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Abstract: The authors present illumination waveforms matched to stochastic targets in the presence of signal-
dependent interference. The waveforms are formed by SNR and mutual information (MI) optimisation. We
also use these waveforms in cognitive radar (CR) target identification application. In this application, the radar
system attempts to identify a deterministic or random target using multiple transmissions. These transmissions
are adaptively modified in response to previously received echoes. In addition, the authors present a new
multi-band application of the CR platform.
1 Introduction
Cognitive radar (CR) is a new concept for the operation of
radar systems. Haykin [1] has proposed CR as a
technological solution for performance optimisation in
resource-constrained and interference-limited environments.
The ‘intelligent’ system proposed in [1] would have the
capability to observe and learn from the said environment.
Moreover, it is assumed that a CR will operate closed loop
and that its transmit waveform will be adaptive. This leads
to the investigation of waveforms that can be adapted in
response to prior measurements in order to achieve
objectives more efficiently. In this paper, we consider the
design of waveforms for system or target identification in the
presence of clutter and demonstrate the application of these
designs to target recognition by a system performing
multiple transmissions in an adaptive manner.

Closed loop or not, the design of transmit waveforms is
critical to the performance of a radar system.
Traditionally, pulsed and wideband chirp transmit
waveforms are used. The use of wideband waveforms is
motivated by the goal of obtaining a high-range resolution
(HRR) profile of a target, which can then be compared to
a template or processed further. Formation of an HRR
profile, however, is not necessary for target identification.
For example, suppose a radar is to distinguish between
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two targets and each target is known to have a strong
resonance in a certain narrow band. If identification is
truly our goal, then a more efficient use of system
resources would be to focus the transmit energy into these
two bands even though the ambiguity function (and,
hence, reconstructured target range profile) would be poor
by traditional considerations.

Addressing this idea of adaptive waveform design
in ‘resource-constrained and interference-limited
environments’, we focus here on the design of waveforms
matched to extended targets in the presence of signal-
dependent interference (clutter) under a transmit energy
constraint. The design of illumination waveforms matched
to an extended target has been considered by several others.
One early contribution that we will exploit in this paper is
[2]. In [2], two paradigms were treated. The first was to
design a waveform that maximised detection of a known
target in additive white Gaussian noise (AWGN). Since
the performance of detecting a known signal in Gaussian
noise is directly related to SNR, SNR was the criterion
used to design the waveform. The second paradigm was to
consider the maximisation of mutual information (MI)
between a received waveform and a Gaussian ensemble of
targets. In this case, since radar targets have finite extent, a
true power spectral density (PSD) could not be used to
characterise the ensemble. Instead, Bell introduced the
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concept of a spectral variance. We will present here an
interpretation of the spectral variance concept that relates
the concept more clearly back to the PSD of a true random
process.

Matched signal design in the presence of clutter has been
treated in [3], where clutter was modelled as a zero-mean
complex Gaussian process described by a PSD. Practical
clutter modelling usually depends on the scenario being
investigated. Here, we will continue to model clutter
statistically as was in [3] and many other applications such
as in space–time adaptive processing (STAP). In [3],
signals matched to known extended targets were designed
according to the SNR criterion. Since the clutter
component of the received signal depended on the transmit
waveform, the waveform solution was found by an iterative
numerical technique that was not proved to converge to
the optimal signal. In [4], signal design in clutter was
considered from the detection perspective for a point target
rather than an extended target. An earlier reference for
signal design for clutter rejection is [5], and work on
waveform design for imaging in the presence of clutter has
been presented in [6]. Additional references on waveform
design, but not necessarily for clutter environments, include
[7–10]. Our own work on signal design by the MI
criterion in signal-dependent clutter is presented in [11].

In [12], waveform designs by both the SNR and MI
criteria were used to improve the performance of a closed-
loop radar system performing target recognition. In [12],
the targets were modelled by a known impulse response
and the additive noise was AWGN. Adaptive waveform
design was integrated with sequential hypothesis testing to
form a closed-loop active sensor. The adaptive waveforms
depended on functions of the target characteristics that
changed as the probabilities of the target hypotheses
were modified. Therefore with each transmission, the
hypothesis probabilities were updated, which resulted in a
new waveform for the next transmission. Sequential
hypothesis testing was used to determine when the
transmissions could be ceased while obtaining a desired
error rate. Preliminary work on extending this closed-loop
strategy to recognition of classes of targets was presented
in [13].

Contributions of this paper include an analysis of
waveform design by MI and SNR constraints in the
presence of clutter, and application of these waveform
designs in a closed-loop, or cognitive, radar system
performing recognition of both deterministic and random
targets. We also demonstrate how our closed-loop
framework and waveform design techniques can be applied
to a multi-band transmission system where the system must
adaptively select which band to use for any single
transmission.

This paper is organised in the following manner. In
Section 2, we present the signal model assumed for this
Radar Sonar Navig., 2009, Vol. 3, Iss. 4, pp. 328–340
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work and contributions in matched waveform design for
signal-dependent clutter. In Section 3, we analyse the
saturation of SNR and MI that can occur in the presence
of signal-dependent clutter. Section 4 presents a discrete-
time system model, which is then used to derive the
probability density functions necessary for updating
hypothesis probabilities in a closed-loop application.
Section 5 presents performance results for the closed-loop
system and Section 6 contains our conclusions.

2 Signal model and matched
waveform design in signal-
dependent interference
2.1 Random extended target and
the spectral variance

The block diagram in Fig. 1 represents the complex-valued
baseband signal model being considered. Let x(t) be a
finite-energy waveform with duration T. Let g(t) be a zero-
mean complex Gaussian random process with PSD Pg(f ).
The clutter c(t) is a zero-mean complex Gaussian random
process with spectral density Pc(f ), and n(t) is the zero-
mean receiver noise process with PSD Pn(f ).

Since a practical target has finite extent, consider a random
extended target created by multiplying the random process
g(t) with a rectangular window function of duration Tg .
We denote this finite-extent random target as gx(t). Since
gx(t) is not a true stationary Gaussian process, it cannot be
characterised by a PSD. However, an energy spectral
density (ESD) can be defined. If we let G(f ) be the
random transfer function corresponding to the Fourier
transform of gx(t), then the ESD is given by

jG(f ) ¼ E jG(f )j2
� �

(1)

We can also define a mean and variance according to

mG(f ) ¼ E G(f )
� �

(2)

and the variance is

s2
G(f ) ¼ E jG(f )� mG(f )j2

� �
(3)

Figure 1 Complex baseband signal model with random
target in signal-dependent interference
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We refer to the variance in (3) as the energy spectral variance
(ESV), and for the zero-mean processes assumed in this
derivation, the ESV and ESD are the same.

Although not stationary over all time, gx(t) is stationary in
the support Tg . Hence, we can define an average power, valid
in the support Tg . Based on the ESV, this average power is

YG(f ) ¼
s2

G(f )

Tg

(4)

which we call the power spectral variance (PSV). For the
convolution of any known signal with this random process,
we may also define spectral variances for the convolution
output. If we define z(t) as the convolution of x(t) with
gx(t), then the PSV for this convolution is defined as

YZ(f ) ¼
s2

G(f )jX (f )j2

Tz

(5)

where the numerator is the ESV and Tz ¼ Tg þ T . That is,
the output PSV is defined as the time-averaged ESV of the
output where the averaging interval is equal to the finite
duration of the output. Of course, the instantaneous
average power of the convolution between two finite-
duration signals changes with time, so the PSV should not
be interpreted as describing an average power that is
constant over the interval Tz. Both the ESV and PSV will
play roles in our derivations of waveforms matched to
random targets of finite duration.

Referring back to Fig. 1, the output signal y(t) is given by

y(t) ¼ r(t) � [x(t) � gx(t)þ x(t) � c(t)þ n(t)] (6)

Let ys(t) and yn(t) be the output signal and noise components
given by

ys(t) ¼ r(t) � [x(t) � gx(t)] (7)

and

yn(t) ¼ r(t) � [x(t) � c(t)þ n(t)] (8)

respectively.

2.2 SNR waveform derivation

The power of the signal component at time t is

E[jys(t)j2] ¼

ð1

�1

ð1

�1

R(f )R�(�g)X (f )X �(�g)

� E[G(f )G�(�g)] ej2p(f þg)t dg df (9)

If gx(t) were a true random process, then its frequency-
domain coefficients at different frequencies would be
uncorrelated. However, since the target has finite duration,
0
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its frequency-domain coefficients are correlated, which
means that the signal power at the output of the receive
filter varies with time. If we assume, however, that both T
and Tr are much less than Tg, then there exists a finite
duration of time during which the transmit waveform and
receive filter overlap the finite-duration target by the same
amount. During this window, the average power is
constant. Thus, the average power during this interval is

E[jys(t)j2] ’
ð1

�1

jR(f )j2jX (f )j2s2
G(f ) df (10)

For some time t0 during this interval, we define SNR to be
the ratio of the average power of the signal component to
the average power of the noise and interference component.
Thus, SNR is defined as

(SNR)t0
;

E[jys(t0)j2]

E[jyn(t0)j2]
(11)

The interference power is

E[jyn(t0)j2] ¼

ð1

�1

PN (f ) df ¼

ð1

�1

jR( f )j2L( f ) df (12)

where L( f ) is given by

L(f ) ¼ jX (f )j2Pg(f )þ Pn(f ) (13)

Thus, the approximated SNR is

(SNR)t0
¼

Ð1

�1
jR(f )j2s2

G(f )jX (f )j2 dfÐ1

�1
jR(f )j2L(f ) df

(14)

Maximisation of (14) over jX (f )j2 presents a difficulty since
it is dependent on both X( f ) and R( f ). However, we can
define an upper bound on SNR according to

(SNR)t0
, BSNR

¼

Ð1

�1
jR(f )j

ffiffiffiffiffiffiffiffiffi
L(f )

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

G( f )
q

jX ( f )j=
ffiffiffiffiffiffiffiffiffiffi
L( f )

p� �
df

����
����2Ð1

�1
jR( f )j2L( f ) df

(15)

Straightforward application of Schwarz’s inequality to (15)
results in a receive filter of the form

jR(f )j ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

G( f )
q

jX ( f )j

jX ( f )j2Pc( f )þ Pn( f )
(16)

where k is a proportionality constant. For a waveform with
energy concentrated in the band [�W =2, W =2], the SNR
bound equation to be maximised, under the energy constraintð

W

jX (f )j2 df � Ex (17)
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is now given by

BSNR ’
ð

W

s2
G(f )jX (f )j2

Pc(f )jX (f )j2 þ Pn(f )
df (18)

Application of the Lagrangian multiplier technique
maximises (18) with respect to jX (f )j2, which leads to the
optimum waveform spectrum described by

jX (f )j2 ¼ max 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

G(f )Pn(f )
q

Pc(f )
A �

ffiffiffiffiffiffiffiffiffiffiffiffi
Pn(f )

s2
G(f )

s !2
4

3
5 (19)

where A is a constant determined by the energy constraint

ð
W

max 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

G(f )Pn(f )
q

Pc(f )
A �

ffiffiffiffiffiffiffiffiffiffiffiffi
Pn(f )

s2
G(f )

s !2
4

3
5 df � Ex (20)

In the case where clutter is absent, BSNR reduces to

BSNR ¼

ð1

�1

s2
G(f )

Pn(f )
jX (f )j2 df (21)

It can be shown that the finite-duration, energy-constrained
x(t) that maximises (21) is given by the primary
eigenfunction of

lmax �x(t) ¼

ðT=2

�T=2

�x(t)Rg(t � t) dt (22)

where the kernel Rg(t) is

Rg(t) ¼

ð1

�1

s2
G(f )

Pn(f )
ej2pft df (23)

For complex-valued white noise, (23) becomes

Rg(t) ¼
1

N0

ð1

�1

s2
G( f ) ej2pft df (24)

2.3 Derivation of MI waveforms

Consider again the signal model of Fig. 1. For the MI
waveform derivation, we treat the receiver filter as an ideal
lowpass filter (LPF) with approximate time duration
Tr � T and Tr � Tg . Therefore Tr can be effectively
ignored, and the receive filter simply becomes an explicit
statement that the radar system is band limited [2].

We wish to derive a waveform that optimises the MI
between the received waveform y(t) and the random target
g(t). If the target were a true, infinite-duration random
process with PSD Pg( f ), then the entropy of the target
random process would be infinite because it would have
finite variance for an infinite duration of time. In this case,
T Radar Sonar Navig., 2009, Vol. 3, Iss. 4, pp. 328–340
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we could define an MI rate according to

_I (y(t); g(t)jx(t)) ¼

ð
W

ln 1þ
jX (f )j2Pg(f )

{Pn(f )þ jX (f )j2Pc(f )}

" #
df

(25)

and the MI obtained in a time interval of duration T would
be

I (y(t); g(t)jx(t)) ¼ T _I (y(t); g(t)jx(t)) (26)

However, in our application the target is characterised by the
finite-duration signal gx(t) with PSV YG(f ) ¼ s2

G( f )=Tg.
To obtain an MI expression useful for a random, finite-
duration target, we substitute the time-averaged PSV (4)
for the PSD of a random process. Let Tz be the duration
of the convolution of the transmit waveform and the target
response, that is, Tz ¼ T þ Tg . Using the PSV of the
signal output defined earlier, the approximate MI
applicable to the finite-duration target is

I (y(t); gx(t)jx(t))

’ Tz

ð
W

ln 1þ
jX (f )j2s2

G(f )

Tz{Pn(f )þ jX (f )j2Pc(f )}

" #
df

¼ Tz

ð
W

ln 1þ
ajX (f )j2YG(f )

Pn(f )þ jX (f )j2Pc(f )

( )" #
df (27)

where a ¼ Tg=Tz.

Realising that the kernel of (27) is a concave function,
maximisation with respect to jX (f )j2 under the energy
constraint (17) yields

jX (f )j2 ¼ max 0, �U (f )þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2(f )þ S(f )(A �D(f ))

q� 	
(28)

where

D(f ) ¼
Pn(f )

aYG(f )
(29)

U (f ) ¼
Pn(f )(2Pc(f )þ aYG(f ))

2Pc(f )(Pc(f )þ aYG(f ))
(30)

and

S(f ) ¼
Pn(f )aYG(f )

Pc(f )(Pc(f )þ aYG(f ))
(31)
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The constant A is determined by the energy constraint

ð
W

max 0, �U (f )þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2( f )þ S( f )(A �D( f ))

q� 	
df � Ex

(32)

When clutter is absent, the optimum waveform spectrum
becomes

jX (f )j2 ¼ max 0, A �
Pn(f )

aYG(f )

� 	
(33)

where A is again controlled by the energy constraint.

To obtain a final expression for MI for a finite-duration
random target, we implicitly made the assumption that
Tg � T . This assumption is equivalent to approximating
the random target’s frequency-domain coefficients to be
uncorrelated such that the MI can be obtained by
integrating over the frequency spectrum. This assumption
was made when we substituted the PSV for the PSD of a
true random process. In the expression that results, if we
indeed let Tg ! 1, then gx(t) becomes the true random
process g(t), the constant a! 1, and the integral in (27)
converges to (25), which is consistent with the result
derived in [2].

3 SNR and MI saturation in signal-
dependent interference
In the presence of clutter, the SNR or MI obtained by the
optimum waveform eventually saturates such that no
additional benefit is obtained by transmitting more energy.
This occurs for high transmit energy because the
measurements become clutter limited rather than noise
limited. Because the clutter is signal dependent, the system
eventually arrives at the point where additional transmit
energy increases the received clutter power just as much as
it does the received signal power. However, the two
transmit waveforms have different strategies for distributing
the transmit energy, which has been observed before in
[12]. Therefore the waveforms saturate at different energy
levels.

To understand the saturation that occurs, recall the kernel
expressions in (18) and (27). If we take the derivative of each
kernel with respect to the transmit spectrum jX (f )j2, we
obtain

K 0BSNR
(f ) ¼

s2
G(f )Pn(f )

[Pc(f )jX (f )j2 þ Pn(f )]2
(34)

and

K 0_I (f ) ¼
aPn(f )YG(f )

P2
n (f )þ A(f )jX (f )j2 þ B(f )(jX (f )j2)2

(35)
2
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where

A(f ) ¼ 2Pn(f )Pc(f )þ Pn(f )aYG(f ) (36)

and

B(f ) ¼ P2
c (f )þ aYG(f )Pc(f ) (37)

Considering both (34) and (35), we see that the derivatives
go to zero as the transmit energy becomes large, for all
frequencies. This means that the SNR and MI obtained
will eventually plateau as energy increases.

Fig. 2 shows the derivatives of the SNR and MI kernel
functions at three different frequencies for a sample
scenario. The derivatives all approach zero for large
transmit energy, although they converge to zero at different
rates and energies depending on the clutter and target
spectra at an individual frequency.

4 Application to CR
In this section, we will present application results of the SNR
and MI waveform designs to a closed-loop radar system.
In particular, we explore the target recognition or
discrimination problem. We first present a discrete-time
model that facilitates pdf expressions as well as computer
simulation. We also derive pdf expressions that will be
used in the closed-loop transmission scheme to update

Figure 2 MI and SNR kernel derivatives of three frequency
points of a sample target–clutter–noise scenario
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hypothesis probabilities without the need to retain the data
from previous transmissions. We then describe a closed-
loop radar platform designed for target class identification.
Finally, we present the results from simulations designed
to assess the performance of our waveform designs in the
closed-loop system. Performance metrics include error rates
or the average number of illuminations required for
a desired error rate. We also present a multi-band
demonstration of the CR framework.

4.1 Discrete signal model

We define the sampling interval of our discrete-time model
to be a normalised value of Ts ¼ 1. Define g as the
complex-Gaussian-distributed target vector of length L that
is obtained by sampling the random target function gx(t).
Similarly, let x be the length-Lx transmit signal vector with
energy

Ex ¼ xHx (38)

Thus, the length-Ly received signal vector y is given by

y ¼ g � xþ c � xþ n (39)

where the length-L complex Gaussian vector g has covariance
Kg and c is the complex Gaussian length-L clutter process
with covariance Kc. If we define a transmit signal
convolution matrix of size Ly � L given by

X ¼

x(1) 0 � � � � � � 0

x(2) x(1) . .
.

� � � 0

..

. ..
. . .

. . .
. ..

.

x(Lx) x(Lx � 1) � � � x(1) 0

0 x(Lx) x(Lx � 1) � � � x(1)

..

.
0 x(Lx) � � � x(2)

..

. ..
.

0 . .
. ..

.

0 0 � � � 0 x(Lx)

2
666666666666666664

3
777777777777777775

(40)

then the length-Ly received signal vector is then

y ¼ X g þ X c þ n (41)

where Ly ¼ Lx þ L� 1. For multiple transmissions, the
measurements due to the Kth transmission are

yK ¼ X K g þ X K c þ nK (42)

Note that the transmit waveform matrix has a subscript K,
which is consistent with the idea that the waveform will
adapt on each transmission.
Radar Sonar Navig., 2009, Vol. 3, Iss. 4, pp. 328–340
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4.2 Target–clutter scenarios in
closed-loop system

In a closed-loop radar environment where measurements
collected on subsequent transmissions may or may not be
correlated, different target and clutter scenarios are possible.
We consider four scenarios and derive the underlying
joint pdf of the measurements collected over multiple
transmissions. In each case, the pdf’s can be calculated by
accumulating results from previous transmissions. This is
important because the idea of cognitive radar is to represent
the radar channel in a probabilistic manner, to update the
probabilities and radar channel hypotheses as data are
received, and to adapt the transmission and measurement
strategy accordingly. If, in order to update the radar’s
probabilistic understanding of the radar channel, old
measurements must be retained, data storage requirements
will quickly become untenable. The requisite pdf for a
correlated target impulse response vector g in the absence
of clutter is derived in detail in Appendix. The following
scenarios require straightforward modifications of the
approach in Appendix. When we say that the target and/or
clutter is correlated, we mean that the target and/or clutter
impulse response vector ( g and/or c) is a realisation of a
complex Gaussian random vector, but the realisation does
not change between transmissions. This is a good model
for scenarios where the target and radar are stationary. If
the target and/or radar move significantly between
transmissions, then a better model is to generate
independent realisations of these random vectors for each
transmission.

1. Deterministic target and correlated clutter: For a target
that is deterministic and a clutter realisation that is
perfectly correlated from transmission to transmission, the
joint pdf of the measurements under a given hypothesis is
given by

p( y1, . . . , yK ) ¼
jQ�1
j

jKcjp
LK jKN j

K
exp �

XK

k¼1

[ŷk]
HKN

�1[ŷk]

" #

� exp
XK

k¼1

X H
k KN

�1[ŷk]

" #H

Q�1
XK

k¼1

X H
k KN

�1[ŷk]

2
4

3
5

(43)

where

ŷk ¼ yk � Xk g (44)

Q ¼ K�1
c þ

XK

k¼1

X H
k K�1

N X k (45)

2. Correlated target and independent clutter: For a scenario
where the target realisation remains the same and the
clutter realisation changes from transmission to
transmission, the joint pdf of the measurements under a
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given hypothesis is

p(y1, . . . , yK )

¼
jQ�1
j

jK gjp
LK jK N j

K
exp �

XK

k¼1

yH
k K�1yk

" #

� exp
XK

k¼1

X H
k K�1yk

" #H

Q�1
XK

k¼1

X H
k K�1yk

2
4

3
5 (46)

where K and Q are defined by

K ¼ K N þ X H
k K cX k (47)

Q ¼ K�1
g þ

XK

k¼1

X H
k KN

�1X k (48)

3. Independent target, clutter and noise: For a scenario where
the target and clutter realisations are independent from
transmission to transmission, the joint pdf of the
measurements under a given hypothesis is

p(y1, . . . , yK ) ¼
1

pLK jK N þ X H
k Kf X kj

K

� exp �
XK

k¼1

yH
k (K N þ X H

k K f X k)
�1yk

" #

(49)

where K f is given by

K f ¼ K c þ K g (50)

4. Correlated target and correlated clutter: In the case where
both target and clutter realisations remain constant over all
transmissions, the joint pdf after the Kth observation is

p(y1, . . . , yK )¼
jQ�1
j

jK t jp
LK jK N j

K
exp �

XK

k¼1

yH
k K�1

N yk

" #

�exp
XK

k¼1

X H
k K�1

N yk

" #H

Q�1
XK

k¼1

X H
k K�1

N yk

2
4

3
5

(51)

where Kt and Q are defined by

K t ¼K gþK c (52)

Q¼K�1
t þ

XK

k¼1

X H
k K�1

N X k (53)

Again, the correlated-target case in a clutter-free
environment is derived in detail in Appendix.
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4.3 Target class identification

In [12], a closed-loop radar system in AWGN was proposed
for target identification of known target responses. Fig. 3
represents the application of the CR platform in [12]
to a signal-dependent environment. Consider a target
identification problem in which a target from one of M
possible target classes is present. A Bayesian representation
of the channel is formulated where the target hypotheses
are denoted by H1, H2, . . . , HM with corresponding prior
probabilities P1, P1, . . . , PM . The ith hypothesis is
characterised by a random target ensemble gi(t) with a
corresponding ESV s2

G,i(f ), i ¼ 1, 2, . . . , M. The random
clutter realisation c(t) is also illuminated and received as
signal-dependent interference. Since the target is a
realisation of a Gaussian target class, the actual target
impulse response is unknown a priori. Thus, the
application is that of a target class identification problem,
that is, we try to identify which stochastic ensemble the
target realisation belongs to despite interference because of
received noise and signal-dependent clutter.

The first step for CR operation is to determine how to
translate from the waveforms derived above to a waveform
that performs well for the multiple-hypothesis identification
problem. Application of the matched waveforms should
depend on the hypothesis probabilities such that the
waveform will change in response to understanding of the
classification problem obtained from prior transmissions.
Similar to what was proposed in [12] for deterministic
targets, we calculate a probability-weighted spectral variance

PG(f ) ¼
XM
i¼1

Pr(Hi)s
2
G,i(f )�

XM
i¼1

Pr(Hi)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

G,i(f )
q�����

�����
2

(54)

which may be thought of as an effective ESV over multiple
target classes. Depending on the waveform of choice, the
optimum waveform is obtained by substituting (54) into
either (19) for an SNR-based waveform or (28) for an MI-
based waveform.

After each transmission, the CR system updates the
hypothesis probabilities by processing the received echo.

Figure 3 Block diagram of a closed-loop radar system
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Depending on the target and clutter model, the data due to
the current transmission are substituted into one of the
joint pdf’s from Section 4.2. For target hypothesis Hi, the
update rule is

PKþ1
i ¼ bpK (y1, y2, . . . , yK )Pi (55)

where b ensures unity probability over the classes at each
iteration.

Once the probabilities are updated, a new spectral variance
function is calculated, which results in a new waveform
for the next transmission. This closed-loop procedure
continues either for a fixed number of transmissions or for
deterministic target hypotheses, until all the pairwise
likelihood ratios meet thresholds defined by a multi-
hypothesis sequential hypothesis test.

5 Results
5.1 Closed-loop radar

We now present performance results based on simulated
scenarios. For scenarios involving random target
realisations, we allow the closed-loop system to perform ten
transmissions and receptions, then select the target class
with the highest probability as the system’s decision.
Indeed, in some practical systems, the number of
transmissions is fixed. Error rates are shown as a function
of the energy constraint per illumination for various
waveform strategies. For deterministic targets, we perform
Monte Carlo simulation to obtain the average number of
illuminations required to make a decision with specified
confidence. This transmission approach models flexible
systems that allow for the number of illuminations to vary.

Fig. 4 shows the probability of misclassification for a
scenario where the clutter and target realisations are both
perfectly correlated over the ten transmissions of the
experiment. Four target classes were defined, and each class
was characterised by a PSV with energy concentrated into
narrow frequency bands. These bands did not overlap with
each other or with the spectral bands of the other classes.
The clutter PSD was a smooth spectrum with most of the
power concentrated in the middle half of the band. Each
target had approximately one band located in strong clutter
and one band located in weak clutter. In Fig. 4, the target-
to-noise ratio (TNR), defined by the ratio of the area under
the target PSV to the average power of the receiver noise,
was 3 dB. The clutter-to-noise ratio (CNR), defined by the
ratio of the area under the clutter PSD to the receiver noise
power, was 8 dB. One can see from the plot that the two
waveforms that accounted for the clutter PSD performed
better than the two waveforms that did not account for
clutter, even in this scenario with relatively weak clutter. The
‘MI w/o clutter’ designation denotes the MI waveform
designed with the clutter PSD set to zero. The wideband
waveform has evenly distributed energy over the transmission
Radar Sonar Navig., 2009, Vol. 3, Iss. 4, pp. 328–340
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band. Note the existence of an error floor at higher transmit
energies. This floor is due to the fact that target realisations
from the different classes are not mutually exclusive, so
realisations from one class may actually look like they should
be from another class. This effect is exacerbated by the
presence of clutter and by the fact that the received echos are
correlated across transmissions.

Fig. 5 shows results for the same type of experiment,
except that new target and clutter realisations were

Figure 5 Error rates for classification of random targets
with independent measurements

Figure 4 Error rates for classification of random targets
with correlated measurements
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independently generated for each transmission. As we would
expect, performance is better for this case compared to the
correlated case because multiple target and clutter
realisations are observed. Consider the bottom panel of
Fig. 5 where TNR ¼ 3 dB and CNR ¼ 13 dB. Despite the
fact that the clutter power is stronger than that of Fig. 4,
observing multiple realisations of the target has removed

Figure 6 Average number of illuminations to identify
deterministic targets

Figure 7 Four target PSVs corresponding to four hypotheses
in Band #1
6
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the floor in performance. The top panel of Fig. 5 shows
the performances of the different waveforms where
TNR ¼ 3 dB and CNR ¼ 0 dB, that is, the system is not
clutter limited. Notice the modest performance gain of the
waveforms that compensate for clutter. Recall the bottom
panel of Fig. 5, where the scenario is clutter limited with
CNR ¼ 13 dB. Here, the waveforms that account for
clutter clearly outperform the waveforms that do not
account for clutter. Thus, performance of clutter-
compensating waveforms improve with increasing CNR.

Figure 8 Four target PSVs corresponding to four hypotheses
in Band #2

Figure 9 Error rate performances of various single-band
and dual-band waveforms
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Figure 10 MI calculations on both bands prior to
transmission
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In Fig. 6, we switch to a scenario where the target impulse
responses are assumed to be known. Multiple realisations of
the target impulse responses are generated over the course
of the Monte Carlo simulation, but once the realisations
are generated for each hypothesis, they are treated as
known for that particular trial. In this case, since the
targets are deterministic and known, the target classes are
mutually exclusive and we can apply sequential hypothesis
testing to control the error rate. Sequential hypothesis
testing is a technique where thresholds for the likelihood
ratios can be defined such that the system only stops taking
measurements when the thresholds are met. The thresholds
can be chosen to achieve a desired error rate, but for any
given trial, the number of observations necessary to achieve
the threshold is a random number. We set the probability
of error to 0.05 and performed Monte Carlo simulation of
20 000 trials for each transmit energy level. Then the
average number of illuminations was calculated and plotted
against transmit energy. Thus, waveforms that use fewer
Figure 11 Few select transmission waveforms in a single experiment of a dual-band CR
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average transmissions can be said to use their energy more
efficiently. Again, the MI and SNR waveforms designed
for signal-dependent clutter are the best performers, with a
notable exception. At low transmit energy, the SNR-based
waveform tends to perform poorly – even worse than the
wideband waveform that uses no prior knowledge of the
target spectra. The SNR waveform is known to focus all or
most of its energy into a single narrow frequency band.
Apparently, this is not a good strategy for this scenario.

5.2 Multi-band application

For targets of very short duration, that is, with large
bandwidths, it may not be practical for a radar system to
match the whole bandwidth in a single transmission.
However, some practical radar systems are equipped with
dual bands, but may only use one band at a time. We now
demonstrate CR under this practical constraint using the
same MI and SNR design metrics as before. First, we
define M ¼ 4 target ensemble classes. Their arbitrarily
generated PSVs in two separate bands are shown in Figs. 7
and 8. A lowpass-shaped PSD in each frequency band is
used to model the clutter. In this experiment, we will
consider the difficult case where the measurements are
correlated because of both the target and clutter realisations
remaining fixed over the transmissions. Five transmit
waveform types are used; an impulse waveform denoted by
‘wideband’, the optimum MI waveform in clutter using a
single band, the optimum MI waveform in clutter utilising
both bands, the SNR waveform in a single band and the
SNR waveform utilising the dual-band capability. For the
dual-band waveforms, we calculated the matched waveform
for each band and then calculated the MI or SNR that the
system expects to achieve on each band. The band with the
better metric at that particular iteration was chosen for that
transmission.

In this experiment, the TNR is set at 12 dB while the
CNR is set to 9 dB. Fig. 9 shows the performances of the
five waveforms. Notice that in the low-energy regime where
the CR is noise limited rather than clutter limited, the
SNR waveforms are very close in performance and the MI
waveforms are close in performance. In the energy-rich
regime (where clutter power is also stronger), both sets of
waveform types converge to 0% misclassification error.
Thus, the region in which there is performance gain is the
region where there is separation of the performance curves.
Expectedly, both dual-band waveforms performed well with
dual-band MI performing the best. Interestingly, the
wideband waveform performed the worst in low energy but
overtook the single-band SNR and MI waveforms in high
energy.

5.3 Waveform formation in multi-band
application: Since the CR system was constrained to use
a single band at a time, the system had to make decisions
as to which band to use for a given transmission. The cycle
of selecting a band and adapting the waveform that would
8
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be transmitted in that band continued until the experiment
was terminated. The following figures detail the path
taken by the dual-band MI waveform over a particular
experiment, so chosen such that it had taken quite a few
transmissions (93 transmissions in this case) to show
waveform formation history. The true hypothesis was
Target #4 shown in Figs. 7 and 8. The energy constraint
for this trial was Es ¼ 0.001 (energy units) and the system
made a decision after the 93rd transmission. Fig. 10 shows
the MI calculations prior to waveform transmission. For
the initial waveform, the MI calculation is greater for Band
#2 and therefore the radar utilised this band as shown
in Fig. 11. MI then became larger on Band #1 prior to
transmission #5 and, thus, the radar switched to Band #1.
A switch was again made to Band #2 at transmission #19
and the system finally settled on Band #1 at transmission
#21, where it stayed until a correct decision was made.
Fig. 12 indicates that the decision was Target #4 which
was the true hypothesis. Fig. 12 also explains why the
system required so many transmissions prior to making the
right decision. Fig. 12 shows the probability update history.
Since low transmit energy was used, confidence in the first
set of probability updates are not high. In fact, Target #4
did not become the clear favourite until well after the 60th
transmission.

6 Summary and conclusion
MI-based and SNR-based approaches to waveform design
in signal-dependent interference and channel noise were
investigated. Both waveform spectra can be obtained via a
waterfilling operation on a function that depends on the
target spectrum, the clutter PSD and the receiver noise

Figure 12 Probability update history of the four hypotheses
in a single experiment of dual-band CR
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PSD. To maximise either MI or SNR, a radar system must
customise the transmit waveform in such a way as to
de-emphasise frequency bands where clutter is significant
and emphasise frequency bands where clutter is negligible.
A new analysis of the saturation of either MI or SNR with
increasing transmit energy was also presented.

The proposed waveform designs were applied in a CR
system where the objective was to identify a target from
one of several possibilities using multiple transmissions
in the presence of noise and clutter. We calculated
a probability-weighted spectral variance over the target
hypotheses and then used this variance for the target
spectral variance needed by the waveform design
techniques. Since the spectral variance over the ensemble
depends on the hypothesis probabilities, the adaptive
transmit waveform can be updated as the probabilities
change in response to previous observations. Simulated
results show that the waveforms perform well in terms of
both error rate and the average number of transmissions
required to make a decision. The clutter-compensated
waveforms were, in general, the best performers.
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9 Appendix: pdf derivation
The likelihood ratio between Hi and Hj after the Kth
transmission and reception is

lK
i, j ¼

pi(y1, . . . , yK )

pj(y1, . . . , yK )

P1
i

P1
j

(56)

Thus, we require an expression for the joint pdf of the data
conditioned on a particular hypothesis. If we define a joint
pdf conditioned on the particular target realisation, then
the joint pdf can be written as

p(y1, . . . , yK ) ¼

ð
g

p(y1, . . . , ykjg)p(g) dg (57)

For a single transmission, the pdf of the measurement y,
conditioned on g, is

p(yjg) ¼
1

pL K N

�� �� exp �(y� Xg)HK�1
N (y� Xg)

h i
(58)

Using this strategy, the measured data vectors for each
transmission are independent when conditioned on the
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target impulse response. Hence, we can write

p(y1, . . . , yK jg) ¼
YK
k¼1

p(ykjg) (59)

¼
YK
k¼1

1

pLjK N j
exp �( yk � X k g)HK�1

N ( yk � X k g)
h i

(60)

¼
1

pLK jK N j
K

exp �
XK

k¼1

( yk � X k g)HK�1
N ( yk � X k g)

" #

(61)

Since g is zero-mean complex Gaussian, the pdf is

p(g) ¼
1

pLjK gj
exp �gHK�1

g g
h i

(62)

where Kg is the covariance matrix specific to the particular target
class being evaluated. Expanding terms and accumulating them
in the argument of the exponential, we have

p(y1, . . . , yK jg)p(g)

¼
1

pLjK gj

1

pLK jK N j
K

exp{�gHK�1
g g �

XK

k¼1

[yH
k K�1

N yk

� yH
k K�1

N X k g � gHX H
k K�1

N yk þ gHX H
k K�1

N X k g]}

¼
1

pLjK gj

1

pLK jK N j
K

exp �
XK

k¼1

yH
k K�1

N yk

" #

� exp �gH K�1
g þ

XK

k¼1

X H
k K�1

N X k

 !
g

" #

� exp
XK

k¼1

yH
k K�1

N X k g þ
XK

k¼1

gHX H
k K�1

N yk

" #
(63)
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If we define the matrix

Q ¼ K�1
g þ

XK

k¼1

X H
k K�1

N X k (64)

then we can complete the square such that we have

p(y1, ...,yK )¼Eg[p(y1, ...,yK jg)]

¼

ð
g

pL
jQ�1
j

pLjKgjp
LK jKN j

K

�exp
XK

k¼1

X H
k KN

�1yk

h iH

Q�1
XK

k¼1

X H
k KN

�1yk

" #

�
1

pLjQ�1j
exp �[g�z]HQ[g�z]
� �

dg (65)

where

z¼Q�1
XK

k¼1

X H
k K�1

N yk (66)

The last line of (65) is the only part of the expression that
depends on g. Furthermore, this part of the expression is a
Gaussian pdf with mean z and covariance Q�1. Thus,
the joint pdf is

p(y1, ...,yK )¼
jQ�1
j

jKgjp
LK jKN j

K
exp �

XK

k¼1

yH
k K�1

N yk

" #

�exp
XK

k¼1

X H
k K�1

N yk

" #H

Q�1
XK

k¼1

X H
k K�1

N yk

2
4

3
5
(67)
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