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Abstract: We describe a novel method to track targets in a large field
of view. This method simultaneously images multiple, encoded sub-fields
of view onto a common focal plane. Sub-field encoding enablestarget
tracking by creating a unique connection between target characteristics
in superposition space and the target’s true position in real space. This
is accomplished without reconstructing a conventional image of the large
field of view. Potential encoding schemes include spatial shift, rotation, and
magnification. We discuss each of these encoding schemes, but the main
emphasis of the paper and all examples are based on one-dimensional spatial
shift encoding. System performance is evaluated in terms oftwo criteria:
average decoding time and probability of decoding error. Westudy these
performance criteria as a function of resolution in the encoding scheme
and signal-to-noise ratio. Finally, we include simulationand experimental
results demonstrating our novel tracking method.
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1. Introduction

There are numerous applications that require visible and/or infrared surveillance over a large
field of view (FOV). The requirement for large FOV frequentlyarises in the context of security
and/or situational awareness applications in both military and commercial domains. A common
challenge associated with large FOV concerns the high cost of the required imagers. Imager cost
can be classified into two categories: sensor costs and lens/optics costs. Sensor costs such as
focal plane array (FPA) yield (i.e., related to pixel count), electrical power dissipation, trans-
mission bandwidth requirements (e.g., for remote wirelessapplications), etc. all increase with
FOV. Some of these scalings are quite severe, with process yield for example increasing ex-
ponentially with FOV. Optics costs such as size (i.e., totaltrack), complexity (e.g., number of
elements and/or aspheres), and mass also increase nonlinearly with FOV; however, these costs
are somewhat more difficult to quantify without undertakingdetailed optical designs. However,
to illustrate the point consider two commercial lenses fromCanon: the Canon EF 14mm f/2.8L
II USM and the Cannon EF 50mm f/1.8 II lenses. The former is a wide-angle lens (FOV = 114
degrees) while the latter is a standard-angle lens. The wide-angle lens requires more optical
elements and a sophisticated design to maintain resolutionover the field of view. As a result,
the wide-angle lens uses 14 optical elements and weights 645grams while the standard-angle
lens uses 6 optical elements and weights 130 grams.

We note that the various costs associated with a conventional approach to wide-FOV imaging
often prohibit deployment of such imagers on platforms of interest. For example, the high
mass cost together with the electrical power and bandwidth costs of conventional widefield
imagers, restrict their application on many UAV platforms.Therefore, the motivation of the
work reported here is to reduce the various costs of widefieldsurveillance, thus making it
feasible for more widespread deployment.

One typical solution to this problem involves the use of narrow FOV pan/tilt cameras whose
mechanical components often come with the associated costsof increased size, weight, and
power consumption. The pan/tilt solution also sacrifices continuous coverage in exchange for
reduced optical complexity. In most traditional approaches the goal in such problems is to
reconstruct the scene of interest.

Many imaging applications, however, do not require the production of a traditional image
representation (i.e., a pretty picture) suitable for humanconsumption. In these so-called task-
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specific imagers, it is the effectiveness of the exploitation algorithm operating on the sensor
output that determines overall system performance. For example, an access control imager
(e.g., fingerprint sensor) may never provide image data for visual inspection. The success of
this imager is entirely determined by how well it facilitates reliable matching (e.g., fingerprint
recognition). Another example is tracking, in which measured image data is used to identify
target locations. The success of this imager is determined only by the accuracy of the target
positions that emerge from the associated postprocessing algorithm (e.g., Kalman filter [1]).

Task-specific imagers can often be compressive, in that theyrequire many fewer measure-
ments than the native dimension of the object space. Compressive imaging has emerged as a
promising paradigm for improving imager performance and/or reducing imager resources [2],
[3], [4], [5]. As a special case of compressive sensing, compressive imaging benefits from many
important recent theoretical results from that domain [6],[7]. The goal of this paper is to apply
concepts from compressive sensing and task-specific imaging to the problem of continuously
tracking targets over a large FOV. Toward this end we proposea class of task-specific mul-
tiplexed imagers to collect encoded data in a lower-dimensional measurement space we call
superposition space and develop a decoding algorithm that tracks targets directly in this super-
position space. We discuss the multiplexed imagers in the next section. For now, we assume
that we have this ability and briefly explain the basic idea behind superposition space tracking,
which is the main focus of this paper.

We begin by treating the large FOV as a set of small sub-FOVs (disjoint sub-regions of
the large FOV). All sub-FOVs are simultaneously imaged ontoa common focal plane array
(FPA) using a multiplexed imager. The multiple lens system of Fig. 1 is a schematic depiction
of this operation. Lens shutters can also be used to control whether individual sub-FOVs are
turned on, though for clarity the shutters are not drawn in Fig. 1. The measurement therefore
is a superposition of certain sub-FOVs. A key feature of our work is applying a unique encod-
ing for each sub-FOV, which facilitates target tracking directly on the measured superimposed
data. Potential encoding schemes include (a) spatial shift, (b) rotation, (c) magnification, and/or
combinations of these. These encoding methods are schematically depicted in Fig. 2.

Fig. 1. Multiple lenses camera capable of performing both pan/tilt and multiplexed opera-
tions.

Encoding via spatial shifts is perhaps the easiest encodingscheme to visualize; therefore,
we use this scheme for the demonstrations and performance results presented in this paper.
In spatial-shift encoding, each sub-FOV is assigned a shiftsuch that it overlaps adjacent sub-
FOVs by a specified, unique amount. These spatial shifts can be one dimensional (1-D) or two
dimensional (2-D). In the 1-D case, the large FOV is sub-divided along one dimension into
smaller sub-FOVs. In the 2-D case, as illustrated in Fig 2(a), the full FOV is sub-divided in two
orthogonal directions. Therefore, the 2-D case can be thought of as two separable 1-D cases
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with decoding information shared between the two.
Rotational encoding (Fig 2(b)) assigns different rotations to each sub-FOV such that a target

undergoes an angular shift in the superimposed image when itcrosses between two sub-FOVs.
The rotational difference between any two adjacent sub-FOVs must be unique. In a similar
manner, as shown in Fig 2(c), magnification encoding assignsa unique magnification to each
sub-FOV such that changes in the target’s apparent size can be used to properly determine its
location.

In this work we focus on 1-D spatial shift encoding due to its relative ease of implementa-
tion, easier visualization and proof-of-concept explanation, and its straightforward extension to
the 2-D case. The decoding process refers to the algorithm applied to determine a target’s true
location in object space. We begin in Section 2 by proposing candidate optical architectures
for multiplexed imagers. In Section 3 we outline the methodology for 1-D spatial shift encod-
ing and provide a brief discussion of other encoding techniques. Section 4 provides proof-of-
concept examples and explanations for the target decoding procedure while Section 5 contains
demonstration and performance analysis via simulated and experimental data. We make our
conclusions in Section 6.

Fig. 2. Schematic representation of encoding schemes: (a) Spatial shift (two-dimensional
case shown), (b) rotation, and (c) magnification.

2. Candidate multiplexed optical architectures

Previously we have reported on the capabilities of a novel multiplexed camera that employs
multiple lenses imaging onto a common focal plane [8]. A schematic depiction of this multi-
aperture camera is shown in Fig. 1. Note that each lens can have a dedicated shutter (not shown).
In this camera each lens images a separate region (i.e., a sub-FOV) within the full FOV. By
appropriate choice of shutter configurations, various modes of operation are possible. In one
such mode all shutters are opened in sequence (one at a time),enabling an emulation of pan/tilt
operation. Another mode of operation allows multiple shutters to be open at a time. This mode
employs group testing concepts in order to measure various superpositions of sub-FOVs and
invert the resulting multiplexed measurements to obtain a high-quality reconstructed image [2],
[9], [10], [3], [11]. The third mode allows all the shutters to be open at the same time resulting
in superposition of all sub-FOVs onto the common FPA.

Another optical implementation is shown in Fig. 3, in which we employ beamsplitter and
mirror combinations to form the superposition measurements. This configuration reduces the
lens count and avoids the image-plane tilt associated with the configuration shown in Fig. 1.
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Figure 3(a) shows a setup for two sub-FOVs consisting of a beamsplitter and a movable mirror,
which serves as a building block for a larger system. The optical field from the left sub-FOV
( f ov1) is reflected by the mirror followed by the beamsplitter, andthen is merged with the opti-
cal field from the right sub-FOV (f ov2) that has passed through the beamsplitter. The rotation of
the mirror around thez-axis results in the translation off ov1 along thex-direction in superposi-
tion space, providing a means to control the overlap betweenf ov1 and f ov2. Figure 3(b) shows
an assembly of such building blocks, which can superimpose eight sub-FOVs. This implemen-
tation will serve as the basis for the experimental results presented later in sub-section 5.4.

A third implementation shown in Fig. 4 further refines the idea proposed in the second im-
plementation by using a binary combiner in a logarithmic sequence arrangement. If we con-
sider the same eight sub-FOVs as in Fig. 3(b), then this design allows us to access all eight
sub-FOVs, using three stages of single-plate beamsplitter/mirror pairs at each stage, and three
shutters placed on the mirrors. The shutters can be opened and closed in a binary sequence from
000 (all closed) to 111 (all open, superposition operation)to multiplex the eight sub-FOVs onto
the camera. Although the effective aperture of the plate beamsplitter and mirror combination
increases at each stage, there is an overall reduction in complexity in comparison to the optical
implementation shown in Fig. 3(b). For a general scenario, when the large angular FOV isφ
radians and each angular sub-FOV is given byβ radians, the number of stages in the binary
combiner is given byS= ⌈log2 φ/β⌉ and the front end effective apertureAe required to avoid
vignetting is approximately given by

Ae = 2A(1− tan
φ
4

)−1(1−β )−S, (1)

whereA is the aperture of the camera. To obtain this relation between effective front end aper-
ture and the large angular FOV we fix the plate beamsplitter tobe at an angle ofπ/4 with respect
to the vertical axis and adjust the mirror to the desired angle depending on the value ofφ . If
we define the angle of the mirror from the vertical to beγ, then for a givenφ , γ = (π −φ)/4.
This system gives us the ability to employ a camera whose angular FOV is smaller than the
large angular FOV by a factor of 2S. We have discussed the optical scheme in a 1-D setting, but
because the horizontal and vertical directions are separable, extension to 2-D is straightforward.

Figure 4 illustrates this design concept with a specific example. The angles are shown in
degrees for this example. The implementation is designed for eight sub-FOVs, each having an
angular range ofβ = 7.5◦. For simplicity, the sub-FOVs are assumed to be non-overlapping,
resulting in an angular FOV (φ ) of 60◦. The first stage folds 0◦ to −30◦ angular range onto the
0◦ to 30◦ angular range. In the second stage the resulting 30◦ angular range is further halved
to a 15◦ range using a plate beamsplitter and a mirror, which are at angles of 45◦ and 52.5◦

from the vertical axis. The third stage again halves the 15◦ range to 7.5◦ which is the range of a
single sub-FOV. For the third stage the plate beamsplitter and mirror angles are 45◦ and 48.75◦,
respectively. If the sub-FOVs are overlapped, then the angles of the mirrors in each stage can
be adjusted to implement the given overlap.

As the angular FOV at the end of this three-stage binary combiner is reduced by a factor of 23

to 7.5◦, we can use a simple lens at the end of this optical setup. We consider the TECHSPEC
MgF2 coated achromatic doublet with a diameter of 12.5mm anda focal length of 35mm. Given
A = 12.5mm, using (1) we calculate the front end effective apertureAe of the beamsplitter and
mirror combination to be 5.2cm. Since the optical system does 2-D imaging we have the same
three-stage binary combiner in the other dimension with thesame effective front end aperture.
In total therefore, we have six plate beamsplitter and mirror combinations. Assuming, for sim-
plicity, that the beamsplitter and the mirror equally sharethe effective aperture, the lengths of
the plate beamsplitter and the mirror are given by(5.2/2)

√
2cm and(5.2/2)(2/

√
3)cm. The

factors of
√

2 and 2/
√

3 follow from the plate beamsplitter and the mirror being at angles of
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45◦ and 30◦ respectively from the vertical axis . Assuming a square sizefor both, the Stage 3
dimensions of the plate beamsplitter are 3.7cm×3.7cm and that of the mirror are 3cm×3cm.
Also assuming the thickness of the optical glass to be 2mm, wecalculate that in Stage 1 the
total volume of glass used by the two pairs (corresponding to2-D imaging) of plate beamsplit-
ter and mirror combination is 9.1cm3. Doing similar calculations for Stages 2 and 3 gives the
volume of glass used to be 6.8cm3 and 4cm3, respectively. If we take the density of the optical
glass to be 2.5gm/cm3, the total mass of the log combiner is 49.75gm. The mass of theachro-
matic doublet is less than 5gm and hence the weight of the optical system is about 54.75gm. If
we were to directly use a wide-angle lens to capture an angular FOV of 60◦, then a potential
candidate is Canon’s EF 35mm f/1.4L USM lens. It has an angular FOV of 63◦, but its mass is
580 gm and it uses 11 optical elements. Therefore, we see savings of about a factor of 10 for
our proposed multiplexed imager and also reduced optical complexity as we are using a sim-
ple, easy-to-design binary combiner and an achromatic doublet as opposed to an 11-element
wide-angle lens.

camera camera

(a) (b)

mirror beamsplitter

f ov1 f ov2

x

y

z

Fig. 3. Optical setup capable of performing multiplexed operations with spatial shift en-
coding for (a)Ns = 2 and (b)Ns = 8

Two practical issues that arise in designing optical systems involving beamsplitters are vi-
gnetting and transmission loss. Vignetting arises when there is non-uniformity in the amount
of light that passes through the optical system for each of the points in the FOV. This resulting
non-uniformity at the periphery of the superposition data has the potential of increasing false
negatives which in turn can lead to errors in properly locating the targets. To overcome this
potential problem in the setup shown in Fig. 3, the size of each beamsplitter should be large
enough to ensure that the angular range subtended by that beamsplitter at the camera is a strict
upper bound on the angular range of the corresponding sub-FOV. Field stops are then used to
restrict the angular range of the beamsplitter to that of thesub-FOV. Specifically, for the setup
shown in Fig. 3 and used in Section 5.4, each sub-FOV is 1.9◦ horizontally and 1.3◦ verti-
cally while the angular range of the beamsplitter is approximately 3◦. As a result, vignetting
is avoided. For the binary combiner shown in Fig. 4 vignetting is not an issue because (1) is
derived from a vignetting analysis of the binary combiner, to give an effective apertureAe that
does not block light from any point in the large angular FOV.
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Fig. 4. Binary combiner in a log sequence arrangement for multiplexing 8sub-FOVs each
with an angular range of 7.5◦.

The second issue has to do with a decrease in throughput due tooptical “combination loss”
when the light passes through the various stages of the beamsplitters. Specifically for the
eight sub-FOV multiplexed imager shown in Figure 3(b) the optical transmission decreases by
(0.5)(0.5)(0.5) = 0.125. This throughput cost, however, isno worse than that of a narrow-field
imager in a pan-tilt mode which is commonly used to achieve a wide FOV [12], [13]. For our
current example the dwell time of a corresponding narrow-field imager on each sub-FOV will
be 1/Ns = 1/8 = 0.125 time units. Since the photon count is directly proportional to the dwell
time, we have the same photon efficiency for both the multiplexed and wide-field imagers. This
result can be extended to a general case ofNs sub-FOVs where the photon efficiency of both
the multiplexed and wide-field imagers is reduced by a factorof Ns. We acknowledge, however,
that for the proposed beam-splitter and mirror-based multiplexed imagers we have not taken the
component losses, e.g. scattering at the mirror, into account. We assume these losses to be small
in comparison to the photon efficiency. Unlike the beamsplitter and mirror based multiplexed
imagers, the multiple-lens-based imager shown in Fig. 1 overcomes the disadvantage of loss in
photon efficiency at the expense of a higher optical mass cost.

The imagers we have proposed are used to simultaneuosly encode and compress (through
superposition of the sub-FOVs) the data. The subsequent algorithm then performs target track-
ing by decoding the relevant information from this compressed superpositon data. In the next
section we discuss in detail the need for encoding and also explain the encoding methodology
with respect to 1-D spatial shifts.

3. Sub-FOV superposition and encoding

As discussed in the Introduction, our goal is to track targets over a large FOV. We suppose this
large FOV to beH distance units in the vertical dimension byW distance units in the horizontal
(encoded) dimension. The 1-D spatial shift encoding strategy is best understood by considering
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the following three domains or spaces we work with: object space, superposition space, and
hypothesis space.

The object space is the full area on the ground that is actually observed by the sensor. For sake
of clarity, we begin by letting the sub-FOVs be uncoded. Uncoded sub-FOVs are obtained when
theH×W area of the large FOV is simply divided intoNs adjacent sub-FOVs, without overlap,
as shown in Fig. 5(a). Each of the resulting sub-FOVs isH ×Wf ov in size whereWf ov = W/Ns.
Using an optically multiplexed imager, we image each of these sub-FOVs onto a common FPA.
If the object space resolution of the optical system is∆r distance units in each direction, then
the dimensionality (in pixels) of a single sub-FOV will beH/∆r pixels byWf ov/∆r pixels.

Optical multiplexing of all sub-FOVs onto an FPA the size of asingle sub-FOV corresponds
to superposition of all the sub-FOVs. Thus, the measured image comprises what we call the su-
perposition space. Note that the superposition of all sub-FOVs onto a single FPA provides data
compression -H/∆r byW/∆r pixels are imaged using anH/∆r byWf ov/∆r-pixel FPA. Specif-
ically, the compression ratio for the uncoded case being discussed isNs. Measuring only the
superposition, however, introducesambiguityinto the target tracking process. Consider a sin-
gle target moving through the first sub-FOV in the uncoded object space as shown in Fig. 5(a).
The corresponding superposition space looks like Fig. 5(b). Based on the encoding used (in this
case none) and the size of a single sub-FOV we decode possiblelocations of the target in object
space. We call this new space the hypothesis space (see Fig. 5(c).) The hypothesis space isnot
a reconstruction of the object space - it is a visualization of the decoding logic.

The single target detected in the superposition space of Fig. 5(b) does not provide informa-
tion about the true sub-FOV where the target is located. Therefore, there is ambiguity in the
hypothesis space, and we hypothesize that the target could be in any of theNs sub-FOVs. In
fact, for this uncoded case, it is not possible to correctly decode the target location based on
measurements in superposition space. To overcome this ambiguity, we need a distinguishing
characteristic that appears in the superposition space yetidentifies a target’s true location in
object space. This trait can be provided by encoding the sub-FOVs with a spatial shift in the
object space. Instead of defining non-overlapping sub-FOVs, we allow for some overlap be-
tween adjacent sub-FOVs in the object space as seen in Fig. 6(a). In this shift-encoded system,
when a target passes through an area of overlap between two ormore sub-FOVs, instead of a
single target being present in superposition space there are multiple copies of the original target
as shown in Fig. 6(b). We refer to these multiple copies asghostsof the target. The presence of
these ghosts allows the target location to be decoded as longas the pairwise overlap between
adjacent sub-FOVs is unique.

The overlaps can be designed in different ways. They can be random and unique such that no
two overlaps are the same, or they can be integer multiples ofa fundamental shift. Also, these
integer multiples need not be successive, but can be randomly picked from the available set.
The simplest design, however, is to let the overlaps be successive multiples of a fundamental
shift, which we call the shift resolutionδ . Given that there areNs sub-FOVs, we define the
unique overlaps to be the overlap setO = {0,δ ,2δ , . . . ,(Ns− 2)δ}. We can now construct a
1-D spatial-shift encoded object space as follows:

1. Start with the uncoded sub-FOVs.

2. Let the first two (from the left) sub-FOVs be in the same position (non-overlapped) as in
the uncoded case. We label these sub-FOVs asf ov0 and f ov1 respectively;

3. Shift theith sub-FOV (f ovi), i = {2, . . . ,Ns−1} to the left such that it overlaps with the
(i −1)th sub-FOV byOi−1. Depending on the size of the overlap, it is possible that the
shift causes portions off ovi to overlap with more than one sub-FOV. (Figure 7 is an
example.) One condition that must be satisfied is thatf ovi cannot completely overlap
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(a)

(b)

(c)

Fig. 5. (a) The area of interest (large FOV) for tracking targets along with the reference
coordinate system. The large FOV is sub-divided into 4 non-overlappingsub-FOVs in the
x-direction. In this un-coded case the object space and the FOV are the same. (b) Super-
position space. (c) Hypothesis space: From the superposition space it isnot possible to
tell which sub-FOV the target belongs to. This ambiguity in target location leads to the
hypothesis that the target could be in any of the 4 sub-FOVs.

f ovi−1. This condition implies a restriction on the shift resolutionδ . The shift resolution
can range from zero (uncoded) to a maximum ofδmax= Wf ov/(Ns−1).

As shown in Section 4, the resulting encoded object space enables the target location to be
decoded. The disadvantage is that the object space now covers a smaller area than the uncoded
case. The object space is largest whenδ = 0, which corresponds to an uncoded case with
target decoding ambiguity. The object space is smallest (covers the least area) whenδ = δmax.
Between these two extremes, there is a compromise between area coverage and the smallest
shift resolution that must be detected in the decoding procedure.

To quantify the reduction in area coverage, we define area coverage efficiency (η) to be the
ratio between the area of the encoded object space and the uncoded object space. The shift
resolution also affects the compression ratio (r), which is defined as the ratio of the area of
the encoded object space to the area of a single sub-FOV. The area coverage efficiency and the
compression ratio are given by

η = 1−α
(Ns−2)

2Ns
, (2)

r = Ns−α
(Ns−2)

2
, (3)
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whereα = δ/δmax lies between 0 and 1. Smallα results in better area coverage and higher
compression ratio but smaller shift resolution. In addition, if we define a boundary as a line in
object space where there is a change in the sub-FOV overlap structure, then small alpha also
results in a lower boundary density, which can adversely affect the average time required to
properly decode a target. The opposite characteristics aretrue for values ofα near unity. We
quantify trade-offs between area coverage, decoding accuracy, and average decoding time in
more detail in Section 5.

3.1. 2-D spatial, rotational and magnification encodings

Although 1-D spatial shift encoding is the main focus of thispaper, we now take time to briefly
describe other potential encoding schemes.

As mentioned previously, 2-D spatial shift encoding can be thought of as two separable 1-D
spatial shift encodings. Specifically, instead of sub-dividing the large FOV into smaller sub-
FOVs in only thex-direction, we also sub-divide in they-direction. Again starting with the
uncoded case, if the number of sub-FOVs in the two directionsareNx andNy respectively, the
size of each resulting sub-FOV isH f ov×Wf ov whereH f ov = H/Ny andWf ov =W/Nx. Defining
the shift resolutions in the two dimensions asδx and δy, the overlap sets are then given by
Ox = {0,δx,2δx, . . . ,(Nx−2)δx} andOy = {0,δy,2δy, . . . ,(Ny−2)δy}. The encoding procedure
described above for a 1-D system can be separably applied to the sub-FOVs in both thex- and
y-directions to give the 2-D spatially encoded object space.In this 2-D encoding scheme, each
sub-FOV is characterized by a unique pairwise combination of horizontal overlap fromOx and
vertical overlap fromOy. The area coverage efficiency and the compression ratio are given by

η = (1−αx
(Nx−2)

2Nx
)(1−αy

(Ny−2)

2Ny
), (4)

r = (Nx−αx
(Nx−2)

2
)(Ny−αy

(Ny−2)

2
), (5)

whereαx = δx/(δx)max, αy = δy/(δy)max, and(δx)max and(δy)max are the maximum allowable
shifts in the two dimensions.

In the case of rotational encoding the objective is to define unique rotational differences
between any two sub-FOVs. The simplest way to do this is to define a fundamental angular
resolution (δang) and let all the rotational differences be integer multiples of (δang). The resulting
rotational difference set isR = {0,δang,2δang, . . . ,(Ns−1)δang}. One must be careful, however,
to note thatR is a set of rotationaldifferences, i.e., the difference between the absolute rotations
of any two sub-FOVs. The absolute rotation assigned to theith sub-FOV is then∑i

j=0Rj , i =
0,1, . . . ,Ns−1. Furthermore, since rotational encoding is periodic every 360◦, it is logical to
upper bound the maximum absolute rotation by 360◦. This bound results in a maximum angular
resolution ofδmax= 2 ·360◦/(Ns(Ns−1)). Rotational encoding like spatial shift encoding can
be applied to sub-FOVs in either or bothx- and y- directions. We call rotational encoding
1-D when the large FOV is sub-divided in eitherx- or y- direction and rotational encoding
is then applied to the resulting sub-FOVs. 2-D rotational encoding refers to the case where
rotational encoding is applied to the sub-FOVs resulting from the sub-division of the large FOV
in both the directions. Unlike 2-D spatial shift encoding, however, 2-D rotational encoding is not
separable. It requires that the rotational difference between any two sub-FOVs, regardless of the
dimensions they lie along, be unique. In 2-D spatial shift encoding on the other hand, overlaps
have to be unique only with respect to one direction. As a result even whenOx = Oy = O and
Nx = Ny = Ns, the resulting 2-D spatial shift encoding is valid because each sub-FOV will still
have a unique overlap(Oi ,O j), i, j ∈ 0,1, · · · ,Ns−1 associated with it.
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Magnification encoding assigns unique magnification factors to each sub-FOV. The mag-
nification factors depend on the optical architecture and the size of the area of interest. 2-D
magnification encoding, like 2-D spatial shift encoding, isseparable as long as we can sep-
arably control the magnification factors along the two directions. We can now define sets of
unique magnification factorsMx andMy along thex- andy-directions respectively. This re-
sults in an encoding scheme similar to the 2-D spatial shift encoding. As a result, in a manner
analogous to 2-D spatial shift encoding, even whenMx = My = M and Nx = Ny = Ns, the
magnification encoding scheme is valid because each sub-FOVwill still have a unique combi-
nation(Mi ,M j), i, j ∈ 0,1, · · · ,Ns−1 of horizontal and vertical magnification factors applied to
it. Finally, we note that it may be possible to obtain greaterarea coverage for the same FPA by
combining several encoding methods.

(a)

(b)

Fig. 6. (a) A portion of an encoded object space with the target in the region of overlap
between the two adjacent sub-FOVs along with its distance from the two boundaries of the
overlap. The loss in area coverage due to encoding is also shown. (b) Superposition space
with two target copies or ghosts. The one to the left corresponds tof ovi and the one to the
right corresponds tof ovi−1. Also depicted is the relation between the distance measures
ℓ1 andℓ2 in the object space, and the separation distance between the target ghostsin the
superposition space.
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4. Decoding: proof of concept

Properly encoded spatial shifts enable decoding of the truetarget location whenever the target
crosses a boundary into a new overlap region, and possibly sooner. Depending on the sub-FOV
shift structure, target replicas or ghosts can appear only at certain fixed locations, that is, the
distance in superposition space between any set of ghosts corresponding to the same target will
have a unique pattern because each sub-FOV overlap is unique. From this unique pattern, we
can identify the sub-FOVs involved and uniquely localize the target in hypothesis space. Once
the target is uniquely located in hypothesis space, we have decoded the target’s position in
object space.

In sub-sections 4.2 and 4.3 we explain and demonstrate the decoding procedure - first for a
single target and then for multiple targets. We begin thoughwith a brief discussion on correla-
tion based tracking employed in this work.

4.1. Correlation-based tracking

In the simulations and performance analyses we use a Kalman filter to track target ghosts in the
superposition space. Our Kalman tracker has a length-four state vector, the four states being
thex- andy-coordinates, and thex- andy-direction velocities of detected target ghosts. Kalman
tracking involves two basic steps: (1) updating the estimate (mean and covariance) of the state
vector at timet based on new measurements made at timet, and (2) propagating forward the
revised estimate at timet to time t + 1. We use correlation to make these new measurements
for the update step. Correlation performs three specific tasks: (1) locating the target ghost po-
sitions - and as a result, their target velocities - in the superposition space (measured data), (2)
separating them into different classes in case of multiple targets (multiple tracks), and (3) sep-
arating weak target ghosts from noise and background clutter. If the target ghosts have a strong
signal-to-noise ratio (SNR), then the first two steps can be performed using template match-
ing. On the other hand, if the signal strength is weak, template matching will not suffice. This
is an important point since in our proposed technique superposition of the sub-FOVs results
in a reduction of the target ghost’s dynamic range. Specifically let us considerNs sub-FOVs,
each with a dynamic range of[0,R]. Let the target be present in only one sub-FOV and in a
region that does not overlap with adjacent sub-FOVs. When we superimpose these sub-FOVs,
the dynamic range of the resulting superposition space, neglecting saturation, is[0,NsR] while
the dynamic range of the target is still[0,R]. Therefore, the target strength is suppressed by a
factor ofNs. If the target is in a region of overlap ofM sub-FOVs,M < Ns, then this factor is
reduced toNs/M.

The above analysis shows that there is a trade-off between the dynamic range of the target,
the number of sub-FOVs (Ns) and the size of the object space. (For a givenNs, the object
space size is related to the number of overlapsM and the shift resolutionδ , and therefore,
affects the dynamic range.) This necessitates that our system be able to deal with presence of
weak targets. There is a two-fold strategy we can consider. First, use a statistical background
subtraction technique to remove the background. Second, use correlation filters to locate and
classify target ghosts. We briefly look at each of these methods.

Background subtraction is an intuitive way to reduce background clutter and thereby in-
crease target strength. This directly helps us in increasing the dynamic range of the targets.
In almost all real life cases, the background is non-static.To faithfully estimate the non-static
background we use statistical subtraction techniques. Depending on the complexity of the back-
ground, the background image pixels are modelled as having Gaussian probability density func-
tions (pdfs) [14] or as mixture of Gaussians (MoG) [15], [16]. If the parametric Gaussian mix-
tures do not embody enough complexity then kernel based methods can also be used [17]. All
these methods fall under the category of non-predictive methods. Predictive methods employ-
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ing Kalman tracking based techniques to characterize the state of each pixel are also used for
background estimation [18]. The biggest challenge with both the predictive and non-predictive
methods is that they require a time sequence of image frames having no target motion to char-
acterize the background. This, however, is not possible in many real-time scenarios. Recently
Jodoin et al. [19] proposed a novel spatial approach to background subtraction which works
under the assumption of ergodicity: temporal distributionobserved over a pixel corresponds to
the statistical distribution observed spatially around that same pixel. They model a pixel using
unimodal and multimodal pdfs and train this model over a single frame. This method allows us
to estimate the background from a single image frame which results in a faster algorithm that
requires less memory.

Background subtraction removes background clutter, but not necessarily the noise present
in the measured data. To further increase robustness against this residual noise we employ
advanced correlation filters for making state vector measurements in the update step of our
Kalman tracker. Correlation filters, because of their shiftinvariance and their distortion toler-
ance ability, have been successfully employed in radar signal processing and image analysis for
pattern recognition [20], [21]. Correlation filters such asminimum-variance synthetic discrim-
inant functions (MVSDF) [22] and optimal trade-off synthetic discriminant function (OTSDF)
filter [23] show good ability for detecting and classifying multiple targets in the presence of
noise and background clutter.

Although we do not focus on one particular system design in this paper, we acknowledge that
in the presence of noise and background clutter, the abilityto make accurate measurements is an
important step in our proposed target tracking approach, and the above mentioned techniques
of statistical background subtraction followed by advanced correlation filters for detecting and
locating targets provide us this ability.

4.2. Decoding procedure for a single target

Consider a target in object space that enters the region of overlapOi between two sub-FOVs,
f ovi−1 and f ovi , as shown in Fig. 6(a). The corresponding superposition space looks like
Fig. 6(b). Under the assumption of a single target, the presence of two ghosts in the superposi-
tion space indicates that the target has entered a region where two sub-FOVs overlap. To find
the two sub-FOVs creating this overlap, we first measure the distance between the two ghosts
in superposition space. Let this distance bed. Based on knowledge of the shift encoding, we
then calculate the set of all possible separations between two ghosts of a single target. We label
this setS and call it the separation set. Recalling that the set of adjacent sub-FOV overlaps is
the overlap setO, the elements of the separation set areSi = Wf ov−Oi , i = 0,1, . . . ,Ns−2. The
setS can be computed once in advance and stored for future reference.

We can now define the setT2 ⊆ S such that it contains only those elements ofS which are
realizable in the spatial shift encoding scheme. It is important to note that not all elements ofS
result in a valid element ofT2. It is possible that the region of overlap between two sub-FOVs
lays within (i.e., is a sub-region of) the region of overlap between the two mentioned sub-FOVs
and one or more of other sub-FOVs. In such a case a target present in the two sub-FOV overlap
region will always produce more than two ghosts in the superposition space. An example of
this scenario is given in Section 5. The subscript ‘2’ inT2 indicates that the target is in the
region of overlap between two sub-FOVs only (as opposed to regions covered by more than
two sub-FOVs).

We now look at the basic principle for decoding a target in theregion of overlap between
two sub-FOVs. In Fig. 6(a), the distancesℓ1 andℓ2 are the distances from the edges of the two
overlapping sub-FOVs. In Fig. 6(b), we see that these distances are the same as the distances
from the two ghosts to the edge of the superposition space. Sinceℓ1 + ℓ2 is equal to the overlap
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between the sub-FOVs,ℓ1 + ℓ2 is an element ofO. If the measured separationd corresponds to
the j th element ofT2, then we can decodef ovi−1 as thej th sub-FOV andf ovi as the( j +1)th

sub-FOV. Finally, oura priori knowledge of the sub-FOV locations in object space along with
the position of the corresponding target ghosts in superposition space can now be used to decode
the target’sx-coordinate in hypothesis space. Because we have used 1-D spatial shift encoding,
they-coordinate of the target is the same in superposition space, hypothesis space, and object
space. We have now completely decoded the target location.

The above example considers two overlapping sub-FOVs. We can extend the decoding pro-
cedure to the case where a single target enters a region wheremore than two sub-FOVs overlap.
Such a scenario can arise, for example, when the overlapsOi−1 andOi are such thatf ovi+1 not
only overlaps withf ovi , but also with f ovi−1 as in Fig. 7 where sub-FOVsf ov2, f ov3 and
f ov4 overlap. In such cases the number of target ghosts appearingin superposition space will
be equal to the number of overlapping sub-FOVs covering the target. In general, assuming this
number to beM, we first calculate the sequence of pair-wise distances, from left to right, be-
tween theM target ghosts in superposition space. This sequence is referred to astarget pattern
dM. We then compare the sequence to the allowed length-M target patterns in superposition
space, which again are known because the shift encoding structure is known. The set of al-
lowed length-M target patterns is denoted byTM. The matching pattern determines the proper
set ofM sub-FOVs, from which the target’s position in hypothesis space can be fully decoded
as in the case above for two overlapping sub-FOVs.

4.3. Decoding procedure for multiple targets

When our above mentioned two-fold strategy is able to associate target ghosts with the correct
target for multiple targets, we can simply apply the decoding procedure for a single target to
all the targets iddividually. On the other hand, when we havescenarios where the targets have
(1) identical or only subtle shape differences, or (2) such aweak signal strength that only target
detection is possible, we need a way to associate the target ghosts with the correct targets. In
such scenarios where direct associations are not possible,we need a procedure for decoding
multiple targets. The proposed procedure is essentially the same as for a single target except
for a pre-decoding step where ghosts in superposition spacebelonging to the same target are
associated with each other. The procedure involves the following indirect three-fold strategy
(stated here specifically with respect to 1-D shift encoding):

1. Group all detected targets in superposition space according to theiry-coordinate values.
Since the system has 1-D spatial shift encoding in thex-direction, ghosts belonging to
the same target must have the samey-position. However, it is possible for two different
targets to also have the samey-coordinate. Therefore;

2. Compare the estimated velocities of potential targets ineach group. If multiple velocities
are detected, it is assumed that multiple targets are present, and the group is sub-divided.
This step follows from the observation that ghosts belonging to the same target must have
the same (2-D) velocity. Members of each target group now have the same velocity and
the samey-coordinate. Finally;

3. Begin decoding process by comparing allowed target patterns to the target patterns of
groups determined in the first two steps. The allowed target patterns are the setsTi , i =
2,3, . . . ,K, whereK is the maximum number of sub-FOVs that overlap. We begin with
the highest order target patterns (TK) and work down to the lowest order target patterns
(T2). When a pattern is detected, the target position is decoded.If an allowed target
pattern is not detected, the targets in the group are assumedto reside in regions of object
space without overlapping sub-FOVs.
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(a)

(b)

(c)

Fig. 7. Three targets in the object space with the same velocities andy-coordinates depicting
two scenarios both of which result in the same superposition space data. (a)Scenario 1: Two
targets in the object space with Target 1 in the non-overlapping region off ov1 and Target
2 in the region of overlap betweenf ov1 and f ov2. (b) Scenario 2: A single target (Target
3) in the overlap between the sub-FOVsf ov2, f ov3 and f ov4. (c) The same superposition
space arising from the two scenarios. (i) Ghost 1 and Ghost 3 in the superposition space are
ghosts of Target 2 in the object space, while Ghost 2 in the superpostion space corresponds
to Target 1 in the object space. (ii) Ghost 1 through 3 in the superposition space are ghosts
of Target 3 in the object space.

When performed in order, these steps usually enable decodingof the locations of multiple
targets. Under certain conditions, however, correct decoding is not possible. Figure 7 shows
two scenarios, the first (Fig. 7(a)) involving two targets aswas explained above and the second
(Fig. 7(b)) involving a single target in a region with three overlapping sub-FOVs. On the rare
occassions when this occurs and the targets involved happento have the samey-coordinate and
estimated velocity, it is not possible to decode which scenario is the true scenario (Fig. 7(c))
and, according to the decoding rules above, the higher ordershift pattern will be decoded. (In
Fig. 7, scenario #2 will be decoded). In Fig. 8 we illustrate this general case with an example
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movie. Each movie frame shows the object space across the top, the superposition space in
the middle, and the hypothesis space across the bottom. Object space represents the “truth”
while the superposition space represents the actual measurement data. The hypothesis space
visualizes how the decoding logic works in real time. We stress that the hypothesis space is
nota reconstruction of the object space, but is simply a visualization of the decoding logic. The
“truth” background has been added to the hypothesis space simply to provide visual perspective
to the viewer. The movie shows two targets with the same (2-D)velocity and the samey-
coordinates moving through the object space. By unfortunate coincidence the targets happen
to have a horizontal separation which is an element of setT2. As a result, the two targets are
decoded as a single target, and their decoded position jumpsaround. Eventually, the velocities
of the two targets change, the superposition space ghosts are properly grouped, and the two
targets are correctly decoded. We would like to remind the reader that here we are assuming
the targets have either identical shape or have such subtle differences in shape that association
based on shape is not possible or reliable. We will continue to make this assumption throughout
the rest of the paper.

Object space

Superpostion space

Hypothesis space

Fig. 8. (Media 1) showing error in decoding two targets with the same velocity, the same
y-coordinate, and with a separation which is an element of setS2. Correct decoding is
possible only when the targets begin to differ in their velocities. (Movie size: 0.9 MB)

4.4. Decoding via missing ghosts

Thus far, we have described how the difference, or shift, between target ghost positions can be
used to properly decode target location by uniquely identifying the overlap region that must
have produced the shift. However, additional decoding logic is available to the sensor in the
form of missing ghosts. Although this additional logic may not be able to uniquely decode the
target, it reduces the number of target locations in hypothesis space. To explain this principle,
consider the following scenario.

For clarity, we focus on a single target moving through the object space. We also assume that
Ns = 4 with the sub-FOVs encoded according to 1-D shifts belonging to the overlap setO =
{0,δ ,2δ}. The target is inf ov0 and is moving towardsf ov1 in the object space as illustrated in
Fig. 9(a). Since there is zero overlap betweenf ov0 and f ov1, superposition space has a single
target as seen in Fig.9(b). Based on the superposition spacemeasurement and the decoding
strategy explained above, the target cannot be completely decoded. We can only hypothesize
a potential target location in each of the four sub-FOVs. Therefore, hypothesis space looks
like Fig. 9(c). The localx-coordinate of each hypothesized target in its respective sub-FOV is
the same. However, we can apply our knowledge of overlaps to rule out f ov2. This sub-FOV
cannot be allowed because if the target were truly at this position, it would imply that the target
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(a)

(b)

(c)

Fig. 9. (a) Encoded Object Space with 4 sub-FOVs. The target is inf ov0. The local f ov0
x-coordinate lies betweenWf ov−O2 andWf ov. (b) The superposition Space with a single
target indicating that the target is in a non-overlapping sub-FOV region. (c) Hypothesis
Space with 4 potential targets. The third hypothesized target, however, liesin a sub-FOV
overlap which if true would produce ghosts in the Superposition Space. The absence of
ghosts rules out this hypothesized target as a potential true target.

resides in an overlapping region betweenf ov2 and f ov3. The absence of a second ghost in
superposition space tells us this is not true. Therefore, the target can only be inf ov0, f ov1 or
f ov3, and we have reduced the target hypotheses from 4 to 3. If the target continues to move
toward f ov2, additional sub-FOVs will be ruled out by the same logic. In general, missing
ghosts can be used to rule out anywhere from one to all incorrect sub-FOVs depending on the
target location and encoding structure.

5. Results

To demonstrate and quantify the efficacy of the proposed 1-D spatial shift encoding scheme,
we present results generated from both simulated data and a laboratory experiment.

5.1. Simulation

We simulated an object space withNs = 8, 1-D spatial-shift encoded sub-FOVs. The size of
each sub-FOV was 64∆r distance units by 64∆r distance units, where∆r, the object space
resolution, was assumed to be finer than the size of the targets of interest. The corresponding
sub-FOV dimensionality (in pixels) is 64 by 64. In the simulation we used template matching to

#99244 - $15.00 USD Received 25 Jul 2008; revised 27 Oct 2008; accepted 19 Jan 2009; published 29 Jan 2009

(C) 2009 OSA 2 February 2009 / Vol. 17,  No. 3 / OPTICS EXPRESS  1707



Fig. 10. Examples of valid target patterns.

perform correlation for locating target ghost positions. In order to subtract the background clut-
ter from the measured data before performing the correlation, we characterized the background
by averaging the superposition space data for a large numberof frames under the assumption
that we have the ability to observe the scene for a long time with respect to the frame rate.

We first defined the overlap set asO = {0,1δ ,2δ ,4δ ,3δ ,5δ ,6δ} where δ was chosen
as δ = δmax = f loor(Wf ov/(Ns− 1)) = floor(64/7) = 9 pixels. The reason for this choice
of δ was that largeδ increases the boundary density in the superposition space,which in-
creases the total overlapped area. As a result, the number oftarget ghosts in superposition
space that need to be tracked increases. If the decoder and tracker can handle a large number
of targets in superposition space, we can gain confidence that the decoding procedure is ro-
bust. Note that the overlaps in the setO are not monotonically increasing, which shows that
the order of the overlaps in 1-D shift encoding is arbitrary.Based on this overlap set, the
separation set is computed to beS = {64,55,46,28,37,19,10}. The allowed target patterns
are then given byT2 = {64,55,46,28,37,10},T3 = {{37,28},{19,37},{10,19}} andT4 =
{{10,19,37}}. The sets of overlapping sub-FOVs corresponding to these patterns are
F2 = {{0,1},{1,2},{2,3},{3,4},{4,5},{6,7}},F3 = {{3,4,5},{4,5,6},{5,6,7}} andF4 =
{{4,5,6,7}}. It is important to point out that{5,6} is absent from the setF2. This does not
imply that the two sub-FOVs do not overlap, which they do, butinstead means that the region
of overlap betweenf ov5 and f ov6 is also overlapped by a third or a even a fourth sub-FOV
as shown in the setsF3 andF4 respectively. In Fig. 10 we illustrate the allowed target patterns
with a couple of examples.

We simulated a scenario by populating the object space with four identically shaped targets
appearing at random locations, with random velocities, at random times, and lasting for random
durations. We allowed the starting target locations to be anywhere in the object space with
equal probability. The velocities were uniformly distributed between 0 and 3∆r distance units
for every time step to ensure that the target movement lookedreal. The start and stop times
were uniformly distributed between 0 and 100 time steps. Figure 11 shows a movie of one such
example simulation which best illustrates all the facets ofour decoding procedure. We explain
this movie in the next paragraph. Our algorithm is able to handle many more identically shaped
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Superposition space

Hypothesis space

Object space

Fig. 11. (Media 2) showing the decoding of 4 targets that appear at random times and for
random durations at random locations. The movie shows the successful decoding of all
the 4 targets. Each frame shows the encoded object space (δ = δmax), the corresponding
measured superposition space (with static background subtracted out) and the resulting
hypothesis space. (Movie size: 1.25 MB)

targets than the four chosen here, but using only a few targets allows the reader to easily follow
the decoding logic shown in the movie.

The movie in Fig. 11 shows four identically shaped color-coded targets in the object space.
Color coding allows easy target discrimination for the reader. The first target in the object space
is the red target which is followed by a white target. Both these targets are decoded via missing
ghosts logic as they travel through the object space. This can be seen in the hypothesis space
where the ambiguity in the locations of these two targets is completely removed even before
the targets reach a boundary. The green target appears next and is followed by the blue target.
Since the blue target appears in a region of overlap off ov1 and f ov2, it is almost immediately
decoded. The green target is decoded when it reaches the region of overlap betweenf ov1 and
f ov2. Thus all four targets are successfully decoded.

The movie shows us that the decoding time of targets differs depending on the target loca-
tion and the target velocity. Also, because of possible errors in measurement it is possible that
we incorrectly decode a target. This is especially true for targets with very low SNR. There-
fore, decoding time and measurement errors can affect system performance. We next consider
two metrics useful in quantifying this system performance.One metric considers the effect of
shift resolution on average decoding time and the other considers the probability of incorrect
decoding. We investigate these metrics in the following sub-sections.

5.2. Average decoding time and area coverage efficiency (η)

A small shift resolution (smallα) implies that the degree of overlap between adjacent sub-
FOVs is small. One potential disadvantage of small shift resolution is that the average time it
takes to decode a target (decoding time) increases.

The problem can arise as follows: when a new target ghost appears in superposition space,
velocity estimates are not instantaneously available. Therefore, it takes some time to determine
if the new ghost should be associated with an existing group,or if it is due to a new target
altogether. To get velocity information we must wait a few time steps while the Kalman tracker
updates the state vector and obtains a stable velocity estimate. This waiting period can present
a problem, especially when the target is in a sub-FOV with a small overlap. If the target has a
high x-velocity, it is possible that the target may not stay in the overlap region for enough time
for the Kalman tracker to ascertain the target velocity. This results in increased decoding time.
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Moreoever, for systems with small shift resolution, the distance between two different overlap
regions is relatively large (equivalent to lower boundary density), which again tends to increase
decoding time.
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Fig. 12. Plot of decoding time as a function of the area coverage efficiency η . The plot
shows the error bars representing the±1 standard deviation of the decoding time from the
mean.

A large shift resolution (α close to 1), on the other hand, suffers less from the above men-
tioned disadvantages, but has a smaller area coverage due tolarger overlaps. Hence, shift reso-
lution controls the trade-off between decoding time and area coverage efficiency. A small shift
resolution provides larger area coverage, but larger decoding times. A large shift resolution
provides smaller area coverage, but shorter decoding times. We quantify this result by plotting
the decoding time as a function of the area coverage efficiency in Fig. 12. The plot also shows
the error bar representing±1 standard deviation of the decoding time from the mean. The plot
was computed by averaging the decoding times of 300 targets which passed through the object
space in batches of size uniformly distributed between 5 through 10. In each batch the targets
appeared at random times with random velocities and at random locations, and for random
durations in a manner identical to the targets in the movie inFig. 11. The plot shows an approx-
imately linear relationship between the two metrics. This is expected because displacement and
time are linearly related through velocity. An increase in overlap due to a larger shift resolution
for the same target with the same target velocity decreases the amount of time it takes for the
target to reach the regions of overlap because these regionsare now wider and cover more area.
The reduced decoding time is directly related to this reduced travel time to reach the regions of
overlap. The reasoning is the same when using “missing ghosts” logic to decode targets. The
larger the overlaps, the faster we can reduce the ambiguity between hypothesized targets, and
the smaller the decoding time. It is important to note here that complete decoding using ”miss-
ing ghosts” plays a less prominent role in affecting the decoding time because it can completely
decode only those targets which are in the first sub-FOV from the left. For all other cases the
absence of shifts reduces, but does not completely eliminate, all the target ghosts and as a result
does not affect decoding time.
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5.3. Probability of decoding error

We next consider the probability of decoding error, which isdefined as the probability that the
target pattern decoded from superposition space measurements is an incorrect pattern. In the
presence of noise and other distortion, the estimated position of a target ghost in superposition
space will be subject to error. Therefore, the difference between two ghost positions, which is
the criterion for target decoding in a shift-encoded system, will also be subject to error. These
errors can lead to the wrong pattern being detected, which will cause the target to be decoded
to the wrong location. Furthermore, as the shift resolutionδ is decreased, more fidelity in
estimating target shifts is required.

Figure 13 shows the results from a simplified calculation of decoding error for a single target
present in a region of overlap betweenM sub-FOVs. We first consider overlaps between two
sub-FOVs and then extend the result to overlaps between three and four sub-FOVs. We assume,
as we did for the simulation example in sub-section 5.1, thatthe imaging system superimposes
8 sub-FOVs onto a single FPA. The width of each sub-FOV is 500∆r distance units, where∆r
is the object space resolution. We assume that the error in estimating the position of a ghost
in superposition space is Gaussian distributed with variance determined by the Cramer-Rao
Bound (CRB) [24] applicable to this problem. The CRB is

var[x̂] ≥ 1
SNR·Brms

, (6)

where SNR is proportional to the target intensity andBrms is the root-mean-square (rms) band-
width of the target’s intensity profile in the encoded dimension. For example, we have used
a symmetric triangular intensity pattern, which has a closed-form rms bandwidth of 12/W2

t
[pixels−2] whereWt is the target width in pixels.

We first consider the case of a single target present in a region overlapped by two sub-FOVs
(M = 2). The target pattern for this case consists of a single distance between two ghosts. If
the position errors on the two ghosts are independent, then the variance of the distance estimate
is twice the variance in (6). We assume that the target is decoded only if the measured overlap
matches an allowed overlap from the overlap setO to within some prescribed toleranceε. (Note
that the distance between the two ghosts is related to the overlap throughSi = Wf ov−Oi , i =
0,1, . . . ,Ns−2. See section 4 for more details.) If the measured overlap isnot withinε of a valid
overlap then the target remains undecoded. For example, if the true shift ismδ , a decoding error
is made only if the measured overlap̂d satisfies(m+ k)δ − ε ≤ d̂ ≤ (m+ k)δ + ε wherek is
a non-zero integer and(m+k)δ is a valid overlap. The probability of decoding error can now
be computed by integrating the Gaussian error probability distribution over the error region.
This error probability is conditioned onmδ being the true overlap. Therefore, to calculate the
total probability of decoding error we have to know thea priori probability of the true overlap
beingmδ . We assume that this probability is uniformly distributed.The value ofε, in general,
is dependent on the structure of the overlap setO. We, however, have chosen the overlaps to
be multiples of the shift resolutionδ . As a result all the overlap values are equally spaced from
the adjacent ones. We can therefore letε be some fixed tolerance value less than or equal to
δ/2, whereδ , the shift resolution, is the separation between two successive overlaps. When
ε = δ/2 we always make a decoding decision. Ifε < δ/2, there are cases where the measured
overlap does not lie within the tolerance limit of any element of O and we let the target remain
undecoded. In contrast, if the overlap set contains random but unique overlaps, the tolerance
ε is a function ofO. For instance, theε tolerance value for overlaps with a large spacing
between them will be different from theε tolerance value for the overlaps that are closely
spaced, especially for the case where we always make a decoding decision. The tolerance value,
therefore, will have to be adjusted according to the overlaps.

#99244 - $15.00 USD Received 25 Jul 2008; revised 27 Oct 2008; accepted 19 Jan 2009; published 29 Jan 2009

(C) 2009 OSA 2 February 2009 / Vol. 17,  No. 3 / OPTICS EXPRESS  1711



0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Area Coverage Efficiency (η)

P
ro

ba
bi

lit
y 

of
 D

ec
od

in
g 

E
rr

or

 

 

SNR = 0 dB, M = 2
SNR = 0 dB, M = 3
SNR = 0 dB, M = 4
SNR = 5 dB, M = 2
SNR = 5 dB, M = 3
SNR = 5 dB, M = 4
SNR = 10 dB, M = 2
SNR = 10 dB, M = 3
SNR = 10 dB, M = 4

Fig. 13. Plot of decoding error versus area coverage efficiency for different SNRs and
different values ofM, the number of sub-FOVs that overlap.

We can extend the above result to the general case whereM sub-FOVs overlap. In our ex-
ample we can have a maximum ofM = 4. For the case ofM = 3, instead of measuring a
single overlapd̂, we measure two overlapŝd1 and d̂2 resulting from the pair-wise distances
between three target ghosts in the superposition space. Therefore, we now have a 2-D Gaus-
sian error probability distribution. The probability of decoding error is calculated by integrat-
ing this 2-D distribution over the region given by(m1 + k1)δ − ε ≤ d̂1 ≤ (m1 + k1)δ + ε and
(m2 +k2)δ − ε ≤ d̂2 ≤ (m2 +k2)δ + ε. Herem1δ andm2δ are the true overlaps, andk1 andk2

are non-zero shifts such that(m1 + k1)δ and(m2 + k2)δ are valid overlaps. We again assume
that the probability of the true overlaps beingm1δ andm2δ is uniformly distributed. Extention
to M = 4, where we have a 3-D Gaussian error probability distribution is straightforward.

Figure 13 shows the probability of decoding error versus area coverage efficiency forε =
δ/2,Wt = 10∆r distance units, and different values of SNR andM. As the shift resolution
decreases, area coverage efficiency increases, but so does probability of decoding error. Thus,
the choice of shift resolution is a compromise between the area coverage and the probability
of incorrectly decoding the target location. We also observe that for fixed SNR, as we increase
M the decoding error decreases. We therefore conclude that longer target patterns make the
decoding process more robust and less prone to decoding errors.

5.4. Experimental results

To illustrate how 1-D spatial shift encoding of multiple sub-FOVs can be performed in real-
world applications we conducted an experiment using the optical setup proposed in Fig. 3(b).
The object space used for the experiment was an aerial map of the Duke University campus, and
a laser pointer was moved across it during the video aquisition to simulate a single moving tar-
get. The object space was 24-mm high and 162-mm wide, and was imaged using the multiplexer
in Fig. 3(b) onto a commercial video camera (SONY, DCR-SR42). By adjusting the tilts of the
mirrors shown in Fig. 3(b), we obtained an overlap setO = {3,7,11,20,14,24,28}× 1mm
which deviated slightly from the ideal scenario of{0,5,10,20,15,25,30}×1mm. In building
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the setup, care was taken to make the path lengths travelled by light from each sub-FOV close
to equal. However, there was a slight difference in path lengths which resulted in varying mag-
nification of some sub-FOVs. Therefore, the size of each sub-FOV was not uniform:W f ov =
{35,34,33,35,33,32,33,34}×1mm andH f ov = {24,23,22,23,22,22,22,23}×1mm, where
the ith elements ofW f ov andH f ov are the width and height off ovi , respectively.

Fig. 14. Experimental data movie showing successful decoding a target moving through
the object space. Intial target ambiguity is reduced using “missing ghosts” logic and is
completely removed as the target enters the region of overlap. (Media 3) (Movie size: 3.9
MB)

Figure 14 is a movie we made using this experimental setup. The movie shows the measured
superposition space along with the corresponding hypothesis space. Using the decoding logic
discussed in Section 4 we are able to decode the moving targetas it enters the region of overlap.
The movie also shows how the “missing ghosts” logic reduces ambiguity about the target’s true
location in the hypothesis space. The small deviations of the overlaps from their true values do
not affect the performance because all the overlaps are still unique. Uniqueness of overlaps is
both the necessary and sufficient condition for the applicability of our decoding strategy. Also,
the slight variations in magnification of the sub-FOVs do notaffect the decoding performance.

6. Conclusion

In this paper we proposed a novel technique to track targets without conventional image re-
constructions. The method is based on optical multiplexingof encoded sub-FOVs to create
superposition space data that can be used to decode target positions in object space. We pro-
posed a class of low complexity multiplexed imagers to perform optical encoding and showed
that they are light, cheap and have a simple design in comparison to the conventional imagers.
We discussed different encoding schemes based on spatial shifts, rotations, and magnification
with special emphasis on 1-D spatial shift encoding. We showed, based on both simulation and
experimental data, that the proposed method does indeed localize targets in object space and
provides continuous target tracking capability. We have also studied the trade-offs between area
coverage efficiency, compression ratio, and decoding time,and decoding error as a function of
shift resolution and SNR.
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