
Performance of Multistatic Space-Time 
Adaptive Processing

 
Donald Bruyère 

Department of Electrical and Computer 
Engineering, The University of Arizona 

1230 E. Speedway Blvd., Tucson, AZ 85721 
Phone: 520-349-3992, Fax: 520-626-3144 

dbruyere@ece.arizona.edu  
 

Nathan A. Goodman 

Department of Electrical and Computer 
Engineering, The University of Arizona 

1230 E. Speedway Blvd., Tucson, AZ 85721 
Phone: 520-621-4462, Fax: 520-626-3144 

goodman@ece.arizona.edu 
 

Abstract - In this paper, we analyze the benefits of using 
multiple airborne radar systems viewing a scene from 
different directions.  The filter outputs from multiple 
radars employing space-time adaptive processing 
(STAP) are combined to increase signal-to-interference-
plus-noise ratio (SINR) and detection performance.  
The performance improvement is analyzed by looking 
at the detection probability and the probability of false 
alarm of the combined system with and without bistatic 
components of the multistatic system.  Performance is 
compared to a multi-radar system employing a 
decentralized method of detection.  Sensitivity to 
training data availability for adaptive filtering is also 
considered. 

I. INTRODUCTION 
 
Multistatic radars can provide improved 

performance against stealth targets, protection against 
attack through the use of standoff transmitters, and 
improved performance against electronic 
countermeasures.  Due to these benefits, multistatic 
radar has been a popular area of research at several 
times in the last few decades.  Currently, the 
deployment of unmanned air vehicles (UAV’s) are 
again making multistatic radar systems and signal 
processing an interesting field of study. 

The purpose of this paper is to analyze the 
benefits of using multiple airborne radar platforms to 
improve detection of moving targets in the presence 
of ground clutter.  Historically, multi-sensor radar 
detection has been approached in two ways: 
centralized and decentralized.  Decentralized methods 
makes detection decisions at each of the individual 
sensors, then fuse them together at some central point. 
One motive for the decentralized approach is the fact 
that communication bandwidth can be reduced since 
only binary detections need to be shared rather than 
 

 
raw data [1-2].  Centralized multistatic radar systems 
are those that employ one or more radar sensors 
receiving signals from one or more transmitter 
platforms.  These may employ both monostatic and 
bistatic configurations [3].  Whether bistatic and/or 
monostatic configurations are used, the multistatic 
system combines the signals into a single detection 
statistic, and detection is based on this value.  Much of 
the work performed in this area involves ground-
based transmitters and receivers where the clutter 
environment is non-moving and well defined [3-4]. 

This paper looks at multistatic space-time 
adaptive processing (STAP) deployed across multiple 
airborne platforms.  We investigate the improvement 
in SINR and detection probability realized by 
noncoherently combining the space-time data from 
multiple airborne radar sensors.  We also look at the 
behavior of multistatic STAP performance with 
respect to the amount of training data used for 
characterizing the clutter statistics. 

Space-time processing exploits spatial and 
temporal signal properties to enhance radar detection 
in the presence of ground clutter [5].  But even with 
space-time processing, a target with a velocity vector 
perpendicular to the line of sight to the radar has the 
same Doppler shift as the surrounding background, 
making the target indistinguishable from clutter.  
However, a second radar looking at the same target 
from a different aspect angle may observe enough 
Doppler shift to distinguish the target from ground 
clutter.  By applying this concept to radars that 
employ space-time processing, large improvements 
can be realized in the combined system’s signal-to-
interference-plus-noise ratio (SINR), thus improving 
target detectability.  We call this the geometry gain of 
multistatic STAP (see Figure 1). Related to this 
advantage is the potential of the multistatic system to 
estimate absolute velocity, not just radial velocity. 
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Figure 1.  Geometry Gain - Moving targets that are buried in 
clutter for one radar aspect angle are likely to be out of clutter for a 

radar at another aspect 

 
Figure 2.  Diversity Gain - Targets that have faded for one radar 

may have a strong return for another radar 
 
 

Since target returns have a tendency to fluctuate 
from one measurement to the next, viewing a target 
return from multiple locations gives more 
opportunities to view the target when it’s return is 
strong for at least one of the viewing radars, even 
though it’s return has faded for other radars (see 
Figure 2) [6].  The advantage associated with this 
aspect of multiple viewing perspectives is referred to 
as a diversity gain. 

In this paper, we look at the performance gains in 
detection probability realized by combining the data 
from several airborne radar platforms performing 
space-time adaptive processing.  We present the 
combining rule used to produce the aggregate test 
statistic associated with a system of multiple airborne 
radars viewing a scene from distributed locations.  
Then we compare the performance of joint detection 
with that of a decentralized detection approach, each 
using multiple platforms possessing coherent space- 
time radars.  As a matter of practical concern, we also 
investigate the effects of limited training data on both 
the optimum and decentralized approaches. 

Figure 3. Radar/target geometry for multistatic STAP study. 
 

II. SIGNAL MODEL AND DETECTION STATISTIC 
 
Figure 3 illustrates a potential multistatic 

geometry.  A set of airborne platforms is overlooking 
the same field of view.  Each platform is equipped 
with a multi-channel coherent radar.  For any single 
radar platform, a target that is not moving radially 
toward or away from that radar would be 
indistinguishable from background clutter. 

Let the multistatic radar system be defined by K 
independent sets of space-time observations of the 
geographical area.  The data sets may consist of both 
monostatic and bistatic collection geometries.  The 
independence from space-time data set to space-time 
data set is due to the geographical separation of the 
radar platforms.  Let the kth space-time data set be 
denoted by the vector yk for 1 k K≤ ≤ .  The space-
time data samples associated with a single monostatic 
or bistatic collection are stacked into a length-NkMk 
column vector where NkMk is the number of space-
time measurements in the kth data set.  This will be 
referred to as a single radar space-time snapshot with 
NkMk degrees of freedom. 

Every data vector comes from one of two 
potential hypotheses: 
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where H1 denotes the target-present hypothesis and 
H0 indicates the target-absent hypothesis.  Every 
snapshot contains the noise vector, nk, which is 
composed of a spatially and temporally white 
Gaussian thermal component, as well as a colored 
Gaussian clutter component.  Note that the 
correlated interference due to clutter is only 
correlated between measurements collected by the 
same platform for the same geometry, while the 
interference is assumed to be independent from data 
set to data set due to being collected on distinct 
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platforms and/or geometries.  The noise vector for 
the kth data set is characterized by the covariance 
matrix Rk.  The H1 hypothesis has a fluctuating 
target signal with Rayleigh distributed amplitude, 
ak, and uniformly distributed phase, φk.  The target’s 
space-time steering vector relative to the kth data set 
is sk. 

We assume that each radar can be configured to 
receive its own return as well as the other radars’ 
returns in a bistatic configuration.  This could be 
accomplished, for example, by causing each 
transmitter to operate in different frequency bands 
that could be separately filtered and sampled by 
each radar receiver.  Due to the geometric 
separation of the platforms, target reflection 
coefficients are modeled as independent from 
platform to platform but constant over the local data 
collected by a single platform.  Likewise, clutter 
statistics are assumed independent from platform to 
platform but have a local space-time correlation 
structure typical of airborne space-time adaptive 
processing.  Given these assumptions, the log-
likelihood ratio test (LRT) for multistatic detection 
of the Rayleigh-fluctuating target is 
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where Ak is the Rayleigh parameter that controls the 
average RCS of the target for the kth data set and 
where 

 H
k k kr = w y  (3) 

represents the output of the locally optimum STAP 
filter, 1

k k k
−=w R s , applied to the kth data vector, yk.  

In (2), it is seen that the usual single-platform STAP 
output is scaled by a factor that is a function of two 
components: 1) the amount of interference having 
similar space-time spectral characteristics as the 
target, 2) the Rayleigh parameter, which is related to 
the target’s average RCS.   If the target’s power is 
small when compared to the background interference 
for a given platform, then the contribution from that 
platform is de-emphasized before combining with the 
other platforms making up the multistatic system.  On 
the other hand, if the average RCS of the target is 
large compared to the background noise environment, 
then that platform’s output is weighted more heavily 
in the overall test statistic. 

In a single-platform STAP scenario, the filter 
output can be neatly separated into signal and 
interference components, which leads to a situation 
where the ratio of output signal power to average 

output noise power can be computed.  In the 
multistatic case described by (2), however, the 
contributions from individual data sets are squared 
prior to being combined in the final detection 
statistic.  This causes signal/noise cross terms to 
appear in the total detection statistic under the target 
hypothesis, making the standard definition of output 
SINR difficult to apply because signal and noise 
cannot be cleanly separated.  Therefore, in this paper 
we apply an alternative definition of SINR.  This 
definition, also used in [6] and called the deflection 
coefficient in [7], quantifies the separation in the test 
statistic associated with the H1 and H0 hypotheses, 
and thereby, gives a metric of SINR that we can use 
to analyze the relative gain realized by combining the 
outputs of several radars into one system.  Given the 
pdf’s of the two hypotheses, we define 
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where [ ]iE Hζ  is the expected value of the test 
statistic under hypothesis i, and iVar Hζ    is the 
variance of the test statistic, under hypothesis i.  
Although the deflection coefficient strictly indicates 
performance only in the case where the detection 
statistic is Gaussian-distributed under both 
hypotheses, we have observed the this SINR metric is 
useful for approximating the geometry and diversity 
benefits associated with multistatic STAP. 

III. PERFORMANCE RESULTS 
 

Figure 4 demonstrates the geometry gain realized 
by a multistatic system.  This is demonstrated by 
plotting the SINR performance, as defined by (4), 
versus two target velocity components for a three-
radar configuration.  From the figures, three basic 
regions can be identified.  In the first region, the 
target is moving slowly or not at all; therefore, it falls 
into the clutter ridge no matter what geometry is 
applied or how many platforms observe it.  This 
results in a deep notch in performance around an 
absolute velocity of zero.  In the second region, the 
target is moving nearly perpendicular to one of the 
radars; hence, it falls into the clutter ridge for one 
radar but not the others.  SINR performance from this 
region is greatly improved over the first region.  SINR 
performance is best, however, in the third region 
where the target’s velocity vector has significant 
components toward multiple radars.  In this case the 
target is out of the clutter ridge for all radars, and 
SINR performance is improved over the second  
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Figure 4a. Combined radar 1,2 & 3 SINR surface for target in 

Figure 3 for various velocity hypotheses. 
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Figure 4b. SINR plot for target Vy = -50 m/s for various target Vx 

hypotheses (horizontal cut of Figure 4a). 
 
 
region due to having three independent observations 
of a fluctuating target. 

One reason for the performance gain is that the 
Doppler shift relative to each radar is different, so we 
realize a gain by virtue of the fact that a target that 
may be buried in clutter for one radar is not 
necessarily in clutter for other radars, provided they 
are not collocated.  Moreover, even if a target falls 
outside the clutter ridge for multiple radars, there is 
still an additional diversity gain [6] that improves 
performance by virtue of multiple observations of a 
fluctuating/fading target [8]. 

Next, we look specifically at the detection 
improvement obtained by adding platforms.  In this 
case, the multistatic configuration can consist of the 
monostatic data collected by each radar as well as the 
results from bistatic configurations between the 
radars.  We only consider a single direction for each 
bistatic path. Therefore, for a two-radar configuration, 
only one bistatic path is exploited.  With a three-radar 
configuration, three bistatic paths are exploited.   

 

 
Figure 5.  Multistatic configuration used for simulation of 

three-platform systems. 
 

Figure 5 illustrates the bistatic geometry 
configurations1 for a sample three-platform system. 

Figure 6 compares the performance of multistatic 
STAP with that of a decentralized method of detection 
when only monostatic configurations are used in the 
detection statistic.  The decentralized approach chosen 
was to allow each radar to produce its own binary 
decision, called the local decision.  Then, the binary 
decisions are shared with a centralized processor, 
which makes a final decision based on a Boolean 
‘OR’ operation2. 

In addition to studying the geometry and diversity 
gains provided by multistatic STAP, we are also 
interested in the relative performance between 
optimum and decentralized detection when the 
interference covariance matrix must be estimated 
from training data.  In Figures 6 and 7, the sample 
covariance matrix was calculated as 

 ˆ
H

k k
k

kL
=

Y Y
R  (5) 

where Yk is the NkMk-by-Lk matrix of independent, 
identically distributed realizations of interference for 
the kth data set.  This was used to calculate the local 

STAP filter weights as 1ˆH −=k k kw R s .  Although in 
practice, each platform will observe interference with 
different statistical properties, any choice for the 
different Rk’s for the observing platforms in our 
simulation is arbitrary.  Therefore, for simplicity, the 
same ideal clutter covariance characteristics were 
used for all radar platforms.  

                                                   
1 For the purposes of this study, the resolution issues 
associated with bistatic geometries where the bistatic angles 
of greater than 90o are ignored [9] [10]. 
2 The ‘OR’ rule was selected for comparison based on its 
superior performance over other fusion rules compared in 
reference [11]. 

Target 
 

Radar 
 1 

Radar 
 2 

Radar 
 3 

Bistatic  
Configuration 

12 

Bistatic  
Configuration 

31 

Bistatic  
Configuration 

23 

Horizontal 
Cut Figure 4b

536



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Probability of False Alarm - in Percent

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

- 
in

 P
er

ce
nt

Detection Performance as a Function of Training Data for 2 Radar System

MSTAP

Decentralized

Ideal Covariance Matrix

4MN Training Data

2MN Training Data

1.5 MN Training Data

 
 

Figure 6a.  Detection performance as a function of training data for 
a two-radar multistatic system. 
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Figure 6b.  Detection performance as a function of training data for 
a three-radar multistatic system. 

 
 

Three different training data sample sizes were 
run for both a two-radar and a three-radar geometry, 
and the detection results were compared to the 
detection performance of a system using an ideal 
covariance matrix.  As a rule of thumb, monostatic 
STAP performance from a clutter covariance matrix 
estimated using 2NM snapshots will be about 3 db 
below ideal performance, where N is the number of 
array elements, and M is the number of pulses.  
Therefore, the three test cases chosen were for 1.5, 2, 
and 4 times the degrees of freedom of the system.  For 
each case, Monte Carlo simulation was employed  to 
generate test statistic output under both the target-
present and target-absent hypotheses.  From these test 
statistic outputs, the probability of detection and the 
probability of false alarm for varying detection 
threshold were computed.  The resulting performance 
curves are shown in Figures 6 and 7.  In Figure 6, 
only the monostatic data are used, while in Figure 7, 
the bistatic data have been added. 
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Figure 7a. Detection performance as a function of training data for 
a two-radar multistatic system with bistatic and monostatic data. 
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Figure 7b.  Detection performance as a function of training data for 
a three-radar multistatic system with bistatic and monostatic data. 

 
 

The analysis shows that adding radar platforms in 
a multistatic STAP configuration provides superior 
detection performance over both individual radars 
performing STAP as well as multiple radar 
configurations using a decentralized method of 
detection.  For a multistatic STAP system using only 
monostatic data from a few platforms, the margin of 
improvement between multistatic and decentralized is 
not very large.  In Figure 6, however, the margin 
seems to increase as the number of platforms 
increases.  This effect can be seen in Figure 7 where 
the bistatic data are included.  Since we have ignored 
resolution and training issues unique to bistatic radar, 
the bistatic data are, statistically speaking, very 
similar to the monostatic data.  In Figure 7b, we are 
essentially combining six unique data sets, and it is 
seen that the performance margin between optimum 
and decentralized detection increases dramatically.  
When only monostatic data is employed in the 
multistatic system, the number of independent looks 
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increases linearly with the number of observing 
platforms.  However, when the bistatic components 
are included in the combined system, the number of 
independent looks increases much more quickly.  For 
the purposes of this analysis, only one independent 
look is included between any pair of radar platforms 
within the multistatic scenario.  The reverse path of 
any given radar pair is not considered independent 
from the forward path since the target RCS 
fluctuation should be similar for any one given 
bistatic angle.  Given this assumption, the number of 
total independent looks from combined monostatic 
and bistatic configurations in any multistatic 
geometry is Nradars[(Nradars+1)/2].   

Including the one-way bistatic components 
produces a dramatic difference in system 
performance of the centralized multistatic STAP 
system over the decentralized approach when the 
number of platforms employed is three or more. 
Hence, we conclude that although decentralized 
detection performs nearly as well as centralized 
multistatic STAP for a few radar platforms, the use of 
bistatic data may quickly provide a situation where 
centralized detection has significant benefit. 

 
 

V. CONCLUSIONS 
 

The purpose of this paper was to investigate the 
improvement in detection performance by 
noncoherently combining the space-time data from 
multiple airborne radar sensors.  Performance was 
measured in two ways:  1) Using an SINR metric that 
measures the statistical separation between the 
probability distribution functions of the test statistic 
with and without the target present, 2) plotting 
probability of detection as a function of probability of 
false alarm for various receiver threshold settings. We 
also looked at that same performance as a function of 
SMI training data.   This analysis was performed for a 
Multistatic STAP where only monostatic 
configurations were employed, then repeated with the 
one way bistatic components added.   

When only monostatic was employed in the 
multistatic system, the number of independent looks 
increases linearly with the number of observing 
platforms.  However, when the bistatic components 
are included, the number of independent looks 
received increases loosely as the square of the number 
of platforms employed.  When the number of 
platforms in a combined mono/bistatic configuration 
is three or more a very dramatic increase in system 
performance is realized when compared to a 
decentralized approach.  In either the monostatic or 
mono/bistatic cases, the margin of performance of the 
centralized Multistatic STAP approach over that of a 

decentralized method was unaffected by the amount 
of training data employed. 

In summary, while a decentralized detection 
method performs nearly as well as centralized 
multistatic STAP for a few radar platforms, the use of 
bistatic data may quickly provide a situation where 
centralized detection has significant benefit. 
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