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Abstract—The design of transmit waveforms is critical to
the performance of a radar system. Traditionally, pulsed and
wideband chirp transmit waveforms are used. Our focus here
is on the design of waveforms matched to extended targets. In
the literature, optimum transmit waveform design in additive
receiver noise has been investigated both from SNR maximization
and information-theoretic approaches. In this paper, we extend
the information-based approach to the signal-dependent interfer-
ence problem. In particular, we investigate the use of information
theory to generate the optimum waveform matched to a Gaussian
distributed target ensemble with known spectral variance in the
presence of signal-dependent clutter. Several waveform design
examples are shown. We also apply this waveform technique to
a cognitive radar application.

Index Terms—Cognitive Radar, Matched Illumination, Infor-
mation Theory

I. INTRODUCTION

Cognitive radar has been proposed as a technological solu-
tion for performance optimization in resource-constrained and
interference-limited environments [1], [2]. To that end, we con-
sider a radar signal model in signal-dependent interference and
receiver noise where the transmit waveform has an energy con-
straint. In [3], Bell proposed two energy-constrained waveform
design problems and solutions in additive Gaussian channel
noise from two different optimization approaches. The first
approach considered maximization of signal-to-noise (SNR)
ratio wherein a known target impulse response is used in
the design of an optimal transmit-waveform/receiver-filter pair.
The maximization of SNR leads to a transmit eigen-waveform
solution. The second approach modeled the target impulse
response as random and derived a waveform that maximizes
mutual information between a Gaussian distributed target en-
semble with a known spectral variance and the received signal
in additive Gaussian noise. The information-theoretic approach
leads to a waterfilling solution in the frequency domain. In [2]
both approaches were demonstrated to improve performance
of a closed-loop radar system performing target recognition.
The two waveform design approaches were integrated with
sequential hypothesis testing (SHT) to form a closed-loop
active sensor. SHT was used to update the probabilities of
multiple target hypotheses based on the received signal. Then,
the two signal design approaches [3,5-6] were used to calculate
the next transmit waveforms. When sufficient understanding of
the channel was achieved, a target classification decision was
made.
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In [4-6], Pillai, et. al. considered the problem of matching
a waveform to an known extended target in the presence
of signal-dependent interference and receiver noise. It was
proposed to jointly design a transmit waveform and a re-
ceiver impulse response by maximizing the output signal-
to-interference-plus-noise ratio (SINR). Clearly the difficulty
lies in the fact that the interference is signal-dependent due
to the convolution of the clutter impulse response with the
transmit waveform. While there was no closed-form solution
derived, an iterative algorithm was proposed to jointly design
the transmit waveform and receiver matched filter. Here, we
apply the information-based approach to the signal-dependent
interference problem. We derive the waveform that maximizes
the mutual information between a Gaussian target ensemble
and the received signal, wherein the received signal is com-
posed of the convolution of the transmit waveform with the
target and clutter impulse responses in addition to the receiver
noise.

This paper is organized in the following manner. Section
IT describes the signal model for the noise-only case and
summarizes the mutual-information-based waveform derived
by [3]. Section IIl shows the derivation of the MI-based
waveform for the signal-dependent interference. Section IV il-
lustrates various waveform design examples. Section V shows
the application of the signal-dependent-interference optimum
waveform to a cognitive radar performing target recognition.

II. SIGNAL MODEL AND MI-BASED WAVEFORM DESIGN

The block diagram in Fig. 1 represents the real-valued signal
model being considered. Let z(t) be a finite-energy waveform
with duration 7. Let g(t) represent a Gaussian extended target
ensemble with energy spectral variance o (f) as defined in
[3], i.e., let T be the time duration where most of the target
impulse’s energy resides. It is necessary to have T' > T} to
capture the target impulse response’s energy. The clutter ¢(t)
is a zero-mean Gaussian random process with spectral density
02(f), and n(t) is the zero-mean receiver noise process with
one-sided PSD P, (f). Let y(t) be the received signal given
by

y(t) = (t) * g(t) + x(t) * c(t) + n(t). (1)
The signal-dependent interference is the clutter ¢(¢) con-

volved with the transmit waveform x(t). We are interested in
the mutual information (MI) between our measurement y(t)
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Fig. 1. Signal model of a Gaussian target ensemble in ground clutter

and target ensemble g(t) given a transmit signal x(t), i.e.,
I(y(); gDl (®)).

Bell derived the information-based waveform solution for
the channel-noise-only case where c¢(¢) = 0. The next few
equations summarize the results of [3]. First, the mutual
information I(y(t); g(¢)|x(t)) is given by the equation

20_2
I(y(t); g(t)|(t) = T /W W

where | X (f)|? is the energy spectrum of x(t) and W is the
bandwidth that contains most of its energy. Equation (2) is
then maximized with respect to | X (f)|? under the constraint

E, > /W | X (f)I? df. 3)

Using the Lagrangian multiplier technique, maximization with
respect to | X (f)|? leads to the following waterfilling wave-
form described by

In {1 + & @

Jﬁlﬂq(f)]
X()|? = max [O, A— (@)
X)) 2205
where A is a constant determined by the energy constraint
TPn(f)}
E, > / max [O,A — df. 5)
w 20%(f)

Note that the function being “waterfilled” is the function
TP, (f)/202(f) and A defines the water level. The constraint
of (5) makes the MI-based waveform in (4) not necessarily
finite time duration, but an approximately optimal finite-
duration waveform is possible.

III. INFORMATION-THEORETIC WAVEFORM DESIGN IN
SIGNAL-DEPENDENT CLUTTER

In this section, we re-consider the information-based ap-
proach in the presence of signal-dependent clutter. It can be
shown that the mutual information I(y(t); g(t)|z(t)) is given
by

I(y(t);g(t)](t)) =
21X 2 .2
[ [1 y o AXUPR)
w TP.(f) + 21X (f) 2o (f)
Note that the fraction in the right-hand side of the equation
represents the SINR with the denominator containing the
interference-plus-noise term. The interference-plus-noise term
contains the transmit signal itself in the term 2| X (f)[?0% (f).

df.  (6)

To maximize the mutual information I(y(¢);g(t)|z(t)), we
maximize (6) with respect to | X (f)|? while conforming to the
energy constraint in (3). Despite the additional interference
term in (6), the function within the integral is easily con-
firmed to be concave by standard calculus techniques. Taking
into account the energy constraint, the Lagrangian multiplier
technique is invoked which leads to the waterfilling waveform
described by

XN = maz [0.~R(f) + VE() + SU(A - D(f)]

()
where D(f), R(f) and S(f) are defined by
_ TP.(f)
D(f) = 20%(f) )
_ TP.(f)20(f) +0&(f))
M=TGmn@nam: @
S(f) = TP.(f)oc(f) (10)

© 202(f)(0E(f) + 0 (f)’

and A is a constant determined by the energy constraint

B> [ max [0.~R(p) + VR +SEA- D] df
an

While the exact solution given by (7) will be used in the
subsequent results section, it is somewhat hard to acquire an

intuition of the waveform it describes. To gain further intuition,
let W(f) be defined by

W(f) = —R(f) + VR(f) + S(f)(A - D(f)).

Applying a first-order Taylor approximation to (12), the ap-
proximation yields

(12)

W(f) = B(f)(A—-D(f)) (13)
where B(f) is
_ ot (f)
PO = 2020 +o2 (1
Thus the waterfilling waveform is described by
X () = maz[0, B(f)(A = D(f))) (15)

where A still controls the waveform’s energy.

It clear that if 2(f) = 0, then (14) goes to unity and (15)
becomes (4), which is the waveform solution to the channel-
noise only case. For the case where clutter is non-zero, B(f) is
a clutter factor that affects both the waterfilling function D( f)
and the energy-controlling constant A . To see its effect, realize
that B(f) takes on non-negative real values between 0 and 1.
When the clutter spectrum is zero, the clutter factor becomes
one and has no effect. When the clutter factor is non-zero, each
frequency component in A — D(f) is weighted depending on
the clutter spectrum. As clutter becomes strong in a certain
frequencies, the clutter factor B(f) goes to zero at those
frequencies and no energy is utilized in those frequencies.
Thus, the clutter factor B(f) plays a major role in shaping of
the first-order Taylor approximation of the optimum waveform.
This will be explored more in the subsequent results section.
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Fig. 2. Target #1, Clutter #1, and | X (f)|? with constraint Ex = 0.01, and

Ex =1.0

IV. WAVEFORM DESIGN IN CLUTTER: EXAMPLES

In this section, three design examples illustrating transmit
waveform spectra obtained from the above waterfilling solu-
tion will be shown. The target, clutter, and noise processes are
real valued. Since the spectra are symmetric, only the half-
sided spectra will be shown. In practice, receiver front end
noise is usually modeled as AWGN. Thus, we use a flat PSD
to model the receiver noise in all subsequent experiments.

A. Target #1, Clutter #1, Constraints I/, = 0.01, 1.0

First, we consider an arbitrary target spectrum labeled Target
#1 and a clutter spectrum labeled Clutter #1 shown in the top
panel of Fig. 2. The first energy constraint is £, = 0.01.
The waterfilling action of (7) is applied to derive the op-
timum transmit waveform spectrum which is shown in the
bottom panel of Fig. 2. In this low-energy case, the optimized
waveform is formed by the ‘waterfilling action’ by selecting
two frequency bands of the target spectrum, i.e, the frequency
bands with the largest coefficients. Looking at the optimum
waveform spectrum, one can clearly see that the amplitudes
are scaled in order to compensate for the clutter spectrum.
Thus, in the case of a low-energy constraint, the optimum
waveform only selects the dominant frequency components
of the target spectrum. However, in the formation of the
optimum waveform, the frequency coefficients are adjusted by
the waterfilling solution in an attempt to compensate for the
clutter spectrum.

With the same target, clutter, and noise, we apply the
waterfilling action of (7) with a larger energy constraint of
E, = 1.0. The designed optimum transmit waveform spectrum
is also shown in the bottom panel of Fig. 2. Notice that the
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Fig. 3. Target #2, Clutter #2, and | X (f)|? as a function of increasing energy
constraint Ex = 0.01, 0.1 and 1.0

optimum transmit waveform is very different from the opti-
mum transmit waveform created with constraint £, = 0.01. To
maximize the mutual information between the target ensemble
and received waveform, the high-energy transmit waveform
distributes its constrained energy over a substantial portion of
the target spectrum unlike the limited-energy case where only
a few dominant frequency components are chosen. Even in the
high-energy case, however, the optimum waveform spectrum
emphasizes those frequencies where clutter power is lowest.

B. Target #2, Clutter #2, F, = 0.01,0.1,1.0

In this example, we consider a different target spectrum
labeled Target #2 and a different clutter spectrum, Clutter #2,
which has a cosine-squared shape. These spectra are shown in
the top panel of Fig. 3. The energy constraint is varied from
E, =0.01, 0.1, and 1.0. The bottom panel of Fig. 3 shows the
result of waterfilling solution with varying energy constraint.
For the limited-energy constraint £, = 0.01, the transmit
waveform has selected a few frequency bands, which reaffirms
the previous observation that for the low-energy constraint, the
waterfilling action selects a few dominant frequency compo-
nents and distributes among these components the available
energy while compensating for clutter. For the intermediate
energy constraint F/, = 0.1, the optimum waveform begins to
utilize additional frequency components and fills them with the
available energy while simultaneously “whitening” the clutter
spectrum. For the relatively large energy constraint £, = 1.0,
notice that the outer frequency component of the optimum
waveform had been amplified considerably higher than the rest
of the frequency components of the target spectrum. The outer
frequency band is located where clutter is least significant.
Thus, for a high-energy constraint, the optimum waveform
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Fig. 4. Target #3, Clutter #3, Exact Waterfilling waveform, Approximation

Waterfilling waveform and Clutter Factor B(f)

concentrates considerable energy to frequency components
where signal-dependent interference is potentially lowest as
a way of opportunistically taking advantage of the nulls of the
clutter spectrum.

C. The Exact Solution, Approximation, and Clutter Factor

The first-order Taylor approximation of the optimum wave-
form was shown in (15). Furthermore, it was also commented
that the clutter factor (14) has a major effect on the formation
of the waterfilling waveform. We now look at the spectral
shape of the exact waterfilling waveform, the energy spectrum
of the Taylor approximation-based solution, and the clutter
factor spectrum (14). For this design experiment, we use
another arbitrary target spectrum labeled Target #3 and another
low-pass shaped clutter spectrum labeled Clutter #3 shown in
the top panel of Fig. 4. The bottom panel of Fig. 4 shows
the exact solution derived from (7) with energy constraint
of E, = 0.1, the approximation solution derived from (15),
and the clutter factor (14). There are two important points
to observe. First, the approximate solution clearly resembles
the exact solution and may be sufficient for specific resource-
constrained applications. Note that the mathematical computa-
tions required by (13-15) are less intensive compared to (7-10).
Second, the clutter factor clearly becomes a corrective measure
that emphasizes or de-emphasizes the optimum waveform’s
frequency components according to a compromise among the
target, clutter, and noise spectra.

V. APPLICATION TO COGNITIVE RADAR: TARGET CLASS
IDENTIFICATION

A. Description of the Cognitive Radar

Ignoring the clutter signal block c¢(¢) connected by the
dashed lines, Fig. 5 represents the closed-loop radar system in
additive white Gaussian noise proposed for target recognition
in [2]. In this figure, the CR signal processing involved is
best described by a block labeled ‘Cognitive Radar’. The next
paragraph summarizes the operational framework of the radar
system investigated in [2].

Consider a target identification problem in which one of M
possible “known” targets is present. A Bayesian representation
of the channel is formulated where the target hypotheses are
denoted by H;, H», ..., Hys with corresponding prior proba-
bilities P;, P, ..., and Pj;. Each hypothesis is described by a
known finite time duration response g;(t),7 = 1,2,...M with
a corresponding energy spectrum G;(f),i = 1,2,...M. In the
noise-only case, the received echo is

y(t) = z(t) x gi(t) + n(D),

The first step for CR operation is to initially illuminate
the channel with an optimum waveform based on the prior
probabilities and energy spectra of the M hypotheses by
forming a probability-weighted spectral variance

i€1,2,..M. (16)

2
a7

o (f) = ZPi|Gi<f>|2 —

Z P,Gi(f)

where the optimum waveform is dictated by the frequency-
waterfilling waveform of (4). To facilitate computer simula-
tion, discrete-time signal model is used where 7; = 1. Then,
let g, be the length-L target vector and x be the length-L,
transmit vector where

Lo
E, = ZxQ[l] =x'x
=1

is the energy in x. If we define a transmit signal convolution
matrix of size L, x L given by

(18)

[ z(1) 0 0
z(2) (1) 0
X — x(Ly) x(Ly—1) e x(l) 0
0 x(Ly)  x(Ly—1) - xz(l) |’
0 x(Lz) x(2)

: 0 :

) 0 0 x(Ly) |

19)

then the length-L,, received signal vector is given by

y=Xg; +n (20)

where L, is given by L, = L, + L — 1.
The CR updates the prior probabilities by processing the
received echo. A sequential probability ratio test (SPRT)

Authorized licensed use limited to: The University of Arizona. Downloaded on April 5, 2009 at 16:25 from IEEE Xplore. Restrictions apply.



COGNITIVE RADAR n(®

TX
Generate Optimum WF

i |

| Update Probabilities | | |
No | I
= ) ct) |—e———— |

Jes| Classify

Target

1 | y®)
RX sut |
Fig. 5. Closed-loop radar system

[7,8] provides the criteria for making decisions after each
illumination. In particular, the multihypothesis sequential test
is applied where «; ; for ¢ # j is the probability of incorrectly
selecting H; given that is H; true. Let y,,y,,...,y, be
the received echoes of k£ successive transmissions, then the
likelihood ratio for a pair of hypotheses ¢ and j with prior
probabilities P; and P; is

7yk) J

where p;(yy, Y2, ,¥) and p;(yy, ¥y, - ,¥;) are the joint
pdfs under H; and H; hypotheses respectively. A decision is
made for some m when the threshold

AR — Pi(Y1, Y2,
(2%
pj(y17YZ7 e

R
m,j

(22)
Qm, 5

is met. Then K = k is the number of illumination cycles
needed to make a target classification. If the threshold (22) is
not met, the target probabilities are updated. For some target
hypothesis H;, the update rule is

PikJrl = Bpk(¥1, Y25 - -

where 3 ensures unity probability.

The application of information-based optimum waveforms
in a clutter environment is seen by considering Fig. 5, where
the clutter c(t) block is activated. The random c(t) is il-
luminated and received as a signal-dependent interference.
When the target is random, g(¢) in Fig. 5 is now replaced
by a Gaussian target ensemble where the target realization is
unknown a priori. Thus, the application of the information-
based waveform is a target class identification problem, i.e.,
the target realization to be identified belongs to one of the pos-
sible M target spectral variances described by o?(f), o2(f),
..., and o3,(f). A Bayesian representation of the channel is
formulated, where the corresponding target class hypotheses
and prior probabilities are denoted by Hi, Hs,..., Hys and
Py, P, ..., Py Itis the job of CR to identify which ensemble
class a stochastic target belongs to.

Utilizing the discrete-time signal model of (1), the length-
L, received signal vector y is given by

Y PP (23)

Y=g, *X+cxx+n 24)

where the length-L vector g; is a discrete target realization
under the i™ hypothesis with target covariance K, and ¢ is
the length-L clutter realization where the clutter covariance is
denoted by K. Using the convolution matrix formulation of
(19), (24) may be represented by

y=Xg, +Xc+n. (25)

The resulting optimum waveform described by (7) is used
to form the initial and successive probing waveforms via a
probability-weighted spectral variance

ZPT(Hi)\/ a2 (f)
i=1

SHT is used to update the channel probabilities where the
threshold (22) is used by SPRT to terminate the experiment.
In the case where both target and clutter realizations remain
constant during the course of the identification, the joint pdf
in (21) after the k" observation is given by

- k
Q| exp RS STy
(2mo2)kly| K] 202 = kIR

2

of(f) = Pr(H)o}(f) - . (26)
=1

pi(Yl?Y?) s vyk) =

3

k k
1 _
xexp | o | D_o¥iXe | Q7| Do viXy
j=1 j=1

27)

where X, is the convolution matrix of the transmit waveform
and K; and Q are defined by the following equations

K; = K, + K (28)
1 k

Q=K'+ = foxk (29)
n J 1

B. Results of CR Application

One application of cognitive radar is to efficiently classify
targets as quickly as possible, i.e., given a waveform energy
constraint, the number of transmissions K it takes to classify
a target should be minimized. Since the noise, target, and
clutter are random, K is clearly random. Specifically, we
are interested in the average value of K, also called the
average sample number (ASN). We estimate this moment by
using Monte Carlo simulation. We investigate the performance
of the optimum MlI-based waveform in signal-dependent in-
terference. The experimental setup is described in the next
paragraph.

First, four minimally overlapped spectral variances that
correspond to M = 4 target ensemble classes are generated.
The misclassification rate is set to 0.01. A low-pass shaped
PSD is used to model clutter. Then, a target class is randomly
chosen. A particular realization of this target ensemble and a
clutter realization both of vector length L = 31 are generated.
With the target and clutter signals fixed, 100 Monte Carlo
trials are performed. This experiment is performed over 1000
realizations of the target and clutter for each energy level.
ASN is then calculated for each of those energy levels. Three
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transmit waveform types are used; a discrete-time impulse
waveform denoted by ‘Wideband’, the noise-only waterfill-
ing waveform denoted by ‘Target WF’, and the optimum
waveform in signal-dependent interference denoted by ‘Clutter
WEF’. In this experiment, the target-to-noise ratio (TNR) is set
at 15dB while the clutter-to-noise (CNR) ratio is set to -6dB
and 6dB. Fig. 6 shows the performances of the three wave-
forms described above. For the two cases of CNR -6dB and
6dB, the ‘Clutter WF* performed the best, i.e., the optimum
waveform tailored for signal-dependent interference has the
lowest mean number of iterations at any energy constraint.
Note the noise-limited versus clutter-limited behavior in Fig.
6. At low transmit energy and low CNR, the received signal
is noise limited. Hence, the noise-only ‘Target WF’ and the
‘Clutter WF’ perform nearly the same because clutter is not
much of a factor. At high transmit energy and high CNR, the
signal-dependent clutter is the dominant interference rather
than the noise. Hence, the ‘Target WF’ and ‘Clutter WF’
behave differently. The minimum number of transmissions that
can occur before making a decision is one. At low CNR,
both waterfilling waveforms reach the minimum before clutter
becomes a significant factor. In other words, at CNR = -6
dB, the received signal is never clutter limited even at higher
transmit energy.

VI. SUMMARY AND CONCLUSION

The information-based approach to waveform design for
signal-dependent interference and channel noise was inves-
tigated. The mutual information between the target ensemble
and received signal where the transmit waveform has an energy
constraint yielded a waterfilling solution in the frequency
domain. To maximize mutual information, a radar system
must customize the transmit waveform in such a way to de-
emphasize frequency bands where clutter is significant and
emphasize frequency bands where clutter is negligible. While

this behavior is common to all the energy constraints, there is
a definite and interesting pattern in the selection of frequency
bands to be utilized and filled as the energy constraint is
increased. In particular, for a low energy constraint, the opti-
mum waveform only selects the target spectrum’s frequency
components with the largest coefficients. For large energy
constraint, the optimum waveform opportunistically utilizes
the target frequency components located at clutter nulls and
fills them with considerable amount of the available energy
while other frequency components are also opportunistically
filled as dictated by the compromise among target, clutter, and
noise spectra.

This optimum waveform was applied in a CR setting where
the target is buried in clutter environment. Simulations show
that the proposed waveform performs well in terms of the
lowest mean number of iterations to arrive at the correct target
class compared to a wideband impulse waveform and the
waterfilling waveform where clutter is unaccounted for.

REFERENCES

[1] S. Haykin, “Cognitive radar: A way of the future,” IEEE Signal Process.
Mag., vol. 23, no. 1, pp. 30-40, Jan. 2006..

[2] N. Goodman, P. Venkata, and M. Neifeld, “Adaptive Waveform Design
and Sequential Hypothesis Testing for Target Recognition with Active
Sensors, IEEE J. Sel. Topics in Sig. Proc. Mag., vol. 1, no. 1, pp. 105-
113, Jun. 2007..

[3] M.R. Bell, “Information theory and radar waveform design, /[EEE Trans.
Inform. Theory, vol. 39, no. 5, pp. 1578-1597, Sep. 1993.

[4] S.U. Pillai, H. S. Oh, D. C. Youla, and J. R. Guerci, “Optimum transmit-
receiver design in the presence of signal-dependent interference and
channel noise,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 577-
584, Mar. 2000.

[5] D. A. Garren, M. K. Osborn, A. C. Odom, J. S. Goldstein, S. U.
Pillai, and J. R. Guerci, “Enhanced target detection and identification
via optimised radar transmission pulse shape,” Proc. IEEE, vol. 148,
no. 3, pp. 130-138, Jun. 2001.

[6] J. R. Guerci and S. U. Pillai, “Theory and application of optimum
transmit-receive radar,” in Proc. IEEE 2000 Int. Radar Conf., Wash-
ington, DC, May 8-12, 2000, pp. 705-710.

[7]1 A. Wald, “Sequential tests of statistical hypotheses,” Ann. Math. Statist.,
vol. 16, no. 2, pp. 117-186, Jun. 1945.

[8] P. Armitage, “Sequential analysis with more than two alternative hy-
potheses and its relation to discriminant function analysis,” J. R. Statist.
Soc., ser. B, vol. 12, no. 1, pp. 137-144, 1950.

Authorized licensed use limited to: The University of Arizona. Downloaded on April 5, 2009 at 16:25 from IEEE Xplore. Restrictions apply.



