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Abstract—We introduce a local-channel power control strategy
applicable to multiple-hypothesis distributed detection systems
communicating over slow-fading orthogonal multiple-access chan-
nels. In earlier work, it was demonstrated that performance could
be improved by adjusting transmit power to maximize the J-di-
vergence measure of a binary detection system. The local power
control strategy introduced here further improves performance
by exploiting a priori probabilities and local sensor statistics.
Moreover, the local power optimization can be combined with
additional power control based on the state of the propagation
channel. We extend the optimization to systems performing mul-
tiple-hypothesis detection, and evaluate outage probability for
these systems. Various numerical results are shown.

Index Terms—Classification outage, detection outage, diversity,
local-channel power control, optimal power allocation, outage
probability, sensor network.

I. INTRODUCTION

S TRATEGIES to improve the lifetime of battery-powered
wireless sensor networks (WSNs) have been an intensively

studied topic due to the difficulty of replacing batteries in ge-
ographically deployed sensors. In this paper, we consider dis-
tributed detection systems where a network of sensors each ob-
serve the event status of a source, make their own local decision,
and forward the decision to a fusion center through a nonideal
fading channel. Based on the local decisions, the fusion center
makes a final decision according to a fusion rule. However, the
focus here is not on the local decision or the fusion rules, but
on strategies for conserving the power used by wireless sensor
networks to communicate and make decisions.

Research on local decision and fusion rules for distributed
sensor networks can be traced back to the early 1980s [1]–[3]
and are still in process [4]–[7], but studies of optimal power con-
trol strategies are only recently being explored [8]–[11]. Tho-
mopoulos [12] et al. showed that the local likelihood ratio test
(LRT) is optimal in the presence of a fusion center under the
Neyman–Pearson criterion where the decision scheme maxi-
mizes the probability of detection for fixed probability of false
alarm. These decision rules were then evaluated and improved
in the presence of network delay and channel errors in [13]. On
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the other hand, Hoballah and Varshney investigated the optimal
local rule under the Bayesian criterion in [3], and the rule was
expanded to consider the presence of nonideal channels in [6].

Sadjadi developed local decision logic and fusion rules for
generalizing the distributed detection problem of Tenney to
distributed multiple-hypothesis detection [14]. He obtained
optimal detectors by minimizing an average cost function and
finding the optimal decision regions. Chao showed optimum
partitionings of decision regions based on multibit decisions
to avoid the information loss by local hardlimiting process
in [15]. In [16] and [17], Wang studied local sensor decision
logic and sensor fusion with a double-bound testing method for
both serial distributed sensor networks and parallel decision
networks. Oh introduced a multiple-target tracking algorithm
with a dynamic model of multiple targets for sensor networks
[18]. However, power optimization strategies unique to mul-
tiple-hypothesis scenarios have not been explored.

Recently, the emerging optimal power allocation issue has
been considered in the context of estimation of an unknown pa-
rameter or detection of an unknown source. Xiao et al. [9] in-
troduced optimal power scheduling for the joint estimation of
a Gaussian source in an inhomogeneous Gaussian sensor net-
work by minimizing total power consumption while satisfying
a mean-squared distortion constraint. Zhang [10] introduced an
optimal power allocation scheme over a multiple-access channel
by maximizing J-divergence under a fixed total communication
power constraint on the sensors of a distributed binary detection
system.

In this paper, we introduce local power control, which is per-
formed by minimizing the average power of the local -dimen-
sional transmit symbol constellation for distributed multiple-hy-
pothesis detection. Then channel power control is performed by
maximizing the total J-divergence, which is an instantaneous
performance measure based on the instantaneous channel real-
ization. The J-divergence optimization results in optimized am-
plifying factors prior to transmission over the channel. We an-
alyze the proposed local-channel power control scheme using
detection outage probability(or classification outage), which is
a long-term system performance measure averaged over many
realizations of the communication channel. The outage metric is
similar to communication outage probability, but applies specif-
ically to the distributed multiple-hypothesis detection.

This paper is organized as follows. In the next section, the
structure of the distributed detection system is described. In
Section III, the local power optimization is explained and
the total J-divergence of the overall system which is used for
channel power optimization is derived. In Section IV, after
briefly explaining an uniform power transmission scheme with
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Fig. 1. Distributed detection with a fusion center.

local power optimization,we derive the asymptotic total J-diver-
gence with which we generalize detection outage probability
for the multiple-hypothesis problem. The relationship between
asymptotic total J-divergence and multiple-hypothesis detec-
tion outage is also demonstrated. Using the extended outage
probability, we analyze the power gain and detection diversity
achieved through local power control. In Section V, channel
power optimization (symbol amplification) is combined with
the local power optimization procedure of Section IV. Detection
outage performance is evaluated under 1) a total power con-
straint and 2) total and individual power constraints. Section VI
summarizes the results and gives some concluding remarks.

II. SYSTEM MODEL

We introduce a similar system setup as that used in [10],
[11], and [19], but the system model is extended for mul-
tiple-hypothesis detection. At some observation time, detection
of the event source (e.g., detection of multiple targets or
target classification) can be abstracted as multiple hypotheses:

. There are sensors that make local observa-
tions about the source and transmit local decisions to the fusion
center. For simplicity, we assume that the local decisions are
transmitted to the fusion center over orthogonal multiple-access
channels as shown in Fig. 1. Specifically, sensor collects a
local observation that has been corrupted by observation
noise.

Each sensor then makes its own local decision according
to a local decision rule denoted symbolically as

Node then maps its local decision to a transmit symbol
according to some modulation scheme, , amplifies the
transmit symbol by , and transmits the signal over the th
fading channel. In general, the modulation scheme can
be scalar (e.g., amplitude modulation) or multidimensional
[e.g., phase shift keying (PSK) or frequency shift keying
(FSK)]. The fading communication channel is modeled as a
set of random amplitude gains , and the signal received
at the fusion center is corrupted by additive white Gaussian
noise (AWGN). We assume that the ’s and ’s are both
independent over . Later in the paper we use detection outage
probability [19], [20] to quantify long-term system performance
over multiple independent and identically distributed (i.i.d.)
realizations of the channel gain coefficients.

From now on, we use a bold capital letter for a matrix and
a bold lower-case letter for a vector. is the total number of
channels. is the total number of hypotheses, and is the total
number of dimensions used for the local modulation scheme.

We can characterize an individual sensor by its transition
probabilities

for and

We further assume that the local observation ’s and the local
decision ’s are independent over when conditioned on a
particular hypothesis [11], [19]. As such, the joint conditional
probability mass function of the local decisions is

(1)

where the local decision vector is .
We now allow each sensor to adaptively control its transmit

symbol constellation according to its own unique decision sta-
tistics. Let be the optimization of the transmit symbol con-
stellation. The optimized modulation symbols are transmitted to
the fusion center over a fading channel. At the fusion center, the
received signals are

(2)

where

and where is the additive noise vector.
The conditional probability density function (pdf) of the re-
ceived signal given hypothesis is [10]

(3)

The final decision at the fusion center, , is determined by a
fusion rule denoted symbolically by .

In general, may be unknown but
can be estimated with a given local transition matrix and local
decision probabilities. For example, a vector of a priori source
probabilities could be estimated according to

where

...
. . .

...

is given. is a locally estimated vector of decision prob-
abilities obtained by averaging in time over many independent
decisions. For example, suppose the th sensor operates for
some period of time and makes 100 decisions. If the sensor
chooses the second hypothesis three times, then

. However, this approach yields esti-
mates of the decision probabilities, not of the source prior
probabilities. The two are related by ,
but unfortunately this can lead to negative prior probabilities
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because they are calculated from estimated rather than
the true local decision probabilities. Therefore, we have instead
performed a simple nonlinear optimization

for all

The final estimate is calculated by averaging over the
sensor estimates according to

III. POWER CONTROL STRATEGY

A. Local Power Control

In this paper, we adopt two power optimization strate-
gies—local power control and channel power control—to
take advantage of local sensor statistics and channel sta-
tistics. As for the local power control, we allow each
sensor to adaptively control its transmit symbol constel-
lation according to its own unique decision statistics. Let

be the local modulation
symbols of the th sensor where the modulation function

adjusts the symbols based on local decision probabilities,
. The local power control

minimizes the average power of the modulation constellation.
Let this optimization for the th sensor be stated as

(4)

where the constraint can be any communication per-
formance measure between the th sensor and the fusion
center. The design variables are . The
basic goal of the local power control is to find an optimal
local constellation configuration that minimizes the average
constellation power while keeping a given communication
performance. We could let the constellation configuration be
completely arbitrary, but this approach would likely lead to
impractical implementations and increases the optimization
procedure considerably. Instead, we essentially implement
as a structural constraint by assuming a symbol constellation
in the form of some traditional modulation scheme (QAM,
FSK, etc.) with spacing determined by desired communication
performance. Once the constellation structure and size are set,
we can then optimize the average power of the constellation
through linear translations of the constellation and by judi-
cious assignment of decisions to symbols in the constellation.
Note that communication performance is determined by the
constellation structure, not by its translational shifts. We later
show an example using a translated QAM constellation in-
cluding a fair comparison to the performance of a system with
a nontranslated QAM modulation transmission. This example
is shown in Sections IV-D and V. We also show an example
using scalar modulation in Section IV-C. Optimization of the

transmit symbol constellation as defined by (4) is referred to as
local power control, while optimization of the average power
transmitted by each sensor based on channel states is referred
to as channel power control.

B. System Performance Measure, Total J-Divergence and
Channel Power Control

Rather than considering optimal fusion rules, we instead
argue that detection performance is generally improved if the
total J-divergence is maximized. In particular, the total
J-divergence measure is defined by a weighted sum of pairwise
J-divergences, , according to
[21], [22]

(5)

The second line of (5) is possible because is symmetric
and when . The pairwise J-divergences are

where is the
Kullback–Leibler (KL) divergence measure between two prob-
ability density functions [23]. Thus, the J-divergence is a sym-
metric version of the more general KL distance measure.

The KL distance is the average of the difference between
two log-likelihood functions. Let and , re-
spectively, be the two conditional log-likelihood functions
for hypotheses and . The KL distance is defined as

where is the
expected value with respect to . From this definition, the KL
distance is interpreted as the average of the log-likelihood ratio
between two conditional pdfs and . Because the likeli-
hood ratio is an optimal detection method that appears in both
Neyman–Pearson and Bayesian detection, we can conclude that
J-divergence is closely related with detection performance. In
fact, for the binary Gaussian detection problem, J-divergence
becomes the signal-to-noise (SNR) at the receiver and the
probability of error is where is the Gaussian
Q-function and is the J-divergence between the two hy-
potheses. Asymptotically, J-divergence determines the error
exponent of the Chernoff bound from Stein’s lemma [11], [23].

For distributed detection systems, the simulation results of
[11] show that probability of detection can be enhanced by in-
creasing J-divergence. Even though J-divergence is not a direct
performance measure like probability of detection or probability
of error, it usually leads to tractable analytical frameworks for
distributed detection systems with Gaussian assumptions and
has been adopted by many researchers, such as in [24]–[27].
J-divergence also provides a lower bound to the probability of
error by [24] in a binary detection
system.

We apply J-divergence to the multiple-hypothesis detection
system defined in (5) because of its relationship to detection
performance and its ability to provide a tractable analysis. For
example, provides a lower bound for the multiple-hypoth-
esis detection problem by where
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is defined as a pairwise sum of the individual probabilities of
error between two hypotheses

and is a constant . A de-
tailed proof is given in Appendix VII-A. We can reduce this
bound by increasing the total J-divergence. Therefore, we can
design a power control strategy by maximizing the total J-di-
vergence according to

(6)

where is the diagonal amplification matrix defined
earlier, is a total power constraint, and is a di-
agonal matrix of individual power constraints. denotes
the component-wise square root of , and the inequality
means that is positive semidefinite [11]. The indi-
vidual diagonal terms of need not be the same.

Note that the pairwise J-divergence directly depends only
on the conditional probability densities, and ,
but apparently not at all on the source’s prior probabilities.
Hence, it is not immediately obvious how a local optimization
procedure can have any effect on system performance. Closer
inspection of (2) and (3), however, shows that does depend
on the transmit symbol constellations used by the various sen-
sors. Since the symbol constellations are the design variables
in the local power optimization, does indeed depend on a
priori probabilities of the source. Essentially, the local opti-
mization reduces the average power of the symbol constellation
for each sensor, which we will see later allows the amplification
coefficients to be increased while still meeting average
power constraints on the total transmission power. As discussed
in [11], with AWGN channel noise, the system conditional
probabilities can be approximated by Gaussian densities and
the resulting individual J-divergence is given as

(7)

where is a diagonal matrix with elements

for

and , and

...

is the covariance matrix of the channel noise vector , and
is the dimension of the received signal vector at the fu-

sion center. More details on the derivation of (7) are given in
Appendix VII-B. Finally, the total J-divergence of the system
is obtained by applying (7) to (5). In the next section, we con-
sider the performance benefit of local optimization when av-
erage transmit power is equal across sensors.

IV. DETECTION OUTAGE OF A UNIFORM TRANSMIT STRATEGY

WITH LOCAL POWER OPTIMIZATION

In this section, we discuss a scheme where local power opti-
mization and uniform channel power control cooperate such that
the average transmit power of each sensor is equal, and ana-
lytically derive detection outage probability through asymptotic
total J-divergence for distributed multiple-hypothesis detection.
We use the detection outage to evaluate the diversity gain of uni-
form transmit strategy in a multiple-hypothesis system.

A. Uniform Transmit Strategy

First, define the average power transmitted by the th sensor
as where
is the minimized constellation power obtained through local
optimization. In other words, the asterisk denotes that the
constellation has been selected to minimize the average power
in the symbol constellation. The total transmit power con-
straint for all sensors is , which for uniform
transmit power requires that . Substituting
for , the amplifying factor for the th sensor is

. Note that the amplifi-
cation factor is inversely related to the preamplification average
power of the symbol constellation. Thus, the local optimization
step has allowed larger while still meeting the total power
constraint. The dimension of the received signal vector at the
fusion center is the same as the number of sensors , since the
system is modeled as having orthogonal communication chan-
nels. We set where is the noise
power of the th channel. From (5) and (7), the total J-divergence
is given in (8), shown at the bottom of the page, where

(8)
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where and are hypothesis indices, is the index of an indi-
vidual sensor, and are the indexes of transmission symbols.
Applying the uniform per-sensor power constraint and defining
the th channel’s SNR as , the total J-divergence
becomes (9), shown at the bottom of the page. In the following,
we will analytically derive the detection outage with (8), show
a simulation result by the uniform transmit strategy, and then
compare the analytical diversity gain of the detection outage
probability with the gain obtained through the simulation result.

B. Asymptotic Total J-Divergence and Detection Outage

Intuitively, J-divergence can be increased by increasing
the number of sensors. If a total power constraint is en-
forced, however, there is an asymptotic limit to the in-
crease since a finite amount of power must be distributed
among more and more sensors. In this section, we derive
the asymptotic total J-divergence expression and show its
relationship to detection outage probability in a homo-
geneous sensor environment. We begin by defining the
two terms that constitute each individual J-divergence,

in (5) and (8) as
and

.
We use these expressions to derive the upper and lower bounds
for . We then show that converges to an asymptotic
value by showing that the upper and lower bounds converge to
the same value as goes to infinity. We first consider .

Case 1: For , the lower and upper
bounds for are

(10)

where , , and are positive values. A detailed proof
is given in Appendix VII-C. Consider a homogeneous sensor
network where , , and are the same for each sensor
and the ’s are i.i.d. Then by the law of large numbers (LLN),
as we obtain

such that

(11)

because , , are finite and . Therefore, for
, we have

Case 2: For , the lower and upper
bound for are

(12)

(9)
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where , , , and are positive. A detailed proof is
given in Appendix VII-D. Similar to Case 1, for

, we have

Hence, the limit is valid for any , and by similar
procedures it can be shown that

Therefore, by combining the asymptotic expressions for and
, we obtain the following theorems.

Theorem 4.1: In a homogeneous distributed detection system
with finite and nonzero , the large- asymptotic
pairwise J-divergence between and is

where .
Theorem 4.2: In a homogeneous distributed detection system

with finite and nonzero , the asymptotic total J-di-
vergence is

where . That is to say,
is linear combination of random variables where

are fixed values.
The asymptotic total J-divergence depends on the channel sta-

tistics, local statistics, and the local symbol constellation since
where is the th channel’s SNR,

is calculated by local statistics and symbol constellation, and
is the minimized constellation power obtained through

local optimization. In other words, The asymptotic total J-di-
vergence increases with increased channel SNR and can be op-
timized by minimizing the power of the transmit constellation.
From this result, we can say that the local-channel power con-
trol scheme can be used to increase instantaneous J-divergence.

C. Long-Term System Performance Measure

The total J-divergence measure in (8) is an instantaneous per-
formance measure because it depends on an instantaneous real-
ization of the channel gain coefficients. The measure can be used
as an objective function for power control schemes. In this sec-
tion, we now employ detection outage probability as a long-term

system performance measure [19], [20], [28]. This enables us to
assess the average performance of our power control strategies
over many realizations of the fading communication channel.
Detection outage probability is defined as the probability that

falls below a specific threshold . Mathematically, this
is stated as

For the proposed distributed detection system, the following the-
orem holds.

Theorem 4.3: In a homogeneous distributed multiple-hypoth-
esis detection system with a finite , for and
a sufficiently-large , the outage probability is given as [19],
[28]–[30]

or

where , with
, the moment generating function of which is an i.i.d.

random variable over , and determines the detection di-
versity order of the system.

The rate function is related to the following expression.
For that are i.i.d.random variables,

when . We then have

A detailed proof is shown in [28]–[30]. From an example of a
Rayleigh fading channel system, the diversity gain can be ana-
lyzed as follows. The rate function, , is defined to be

where

The variable is a weighted sum of random variables .
However, for given sensor statistics and a given modulation
scheme, it becomes an exponential random variable due to the
fixed value . Therefore, is exponentially distributed with
the mean where is i.i.d. Rayleigh-distributed with

. Since is nonnega-
tive and convex over , we obtain

(13)

(14)
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Fig. 2. Outage probability versus � with the uniform channel power trans-
mission strategy in heterogeneous sensor configuration. “Local” in parenthesis
means that Local power control is performed.

Fig. 3. Outage probability versus � with the uniform channel power trans-
mission, 2D-local modulation, and heterogeneous sensor configuration.

(15)

As , then . Therefore

(16)

This result is verified in Figs. 2–5. The proportional gain, , is
the detection diversity order, and if we increase the total power
constraint , the reduction in outage probability in log scale
is proportional to .

Fig. 2 shows detection outage probability versus the total
power constraint for varying number of sensors in a four-hy-
pothesis distributed detection system. From the figure, we can
see the benefit of local power control since channel power con-
trol has not been optimized. Local power gain is shown as a left
shift of the curve. The figure was generated by simulating
independent realizations of the discrete source and the fading
channel coefficients (or equivalently, the channel SNR values).
For each realization, total J-divergence was calculated using

Fig. 4. Outage probability versus � . local and channel power control strate-
gies are applied in a six-node system.

Fig. 5. Outage probability of an optimal system with individual power con-
straints and a total power constraint in a nine-node system.

(9). Finally, we counted the number of times the total J-diver-
gence fell below a specified threshold. The following param-
eters were used to generate the results shown in Fig. 2. The
channel SNR was set according to where

is the transmission distance from user to the fusion center
( m for all ’s), dBm is the channel noise
power for all ’s, dB is the nominal gain at the
unit distance m, and the ’s are i.i.d. Rayleigh fading
random variables with unit variance. We further set ten arbitrary,
but different, local transition matrices ,
which implies a heterogeneous sensor environment. The outage
threshold was set to . In this example, we considered
amplitude modulation and four hypotheses. After estimating
each of the local decision probabilities with 100 local de-
cision samples, local power control is performed by minimizing
the average constellation power according to

(17)
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The symbol constellation was constrained such that the min-
imum distance among the four symbols was unity. Therefore,
we can set
where the design parameter is . We also ordered the symbols
in descending order of estimated prior probability. This is a log-
ical step, since minimum power should be allocated to the most
frequently occurring symbols and vice versa. After substituting
the optimal symbol constellation into (9), results for five and ten
nodes using only local power control were generated in Fig. 2.It
is seen that, at reasonably high , the slope of the ten-node
case is two times larger than the slope of the five-node case. In
the next subsection, we specifically address local power control
for a system with multidimensional local modulation scheme.

D. Total J-Divergence With -Dimensional Local Modulation

For a more general case, we can use a multidimensional
( -dimensional) local modulation scheme such as QAM, FSK,
or any arbitrary modulation. To explicitly handle multidimen-
sional modulation, we modify the observation vector to
become matrix where is still
the number of sensors and is the maximum dimension of
transmitted symbols. Thus, a matrix-variate normal distribution
for should be considered, but each column of the
observation matrix is independent of every other column
under the Gaussian assumption used in (7). This implies

,
since where
the vector is the -dimensional observation.

Each optimal symbol component is transmitted
with uniform power since the dimensional com-
ponents are also independent

. is the local decision index
at each sensor. The system works like a system with
independent components due to independent channels and
independent symbol dimensional components and still satis-
fies the detection diversity for the given local modulation
scheme ( is a fixed value). For a given local power con-
straint, we can get better local power gain than that of the
scalar modulation because the multidimensional modulation
provides more geometrical distances between symbols. Re-
cently, software-defined radio furnishes flexible modulation
schemes that give additional source power gain. Finally, from

and

(19), the total J-divergence with multidimensional local modu-
lation is given in (18), shown at the bottom of the page, where

, is the dimensional
index of the transmission symbol, are the indexes of mul-
tiple hypotheses, is the sensor or channel node index, and

are the hypothesis indexes of transmission symbols. Similar
system parameters from Fig. 2 were used to generate Fig. 3 for
a multidimensional system. Differences include the threshold

and the 2-D symbol constellation (QAM), which
has less average symbol power than the 1D-symbol transmis-
sion system. To make a fair and simple comparison, we apply
a simple structural constraint to the local power control by set-
ting , ,

, and
where is a given constant and the design parameter is . The
square QAM structure can be translated based on the local de-
cision probabilities. can be obtained based on local decision
statistics , which then defines the optimal symbol
constellation.

In Fig. 3, it is seen that, at reasonably high , the slope of
the outage probability is proportional to the number of nodes
in the system. The power gain achieved by local optimization
manifests itself as a shift of the curve. An interesting point is
that this local power gain is achievable even for a single-node
system, and the shifts for one, three, and six nodes are approx-
imately equal. That is to say, the gain obtained through local
power control is not related to the number of nodes, but instead
is strongly related to the a priori source statistics. However, full
detection diversity order is observed even under uniform av-
erage power allocation. Although detection diversity order is re-
lated to large- asymptotic divergence, it is seen in Fig. 3 that
even systems with small (such as one or three) achieve full
diversity order. Although we have only derived diversity order
using asymptotic total J-divergence for a homogeneous sensor
environment, it can be seen that detection diversity also ap-
plies to a heterogeneous sensor environment. In the next section,
we simultaneously apply both power control strategies—local
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power control and channel power control—to a distributed de-
tection system.

V. LOCAL-CHANNEL POWER TRANSMISSION STRATEGY

A. Optimization With a Total Power Constraint

If local decision probabilities are available at each local
sensor, the sensor can adjust its local transmitting symbol
in an optimal way. On the other hand, if the propagation
channel states are also known, then the optimized symbol
constellation of each sensor can also be optimally amplified
within given total and individual power constraints. Such
a strategy is formulated as follows. Recall that the average
transmit power transmitted by the th sensor is

where
is the dimensionality of the symbol constellation. In the

previous section, the average power of each sensor was
constrained to be equal, meaning the amplifying factor was
decided based on the optimized symbol constellation. In this
section, we use multidimensional average powers of each
sensor as additional design variables. This additional freedom
leads to an optimization problem defined as (19), shown at the
bottom of the page, where

The optimized constellation power of the th sensor is
. The average transmitted power

in the th dimension is where the
asterisk means optimized value. Therefore, the amplifying
factor is controlled by and , which are
respectively the local power control and channel power control.
Therefore, we can optimize system performance by performing
both local power control and channel power control.

For a scalar modulation system, once the ’s are found, the
amplification factors ’s can be found. The objective function
is nondecreasing with increasing because

(20)

where the ’s are nonnegative. A detailed proof is given in
Appendix VII-E. In the multidimensional modulation case,
the total J-divergence , is
still nondecreasing since it is a linear sum of nondecreasing
scalar modulation systems. Therefore, we can get the optimal
power allocation at the boundary of the power constraint,

by a convex optimization algorithm
for the concave region of the object function [10], [11]. Though
the objective function is not necessarily concave in general,
for the parameters of interest in this paper all of the objective
functions are concave and we apply the following convex
optimization algorithm to find the optimal power allocation.

To get the optimal solution, we need to apply Lagrange mul-
tipliers to (19)

(21)

where and are La-
grange multipliers. After applying the derivative to (21), we can
get the Karush-Kuhn-Tucker conditions and calculate the op-
timal power in the same manner with [11]. In cases where the
objective function is not concave, another technique such as the
interior point method [11], [31], [32] must be used.

For a simulation result, we use the same setup as that of
Fig. 3, except we assume homogeneous local sensor statistics
according to the transition matrices

for all
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TABLE I
POWER DISTRIBUTION BY LOCAL POWER CONTROL IN PERCENTAGE OF TOTAL POWER ALLOCATED TO EACH SENSOR

and we optimize the local+channel power control according
to (19).

Fig. 4 shows numerically generated detection outage proba-
bility versus the total power constraint for the three different op-
timization strategies in a six-node system. The three strategies
are: 1) no power control; 2) local power control (symbol constel-
lation optimization) with equal transmit power (from the pre-
vious section); and 3) optimization of both the symbol constel-
lations and the amplification factors (local and channel power
optimization). Note that all three curves have the same asymp-
totic slope but have different translations due to different power
optimization schemes. Therefore, each system has the same di-
versity order, but for a given value of the power constraint,
the curve corresponding to local-channel power control has the
lowest probability of outage.

B. Optimization With Individual and Total Power Constraints

In a practical system, each sensor may have an individual
power constraint imposed by its battery or certain transmission
regulations. The total power constraint above does not model
this scenario; therefore, we now modify the optimization
problem to included individual power constraints as well.
Define a new optimization problem as

and

(22)

where the optimization is again over the ’s and
is the individual maximum allowed power. Since the addi-
tional power constraints on the individual sensors are linear
constraints, there is no change on the conditions given for (19),
such that the optimal solution can be similarly solved.

To find the solution to (22), the ’s are first optimized
with the total power constraint, but without the individual power
constraints. If some of the ’s are more than their upper
limits, , then the optimal power for that sensor lies
on the boundary of the individual power constraint and they
are forced to equal . These sensors are then removed
from and the optimization procedure continues with the

remaining sensors. This iteration continues until all power con-
straints are satisfied and a global optimum is obtained [28].
Fig. 5 compares detection outage probability for the case with
both total and individual power constraints to the case with only
the total power constraints in a nine-node system. We see that
with the additional individual power constraints, full diversity
is still achieved but the power gain is reduced compared with
the case without individual power constraints. We consider the
power allocation to each sensor in the next subsection.

C. Power Distribution Across Sensors

In Table I, homogeneous sensor statistics are adopted in order
to clearly show the effect of the local power control. We de-
fine five different total power constraints in increasing order ac-
cording to . We also order ten
sensors in decreasing order of channel strength. In other words,
the channel gain coefficient is strongest for sensor 1 and weakest
for sensor 10. When we apply the lowest power constraint, all of
the transmitted power is focused on sensor 1 because power is
extremely limited and the first sensor’s channel has the highest
SNR. As more power is allowed, the power begins to be dis-
tributed to the next highest SNR channel, then the next highest,
and so on. Finally, for the highest total power constraint, sensor
10 is utilized, but only for the system with local power opti-
mization (LP). In fact, at every power level except the weakest,
the system with local power control is able to exploit one addi-
tional sensor compared to the system with no local power con-
trol (NLP). Power distribution in the absence of local power con-
trol is explained in detail in [11]. The main goal of Table I is
to show the effect of the local power control. By comparing LP
with NLP for the same total power constraint, we can see that the
system with local power control can often exploit more sensors
than the system without local power control, thereby achieving
higher power gain and improved outage probability. The reason
is that the optimized local constellation consumes lower power
for the same detection performance.

VI. CONCLUSIONS

A local-channel power control scheme applicable to dis-
tributed multiple-hypothesis detection systems in slow-fading
environments is introduced. We generalized the outage proba-
bility of [19] for the multiple-hypothesis problem and showed
that the detection diversity still holds. We also analyzed the
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proposed power control strategy with the asymptotic total J-di-
vergence and showed mathematically the relationship between
asymptotic total J-divergence and detection outage probability.
This relationship leads to the detection diversity gain under the
homogenous sensor environment. We showed via simulation
that detection diversity is observed even in heterogeneous
sensor environment. Then, using the detection outage proba-
bility as a long-term performance measure, we showed that the
distributed system is efficiently improved through both local
power optimization and channel power optimization. The local
power optimization is based on local decision statistics and
results in optimized transmit symbol constellations while the
channel power optimization is based on channel fading states
and results in optimized amplifying factors. Individual power
constraints were also considered.

APPENDIX

A. Relationship Between Bound Probability of Error and
Total J-Divergence

The inequality [24] is valid be-
tween two hypotheses with a priori probabilities whose sum are
less than one. This can be proved by starting with

Let and be new prob-
abilities where and . Then

Now, we extend the inequality for the multiple-hypotheses
problem by defining an upper bound to the bound probability of
error, , and a probability-weighted

total J-divergence, .
At first, by summing the inequalities, we get

By an inequality, , which is derived via the Taylor
series of the exponential function, we get

since . Finally,
we get

where .

B. Derivation of (7)

We now derive an approximate total J-divergence measure
that explicitly includes the optimized transmit symbol constel-
lation. The measure is approximate because the signals received
at the fusion center are distributed according to a Gaussian
mixture, which doesn’t lead to closed-form expressions. There-
fore, we adopt the strategy used in [10] and [19], which is to
approximate the received conditional probabilities in (3) by
Gaussian densities with the same mean and covariance as the
mixture.

As a first step, we must first derive the mean and covariance
of under to find the multivariate conditional pdf .
The mean vector is given as

...

(23)

where , and

...

The covariance matrix is given as
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From (23), . Hence, after some algebra
with , we obtain

(24)

where is the covariance matrix of the channel noise vector .
In (24), is a diagonal matrix with elements

where . Since the matrix is diagonal-
ized, becomes a simple form even in multiple-hypotheses
problem. We define multivariate normal distributions with the
mean vectors, , , and covariance matrices,

, . Then, by substituting the distributions
into the definition of J-divergence, we get

(25)

where is the dimension of the covariance matrix [33].
Now using the mean matrices and covariance matrices from

(23) and (24), we can define the following terms in (25):

where .
Therefore, we have

where denotes the matrix trace operation.

C. Derivation of Case 1, (10)

In (9), let us consider for a large , ,
and . We have

where , since , , ,
and are positive.

The inequality is arranged as follows:

since

D. Derivation of Case 2, (12)

In (9), let us consider for a large ,
, and . We have
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where , since , , ,
and are positive. The inequality is arranged as follows:

since

E. Derivation of Nondecreasing Characteristic of
Total J-Divergence

The total J-divergence, is a linear combination of .
So, if is nondecreasing, then is nondecreasing. The
first partial derivative of with respect to is

Therefore, the first partial derivative is nonnegative since ,
and are nonnegative from (8). The total J-divergence is

nondecreasing.
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