] on the 
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the waterfilling solution in subsequent sections of this paper. 
Since we have finite number of known impulse responses, 
we do not have a Gaussian target ensemble in our case.  We 
estimate the spectral variance of the target ensemble using 

When we have only two targets, it is proved that the 
eigensolution gives the optimal performance by maximizing  
SNR. This is achieved by putting maximum energy into the 
mode corresponding to the largest eigenvalue of the 
difference of target responses and . When the 
targets have unequal probabilities, the detection threshold 
changes, while the optimal waveforms remain the same as 
determined for the case of equal probabilities. 
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The performance of this waveform is compared with a 
wideband impulse signal, a rectangular pulse and the 
waterfilling solution. Probabilities of error are determined 
analytically using standard methods for detection of signals 
in AWGN [8]. 
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Figure 1 shows error rates in the case of two targets. The 
eigensolution performs the best among the waveforms 
considered. This is obvious from the fact that it tries to 
separate the two target echoes as far as possible in signal 
space. The waterfilling solution is also seen to perform 
better than the impulse and the rectangular pulse because 
these latter two waveforms are not intentionally matched to 
the target responses. The impulse outperforms the 
rectangular pulse because it is at least matched to the PSD 
from which the impulse responses were generated. 

 
and then apply (6) and (7). It was mentioned in [2] that the 
waveform whose spectrum is described by (6) is particularly 
useful in identifying a target or extracting information about 
a target, as opposed to optimum detection where one needs 
to maximize SNR by focusing energy into the mode 
corresponding to the largest eigenvalue of the target 
response.  Subsequent sections of this paper explore the 
application of the above waveforms with respect to binary 
and M-ary identification.   

B. Multiple targets (M>2)  
 IV. SINGLE ILLUMINATION 
In the case of three targets, there is no single distance to be 
maximized since there are three possible distances between 
the hypotheses. For the M-ary case, prior probabilities 
indicate which hypotheses are most important to separate in 
the receive signal space.  Therefore, prior probabilities affect 
both the transmit waveform and the detection thresholds.  
For unequal prior probabilities, weighting the kernels by the 
product of the probabilities of the two hypotheses is a 
reasonable approach. If one of the targets has low 

  
In this section, we explore target classification using a single 
active transmission. The transmit signal interacts with one of 
the targets and the echo is corrupted by AWGN. In general, 
the targets are allowed to have unequal prior probability. 
The receiver is assumed to perform maximum-likelihood 
detection. 
 



 

probability, then it is most important to separate the other 
hypotheses. For example, if the probabilities are P1 = 0.4, 
P2 = 0.55, and P3 = 0.05, respectively, then we need to worry 
less about the distances from the third hypothesis to the 
other two. The weights for use in (4) would be w1,2 = 0.22, 
w1,3 = 0.02, and w2,3 = 0.0275.  Therefore, the weights reflect 
the relative importance of the different distances. 
  

In [6, 7], it is shown that average divergence is a reasonable 
criterion for optimality, since it is bounded below by twice 
the information rate of the channel.  The average divergence 
between hypotheses is given by  
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where , are the prior probabilities of hypotheses i and j 

and ,  are the target echoes with 
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Therefore, the solution in (4)-(5) is equivalent to maximizing 
average divergence in (8) when weights are chosen as a 
product of prior probabilities. 

Fig.2 Error rates for P1=0.5, P2=0.5, P3=0 

 

 
C.  Single-Illumination Results 
 
For our analysis, impulse responses were randomly chosen 
as sample functions of a Gaussian random process with flat 
power spectral density. For every set of impulse responses, 
we performed Monte-Carlo averaging over the noise. In 
addition, we averaged over 50 sets of impulse responses to 
avoid the performance being affected by the choice of a 
particular set of impulse responses. 
 

The extreme case of probabilities, where one can expect to 
see these product weights show a significant difference in 
performance, is when one of the probabilities is zero or close 
to zero. This case is shown in Figure 2. 

 
Fig.3 Error rates for P1=0.2, P2=0.2, P3=0.6 

 
eigensolution perform almost equally well for low SNR, but 
for higher SNR, the waterfilling solution performs better.   

In Figure 3, we show results for a case with prior 
probabilities that are unequal, but not as drastic as in Figure 
2. One interesting thing to note is that the performance of the  

 
This illustrates the fact that as the number of hypotheses gets 
larger, just putting energy into the mode corresponding to 
the largest eigenvalue of (4) is not sufficient. The 
implication is that we need to spread energy into other 
modes as well. 

impulse waveform approaches the optimal solutions at high 
SNR. This may be attributed to the fact that since the 
impulse responses are chosen from a process with a flat 
power spectrum, it is enough just to send out a wideband 
signal matched to the ensembles’ PSD at high SNR. We are 
assured of not wasting energy in frequencies where there 
will not be a response, since the impulse responses are 
spread across the spectrum. Figure 4 shows that, for three 
equiprobable targets, the waterfilling solution approaches the 
eigensolution performance for high SNR.  

 

The waterfilling solution seems to perform better as the 
number of hypotheses gets larger. As shown in (6)-(7), the 
waterfilling solution tends to put more energy into 
frequencies that have greater variance among the target 
frequency responses.  The eigensolution though, tends to 
maximize the average separation between the hypotheses.  
Average separation, however, might be maximized by 
making one distance much larger than all others, resulting in 
many hypotheses that are not separated well at all. Since the 
distance in signal space is directly related to the distance in 
 

 
In the case of four targets, however, there are many more 
distances to be maximized. For an equiprobable, 4-target 
situation as shown in Figure 5, the waterfilling and the 
 



  
  

Fig.4 Error rates for the three targets equiprobable Fig6. Comparison of frequency response for eigensolution 
  

  
  

Fig.5 Error rates for 4 hypotheses Fig.7 Comparison of frequency responses for waterfilling solution 
  
frequency space (Parseval’s Theorem), the eigensolution 
tends to put energy into the single frequency where the 

function  is the maximum, where 

 denotes the Fourier transform of the impulse  
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however, there are other frequencies that can be exploited. 
This is achieved with the waterfilling solution. 

 
V. ITERATIVE ADAPTIVE TRANSMISSION 

 
Instead of making a decision after only a single step, another 
approach is to divide up the available energy into steps and  
transmit multiple waveforms. In that case, every time a 
signal is received, we learn something about the target. 
Therefore, based on all previous received waveforms, we are 
able to send out an improved waveform during the next 
transmission.  

response of i  hypothesis.  This concept is illustrated in 
Figure 6. 

th

 

The waterfilling solution, however, spreads energy over 
multiple peaks in the ensemble’s spectral variance, as long 
as there is enough SNR. Comparing Figures 6 and 7, we see 
the multiple peaks in the spectral variance function. These 
peaks indicate frequencies that are useful for target 
discrimination. At low SNR, only the largest peak is strong 
enough to provide useful information. At high SNR,  

 
A.  Bayesian Update of Probabilities 
 
We have developed an iterative scheme, which starts out by 
assuming that all targets are equally probable. After each 



transmission and reception, the probabilities of the targets 
are updated using the Bayesian update rule 
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where k is the iteration number, are the hypotheses,  
is the received signal at the  iteration, and  is 
the probability of Hypothesis i after k iterations. The updated 
probabilities are used in determining the new waveform to 
be sent. In the case of fixed waveforms like impulse and 
rectangular waveforms, no update is performed. In case of 
the eigensolution, the weights, w

iH ky

)thk |( ki yHp

i,j, change with the new 
probabilities. With the waterfilling solution, the variance of 
the target ensemble is updated according to (8). This new 
variance is used to determine the waveform for the next 
transmission. 

Fig.8 Iterations to reach a decision for a flat PSD 
 

 

 
B.  Sequential Hypothesis Testing 
 
Sequential hypothesis testing is a standard procedure for 
testing between hypotheses by successive observations. 
Sequential hypothesis testing has the property that it 
minimizes the number of iterations to reach a decision for a 
fixed probability of misclassification, compared to the fixed 
iteration method. The iterative procedure illustrated in the 
previous section can be coupled with the sequential 
hypotheses testing procedure to observe the relative 
performances with respect to the number of iterations to 
reach a decision, for a fixed error rate.  
 

At each iteration the likelihood ratios of all pairs of 
hypotheses are computed, and if the likelihood ratios for any 
one of the hypotheses against all others is more than a set 
threshold, that particular hypothesis is decided as the true 
one [1]. If no single hypothesis is a sufficiently clear choice, 
we continue to take measurements by updating the 
probabilities and transmission waveforms. The threshold is 
fixed based on the error rate set for the probability of 
misclassification, which is decided before the experiment 
begins [9]. 

 
Fig.9 Distances between hypotheses for flat PSD 

 
The waterfilling solution seems to perform the best as shown 
in Figure 8.  It reduced the number of iterations considerably  
compared to the other waveforms under consideration. 
Assigning equal weights or product of probabilities for the 
eigensolution does not affect results in this case as they seem 
to overlap. Since the probability of error in deciding on a 
hypothesis depends mainly on the distance between the 
hypotheses, it is reasonable to investigate the minimum and 
the average distances between the hypotheses for different 
transmission waveforms. Figure 9 is consistent with the fact 
that the eigensolution maximizes the average separation 
between the hypotheses. Although the waterfilling solution 
does not strictly maximize the minimum distance, it does so 
more often than not as shown in Figure 9. This makes the 
waterfilling solution perform better on average than other 
waveforms 

 
C.  Sequential-Testing Simulation Results 
 
Sequential multi-hypotheses testing was performed with the 
probability of misclassification set to 0.008. The impulse 
responses were randomly chosen from a Gaussian random 
process with a flat PSD for M = 4. The different transmit 
schemes were implemented assuming that the targets were 
equally likely. The impulse and the rectangular pulse were 
transmitted without any update. For both the eigensolution 
and the waterfilling solution, the probabilities and 
waveforms were updated after each transmission.  

 
Next, we consider the impulse responses from a Gaussian 
random process with a low-pass hamming PSD, for which 
 

 



 
 

Fig.10 Iterations to reach a decision for a Hamming PSD 
 
 
the results are shown in Figure 10. The waterfilling solution 
performed the best, and the wideband signal the worst. This 
is reflected in the minimum distances between the 
hypotheses in Figure 11, where the waterfilling solution 
maximizes the minimum distance and the impulse yields the 
minimum, often. Moreover, since the impulse responses 
contain low frequency content, transmitting wideband signal 
wastes energy in unwanted frequencies.  

 
VI. CONCLUSIONS 

 
We have analyzed various potential transmission waveforms 
for an M-target ID problem. The waveform that optimizes 
mutual information between a target ensemble and the 
received waveform was applied to this problem. The M=3 
and M=4 cases were simulated, and it was seen that the 
waterfilling solution performs well as the number of 
hypotheses increase, especially at high SNR. An iterative 
procedure, which calculates the probabilities of targets at 
each step and updates the transmitted waveform, was 
introduced. This iterative procedure was coupled with 
sequential multi-hypotheses testing. It was shown that the 
waveform that optimizes mutual information is the best for 
an M-target ID problem for M > 2. 

 
 
 
 

 
 

Fig.11 Distances between hypotheses for Hamming PSD 
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