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Abstract— We develop a framework for closed-loop detection 
and tracking of targets.  The framework is based on a Bayesian 
representation that assigns probabilities to potential realizations 
of the radar channel.  In this case, different realizations are 
characterized by different number and locations of targets 
present.  The Bayesian channel representation can then be used 
to customize a transmit illumination pattern. The probabilistic 
representation is updated based on received measurements and 
Kalman-based prediction of the states of possible targets. 
Simulation results from a trial experiment of the closed-loop 
system are provided. 

I. INTRODUCTION 
Adaptive and knowledge-based (KB) signal processing 

focus on improving radar performance through advanced 
signal processing at the receive end of the system.  However, 
rather than develop transmission waveforms and signal-
processing techniques independently, it is useful to consider 
the implementation and performance of closed-loop radar 
systems that possess an adaptive radar transmitter that reacts 
dynamically to the propagation environment and to previously 
received data. This type of system, termed cognitive radar in 
[1] or an active-testing system in [2-5], is based on a 
probabilistic representation of the possible realizations of the 
radar propagation channel.  Rather than operate based on a 
predefined pattern for search, acquisition, and track, the 
adaptive transmitter of a cognitive radar system continually 
interrogates the environment in order to reduce uncertainty 
associated with the different channel hypotheses.  Thus, the 
probabilistic model guides the system’s active interrogations. 

In [6], we presented a closed-loop framework for radar 
target identification.  The essential components of the 
framework included 1) an ensemble of possible propagation 
channels (in [6], the ensemble was comprised of a set of 
known target impulse responses); 2) a probabilistic rating 
assigned to each alternative in the ensemble; 3) waveform 
design strategies for detecting the true hypothesis as 
efficiently as possible; 4) a Bayesian update to the 
probabilities with each data collection; and 5) a termination 
criterion.  In [6], we used sequential hypothesis testing to 
determine when to terminate the experiment, and two different 
matched waveform techniques were compared.  The first 
waveform technique was an extension of waveform design 
based on mutual information [7]. The second technique was 
based on SNR considerations as suggested in [8-9]. 

In this paper, we consider spatial-domain application of the 
mutual-information-based matched waveform technique in 
order to develop and test a closed-loop implementation of 
target detection and tracking.  Through the equivalence of 
angle of arrival with spatial frequency, we develop a 
probabilistic representation of potential target locations in 
( ), ,x y Dk k ω  space.  This probabilistic representation can then 
be converted into a two-dimensional spectral variance 
function ( xk  and yk ) upon which the waterfilling [7] 
operation can be applied to find a matched transmit 
beampattern.  However, since the target model includes 
Doppler shift ( Dω ), potential targets can move between the 
time when the ensemble is updated with a data collection and 
the time in the future when the next transmission will occur.  
Thus, we also use a Kalman-based prediction step to 
anticipate the status of the probabilistic channel representation 
at the time when the transmission will occur.  The result is a 
system that performs fully integrated search and track 
functions. Furthermore, the system scans and shapes its 
transmit beam not according to a pre-defined or fixed timeline, 
but according to the uncertainty of the probabilistic model.   

The radar signal model is described in Section II, the spatial 
domain matched illumination strategy is described in Section 
III, and other details necessary for closed-loop operation are 
described in Section IV.  Simulated results are presented in 
Section V, and we make our conclusions in Section VI. 

II. SIGNAL MODEL 
Our goal in this paper is to demonstrate concepts of closed-

loop radar such as adaptive illumination based on probabilistic 
channel representation.  Therefore, we employ a simplified 
signal model that ignores range resolution, ground clutter, and 
jamming.  As far as range resolution, one can assume that the 
radar system transmits a very narrowband or continuous-wave 
signal.  We make this assumption on the signal model in order 
to be clear that we are performing spatial-domain spectral 
shaping, not temporal waveform shaping. Temporal waveform 
shaping was the subject of [6], and joint spatio-temporal 
waveform shaping will be the subject of future work. 

Let a radar system illuminate a radar channel with a 
narrowband signal.  The geometry, which is depicted in Fig. 1, 
is similar to a look-down geometry for detecting moving 
targets on the Earth’s surface except for the aforementioned 
assumption on ground clutter.  The primary axes for the 
system’s antenna array elements are the x- and y-directions. 
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Figure 1.  Geometry of the radar signal model. 

 
Element position in the x-direction produces a measured phase 
shift dependent on spatial frequency component kx. Element 
position in the y-direction enables measurement of the ky 
spatial frequency component. In a look-down geometry, kx and 
ky would be related to azimuth and elevation angles, 
respectively.  Moreover, look-down geometries are often 
defined such that elevation angle uniquely defines target range.  
Although our system has no range resolution, the relationship 
between ky and target range implies that Doppler (range rate) 
measurements can be related to ky rate, or yk . Using a far-
field approximation, the relationship between yk  and target 
Doppler is a constant.  Hence, defining positive Doppler shift 
to mean relative motion toward the radar system, we have 
 

 D ykω β= −  (1) 
 
where β  is a positive constant. 

On transmit, the antenna elements act as a phased-array in 
order to shape the transmit beam.  Let the two-dimensional 
(voltage) pattern of the transmit beam be denoted by 

( ),x yS k k .  Note that use of a capital ‘S’ as well as kx and ky 
emphasize that the transmit beam pattern is a spatial-
frequency-domain representation of the transmit waveform. In 
other words, ( ),x yS k k  can be found from a two-dimensional 
discrete-time Fourier Transform of the amplitude and phase of 
each antenna element.  On receive, the antenna array acts as a 
multi-channel system such that the output of each antenna 
element is measured. 

Let the qth target existing within the illumination pattern of 
the radar be characterized by a complex reflection coefficient 

qα , spatial frequency coordinates ( )q
xk  and ( )q

yk , and a 
Doppler shift ( )q

Dω . Hence, the received signal at the (m,n)th 
antenna and pth time sample due to the qth target is 
 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )( ), , , expq q q q q
x y q x m y n D pv m n p S k k j k x k y tα ω= − + − . 

  (2) 
 
Data samples are collected over M antennas in the x-direction 
and N antennas in the y-direction for a total of MN spatial 

measurements.  Samples are also collected at P time instants, 
and the relative phase of all MNP measurements are stacked 
into a space-time steering vector ( ), ,x y Dk k ωa . The total 
received signal vector is then 
 

 ( ) ( )( ) ( ) ( ) ( )( ), , ,q q q q q
x y q x y DS k k k kα ω=v a . (3) 

 
Next, allowing for Q targets, the measurement vector due to 
all targets for a single transmission is 
 

 ( ) ( )( ) ( ) ( ) ( )( )
1

, , ,
Q

q q q q q
x y q x y D

q
S k k k kα ω

=
= +∑z a w  (4) 

 
where w is a vector of additive white Gaussian noise.   

The measurement model in (2) clearly indicates that the 
signal reflected from a target and incident on the system is a 
three-dimensional sinusoid with frequencies ( ) ( ) ( )( ), ,q q q

x y Dk k ω . 
Therefore, a frequency-domain representation of the signal 
component is 
 

 ( ) ( ) ( ), , , , ,x y D x y x y DV k k S k k H k kω ω=  (5) 
 
where 
 

 ( ) ( ) ( ) ( )( )
1

, , , ,
Q

q q q
x y D q x x y y D D

q
H k k k k k kω α δ ω ω

=
= − − −∑  (6) 

 
and ( ), ,x y Dk kδ ω  is a three-dimensional delta function.  The 
data-domain space-time data are then obtained by the 
transformation 
 

 ( ) ( )
, ,

, , , ,
x y D

x y D x y D x y D
k k

V k k k k dk dk d
ω

ω ω ω= +∫∫∫z a w , (7) 

 
which by substitution of (5) and (6) and application of the 
sifting property becomes (4). The function ( ), ,x y DH k k ω  is 
the transfer function of the radar channel, which will be used 
in the next section to help define the adaptive transmit 
beampattern. 

From (4) we see that the transmit pattern significantly 
affects the received signal.  In particular, the transmit pattern 
controls the SNR of any signals reflected from targets, which 
in turn affects the system’s ability to detect the target and 
estimate its parameters.  For the closed-loop radar paradigm, 
SNR affects the system’s ability to update the probabilistic 
ratings of the different channel alternatives.  For the 
application described in this paper, different channel 
alternatives consist of different combinations of the number 
and location of targets in ( ), ,x y Dk k ω  space. 

III. SPATIAL-DOMAIN MATCHED ILLUMINATION 
In this section, we summarize the information-based 

matched illumination technique of [7] and then describe how 
we apply the technique to the design of transmit beamforming 
for closed-loop radar. 

Let ( )th  be a random process that can be thought of as an 
ensemble of impulse responses.  We will assume that all of the 
sample functions of ( )th  have finite energy and are causal 

x 
y 

kx 

ky 
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impulse responses.  If we further assume that ( )th  is a 
Gaussian random process, then we can find the waveform that 
maximizes the mutual information between the ensemble of 
impulse responses and the received waveform.  Let the 
waveform have finite energy E, be confined to the time 
interval 2 2T t T− < < , and be essentially bandlimited such 
that most of its energy is contained within the frequency band 

1 2 sf T≤ . The information-maximizing waveform under 
these constraints has the magnitude-squared spectrum defined 
by [7] 
 

 ( ) ( )
2

2
2

1max 0,
22

10
2

n y

sH

s

T
A f

Tf
S f

f
T

σ
σ

⎧ ⎡ ⎤
⎪ − ≤⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪ >⎪
⎩

 (8) 

 
where Ty is the interval during which the received signal is 
observed and the quantity ( )2

H fσ  is called the spectral 
variance and is defined by 
 

 ( ) ( ) ( ){ }{ }22 E EH f f fσ = −H H . (9) 

 
The spectral variance function quantifies the uncertainty in the 
ensemble of target transfer functions at frequency f. The 
constant A in (8) enforces the finite-energy constraint by 
solving 
 

 ( )

1
22

2
1

2

max 0,
2

s

s

T
n y

H
T

T
E A df

f
σ
σ−

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (10) 

 
The solution in (8) is obtained by performing the 

waterfilling action [7] on the function ( )2 22n y HT fσ σ .  In [6], 
we integrated matched illumination techniques with sequential 
hypothesis testing in order to efficiently determine the true 
impulse from among a finite number of known alternatives.  
Although the ensemble in [6] was not Gaussian, we computed 
a spectral variance according to 
 

 ( ) ( ) ( )
2

22

1 1

M M

H m m m m
m m

f P H f P H fσ
= =

= −∑ ∑  (11) 

 
where Pm and ( )mH f  were, respectively, the probability and 
transfer function associated with the mth hypothesis.  It was 
found in [6] that waterfilling on the spectral variance function 
in (11) produced waveforms that performed very well in that 
application.  

Hence, in this paper, we propose to compute spatial 
illumination functions, also known as the transmit 
beampattern, by waterfilling on a spatial-spectral variance 
function, ( )2 ,H x yk kσ .  This function can be obtained in a 
similar manner as (11) by using the channel transfer function 
defined by (6) for various channel hypotheses.  Each time an 
 

 
 

xk  

yk  

Dω

 
Figure 2.  Discrete target parameter (hypothesis) space. 

 
 
observation is made, the probability function describing the 
likelihood of the different hypotheses is updated, which 
results in a new spatial-spectral variance function and new 
transmit beampattern for the next observation. 

Before this spatial-domain waterfilling can occur, however, 
some additional details must be addressed. First, in this 
application there truly are an infinite number of hypotheses.  
Since the target parameters are continuous, there are an 
infinite number of values they can take – even if they are 
limited to within a finite range.  Furthermore, there are also 
many permutations of the radar channel that depend on the 
number of targets present. In order to compute a spectral 
variance in the style of (11), the number of hypotheses must 
be limited to a reasonable number.  Second, the transfer 
function defined in Section II above is a three-dimensional 
function of kx, ky, and Dω , yet a spatial-only illumination 
pattern can only control illumination in the kx and ky 
dimensions, not the Dω  dimension. Hence, a three-
dimensional channel transfer function with an infinite number 
of possible realizations must be reduced to a two-dimensional 
spectral variance function with a manageable number of 
possible realizations. 

First, we propose to reduce the number of hypotheses by 
dividing the three-dimensional target parameter space into a 
three-dimensional hypothesis grid.  Let the normalized target 
parameters xk , yk , and Dω  each be confined to the interval 

[ ],π π−  and let the parameter volume be divided into cells as 
depicted in Fig. 2.  For the moment, the dimensions of the 
cells are determined by maximum system resolution, which is 
controlled by the size of the antenna array and the time 
duration, T, of a single observation interval. Each cell in the 
volume represents a different combination of target location 
(kx and ky) and Doppler shift.  Furthermore, each cell is 
assigned a probability that quantifies the current system 
understanding of whether or not a target is present in that cell.   

Unfortunately, even for a simplified, low-resolution system 
with, say, 10 cells in each dimension, there are 103 = 1000 
cells that may or may not possess a target.  The number of 
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channel hypotheses is even larger, but the problem can be 
simplified by noting that the spectral variance of each (kx,ky) 
cell can be calculated separately from the others.  In other 
words, for a given (kx,ky) cell, we only need to consider the 
different hypotheses along the Doppler dimension.  
Furthermore, we propose to treat the decision of target 
presence in the individual cells of the target volume as 
independent. With this assumption, the total variance in a 
(kx,ky) cell is the sum of the variances in the different Doppler 
bins of that cell.  

Consider the ith Doppler bin for a particular (kx,ky) cell in 
the volume of Fig. 2, and let the current probability of target 
presence in that cell be ( ); ,x yP i k k . Suppose that if a target is 

present in that bin, that its reflection coefficient is iα . 
According to (6), if the target is present, the transfer function 
value for that cell is equal to the target’s reflection coefficient. 
There are two hypotheses for that cell – a target is either 
present or not.  Substituting these two hypotheses into the 
“finite-hypothesis” spectral variance calculation of (11), the 
variance for that cell becomes 
 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

2 22

2

22 2

; , 1 ; , 0

; , 1 ; , 0

; , ; ,

x y i x y

x y i x y

x y i x y i

P i k k P i k k

P i k k P i k k

P i k k P i k k

σ α

α

α α

⎡ ⎤= + −⎣ ⎦

− + −

= −

. (12) 

 
Then, under the assumption that the decisions in different cells 
are independent, the total variance for a particular (kx,ky) bin is 
 

 ( ) ( ) ( )22 22

1
, ; , ; ,

DN

x y x y i x y i
i

k k P i k k P i k kσ α α
=

= −∑  (13) 

 
where ND is the number of cells in the Doppler dimension. 

Our proposed system applies the spectral variance 
calculation of (13) to each (kx,ky) bin and then performs the 
waterfilling operation of the spectral variance function to 
determine the adaptive transmit power pattern for the next 
illumination. 

IV. ADDITIONAL CLOSED-LOOP DETAILS 
In the previous sections, we have described our radar signal 

model and the proposed technique for matching the transmit 
illumination pattern to the probabilistic representation of the 
radar channel.  We have taken the mutual-information-based 
matched waveform of [7] and adapted it to our scenario where 
our hypotheses do not form a Gaussian ensemble.  However, 
two requirements of our cognitive radar system have not yet 
been addressed.  First, we have not described how to update 
the probabilities associated with the cells in the target volume.  
Second, the fact that the target is allowed to possess Doppler 
shift implies that the target is moving.  In the following sub-
sections, we deal with these two issues and then summarize 
the system. 

A. Bayesian Probability Updates 
To update the probabilities associated with each target cell, 

we apply Bayes’ rule.  Let zi be the space-time data observed 
due to the radar system’s ith transmission, and H0 and H1 be 
the null and target-present hypotheses of a particular target 
cell.  According to Bayes’ rule, the probability that a target is 
present in a given cell after observation of zi is 
 

 ( ) ( ) ( )
( )

1 1 1
1

| |
| i i

i
i

P H P H
P H

p
−=

z z
z

z
 (14) 

 
where the lowercase ‘p’ denotes a probability density function.  
The probability that a target is not present is 
 

 ( ) ( ) ( )
( )

0 0 1
0

| |
| i i

i
i

P H P H
P H

p
−=

z z
z

z
. (15) 

 
The denominator in (14) and (15) is difficult, if not impossible, 
to evaluate.  However, since the denominator is the same for 
both hypotheses, it essentially serves as a scaling factor such 
that the sum of the two probabilities is unity.  In practice, 
rather than evaluate the denominator, we instead evaluate the 
numerator in (14) and (15), then scale the results for a total 
probability of one. 

One nice feature of the Bayesian probability update is that 
the current probability depends on the previous probability, 
which in turn depends on the probability before that, and so on.  
Hence, all that has been learned by the system from prior 
measurements is retained in the recursive probability 
calculation, even if the measurements themselves are not 
stored.  This feature of state-space models is noted in [1]. 

B. Probability Prediction Due to Target Motion 
The second requirement that still needs to be addressed is 

how to deal with targets in motion.  Doppler-shifted targets 
implies that target motion is present, and our signal model 
specifically relates Doppler shift to the target’s rate of change 
in ky. After measuring zi, the system updates the probability in 
each hypothesis cell according to (14) and (15).  However, if 
the target is moving, it may have moved into a different cell 
by the time the transmission occurs.  This causes the 
probabilities updated with measurement zi to be out of date by 
the time the (i+1)th transmission occurs. Therefore, the 
probabilities must be propagated forward in time to the point 
when the next transmission will occur. 

Changing target parameters and Bayesian channel 
representation suggest the relevance of a Kalman filter-based 
approach. We use the Kalman prediction equations to update 
the target parameter state and covariance, which can then be 
used to determine the probability that the target will be within 
a particular target parameter cell at some time in the future.  

First, it would be inefficient to propagate the probability in 
every single target parameter cell.  Instead, we perform a soft 
detection step to narrow the number of possible channel 
hypotheses to those with a reasonable current probability of 
having a target present. Any probability update from (14) that 
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exceeds a certain threshold is declared to be a potential target.  
We then perform a maximum likelihood search within the 
associated target parameter cell.  This provides a finer 
estimate of the potential target’s true parameters.  Suppose the 
soft detection occurs after the ith observation.  The estimates 
are placed into a state vector according to 
 

 
Tˆˆ ˆ

i x y yk k k⎡ ⎤= ⎢ ⎥⎣ ⎦
u . (16) 

 
Furthermore, we can also initialize the covariance associated 
with the current target state.  Let this covariance matrix be Mi. 
The linear target motion model results in the predicted target 
state at the next transmission ( TΔ  seconds later) according to 
 

 1i i+ =u Au  (17) 
 
where 
 

 
1 0 0
0 1
0 0 1

T
⎡ ⎤
⎢ ⎥= Δ⎢ ⎥
⎢ ⎥⎣ ⎦

A . (18) 

 
After applying the Kalman prediction equations, the target 

state is assumed to be a three-dimensional Gaussian random 
vector with mean Aui and predicted covariance 
 

 1i i g+ = +M AM A R . (19) 
 
where Rg is the covariance of the input noise process that 
models target maneuverability.  Therefore, the probability that 
this soft-detected target falls within a particular cell of the 
target parameter space shown in Fig. 2 is equal to the integral 
of the pdf of the random state vector over the volume of the 
cell.  Most of the probability will occur in the cell where the 
target’s predicted state vector lies.  Other nearby cells will 
also have some probability that this same target is present, 
depending on the quality of the parameter estimation and the 
maneuverability of the target.  Also, by (18) we see that the kx 
state is not coupled with the other two parameters.  Hence, the 
integration can be broken into a one-dimensional integration 
for kx and a two-dimensional integration for yk  and yk . 

In summary, any target parameter cells that are not 
illuminated by the transmit beam pattern retain their 
probabilities for the next spectral variance calculation.  Any 
illuminated cells are updated with the Bayesian equations of 
(14) and (15).  Finally, if after the Bayesian update any cell 
exceeds a pre-determined threshold for soft detection, the 
potential target state in that cell is estimated and propagated 
forward to the next transmission. 

C. Closed Loop Summary 
Figure 3 summarizes the operation of the closed-loop 

system for integrated detection and tracking. The scenario 
 

 Begin: Uniform Prior 
Probability in all Target 

Parameter Cells 

Calculate Spectral 
Variance (13) 

Spatial Domain 
Waterfilling 

Illuminate Scene/ 
Collect Data (4) 

Update Cell 
Probabilities (14),(15) 

Do Any Cells Exceed the 
Soft Detection Threshold? 

Estimate Parameters and Propagate 
Probabilities Forward (17),(19) 

Yes 

No 

 
Figure 3. Closed-loop radar flow diagram. 

 
begins with a volume of target parameters cells, each with an 
initial (low) probability that a target is present.  Since the 
probability distribution is uniform, the first spectral variance  
and waveform pattern will be flat.  From then on, each time 
data are collected, the cell probabilities are updated and 
checked for the presence of soft detections. If no soft 
detections are present, the next spectral variance is calculated 
based on the probability updates.  If a soft detection is 
obtained, relevant cells are updated by propagating the 
estimated target state forward to the next transmission time 
and integrating the predicted pdf. 

V. SIMULATION RESULTS 
We now present snapshot results from simulation of the 

proposed closed-loop system. The parameters for the 
simulation were as follows.  The antenna array was a 10 by 10 
rectangular grid, and the number of time samples was also 10.  
Therefore, the total number of measurements taken in a single 
illumination was 1000.  A single target was added, and the 
target cell probabilities were all initialized to 0.01. 

Figure 4 shows snapshot images of the probability map 
over spatial frequencies for the zero-Doppler bin where the 
target was placed, as well as the adaptive illumination pattern.  
From left to right in Figure 4, each row shows 1) the 
probabilities in the (kx,ky) cells of the target Doppler bin just 
prior to waterfilling. For all illuminations after the first, this is 
also the probability map after the possible prediction step; 2) 
the illumination pattern that results from the probability map 
in 1); and 3) the probability map after updating with 
measurements. 
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Figure 4.  Probability and illumination pattern snapshots at five different 
illumination times. 
 

One can see that at the first iteration, the probability map 
prior to illumination is constant, which reflects constant prior 
probability of target presence. After the first illumination, the 
probability map for that Doppler bin is no longer constant.  At 
the tenth illumination, the (3,3) cell from the upper left (which 
is the correct spatial location of the target) is showing some 
likelihood of target presence, but the illumination pattern is 
still fairly constant over the spatial bins.  At the 35th 
illumination, the probability of the true target location hasn’t 
changed much from the tenth illumination, but the 
illumination pattern shows that target presence has been 
deemed very unlikely in several cells, which is why they 
receive no illumination power.  At the 56th illumination, the 
(3,3) cell is strong enough to be declared a target.  In fact, the 
target parameters have been measured well enough and the 
target maneuverability is low enough that the system does not 
need to put power on the target cell.  Instead, power is 
distributed to other cells where target presence is most likely.  
In absolute terms, target presence in these cells is unlikely, but 
relative to other cells and the target track, these cells that 
receive power in the 56th illumination are the most uncertain.  
Finally, in the 57th illumination, the target track covariance 

has widened enough that the system needs to put power on the 
target to update it again.  Although not shown, the system 
continues to alternate naturally between illuminating and not 
illuminating the target cell. 

VI. CONCLUSIONS 
We have described a framework for a closed-loop, 

cognitive radar system that adapts its transmit beam in order 
to detect and track targets according to a probabilistic 
representation of the radar channel rather than a fixed pattern 
of interleaved search and track sweeps. Several steps are 
required, but the end result is a system that compromises 
between searching for new targets and updating existing target 
tracks.  The compromise at any given time depends on the 
radar system’s current state of understanding of the channel, 
which in turn depends on the results from prior illuminations. 
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