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Abstract—Cognitive radar is a recently proposed approach in
which a radar system may adaptively and intelligently interrogate
a propagation channel using all available knowledge including pre-
vious measurements, task priorities, and external databases. A dis-
tinguishing characteristic of cognitive radar is that it operates in a
closed loop, which enables constant optimization in response to its
changing understanding of the channel. In this paper, we compare
two different waveform design techniques for use with active sen-
sors operating in a target recognition application. We also propose
the integration of waveform design with a sequential-hypothesis-
testing framework that controls when hard decisions may be made
with adequate confidence. The result is a system that updates mul-
tiple target hypotheses/classes based on measured data, customizes
waveforms as the class probabilities change, and draws conclu-
sions when sufficient understanding of the propagation channel is
achieved.

Index Terms—Cognitive radar, matched illumination, sequential
detection.

I. INTRODUCTION

ACTIVE sensors are increasingly being deployed in com-
plex electromagnetic environments and as parts of low-

power distributed sensor networks. In these environments, inter-
ference can be strong and nonstationary; meanwhile, transmit
power and energy may be limited. Unfortunately, traditional
sensors usually operate within a fixed frequency band, use a
predefined suite of waveforms, and/or adapt to the propagation
environment only through post-measurement signal processing
[1]. Thus, in many cases it has been observed that traditional
sensing modalities lack the flexibility necessary to provide ade-
quate detection, tracking, and recognition performance in diffi-
cult/complex propagation and interference environments.

Effective sensor operation within complex environments re-
quires adaptation via constant monitoring of interference, co-
operation with other sensors, and optimized illumination wave-
forms. A newly proposed concept for optimizing the perfor-
mance of active sensors within resource-constrained and inter-
ference-limited environments is cognitive radar [1]. The goal of

Manuscript received September 1, 2006; revised January 25, 2007. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Arye Nehorai.

The authors are with the Department of Electrical and Computer Engineering,
The University of Arizona, Tucson, AZ 85721 USA (e-mail: goodman@ece.
arizona.edu; neifeld@ece.arizona.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2007.897053

cognitive radar (CR) is to provide the overall sensing system
with the capability to integrate 1) information about the prop-
agation environment, 2) the capabilities and positions of other
sensors, 3) input from external knowledge bases, and 4) system
objectives and priorities. This integration will enable a cognitive
radar system to decide on its next course of action including
such tasks as repositioning itself, requesting assistance from
other sensors, or customizing an active waveform.

CR operates in a closed loop. Within this loop, active interro-
gations of the channel are optimized based on prioritized system
objectives, understanding of the propagation channel, and other
forms of prior knowledge. With each illumination, the system’s
understanding of the channel improves in response to collected
data and other information. Haykin [1] suggests that such a
CR system can be represented using a Bayesian formulation
whereby many different channel hypotheses are given a proba-
bilistic rating. As more information is collected, the parameters
of the channel hypotheses and their relative likelihoods are up-
dated. The goal of an illumination, therefore, is to efficiently re-
duce the uncertainty attributed to each channel hypothesis. Hard
decisions are only made when confidence is sufficient or when
necessity mandates an immediate action.

The two primary technologies applied to CR in this paper
are matched illumination waveforms and sequential hypothesis
testing. The first of these is related to the optimum design of
illumination waveforms (i.e., probing signals). Probing signal
design was considered in [2]–[5] where the goal was to identify
the correct channel from among two known alternatives. When
the number of hypotheses is greater than two, however, it is not
possible to derive a closed-form solution for the optimum wave-
form. Useful alternative solutions have focused on maximizing
the average or minimum distance between echoes from different
hypotheses or on maximizing the average divergence between
hypotheses [6]. Bell [3] considered the problem of extracting
information from Gaussian ensembles of impulse responses in
additive white Gaussian noise (AWGN). In [4], optimum wave-
forms for binary hypothesis testing were extended to include
clutter echoes that depend on the transmitted signal. This for-
mulation led to a nonlinear problem that required an iterative
solution. The solution for the binary case has also been heuris-
tically extended to the multihypothesis case in [7].

Other work has considered polarimetry [8], uncertainty in
the assumed impulse responses [9], the Kullback-Leibler in-
formation criterion between target classes [10], and the theory
of matched illumination waveforms [11], [12]. Signal design
for improved target detection in the presence of range-Doppler-
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spread interference is considered in [13], [14], and several au-
thors have also studied the waveforms used by echolocating bats
[15], [16]. Echolocating bats use combinations of constant-fre-
quency and modulated waveforms. Moreover, bats change the
parameters of these waveforms as they get closer to their prey
[15].

It is impossible for a CR system to decide a priori on the
number of illumination waveforms that will be required to
achieve a given level of confidence in the desired recognition
decision. In order to enable the CR system to update its un-
derstanding of the channel without necessarily making hard
target decisions after each illumination, we combine Bayesian
channel representation and adaptive waveform design with
the formalism of sequential hypothesis testing (SHT). In SHT,
a decision is made after each observation to either select a
hypothesis or, if a hypothesis cannot be selected with sufficient
confidence, to make another observation. SHT was first moti-
vated, formalized, and analyzed by Wald in [17], [18] where it
was shown that a SHT procedure requires, on average, fewer
observations than an equal-strength test with a fixed number of
observations.

Multihypothesis sequential testing procedures have been pro-
vided in [19]–[22]. The test in [19] is often called the matrix
sequential probability ratio test (SPRT) because it consists of
a matrix of binary sequential tests. The procedure in [22] ap-
plies to multiple composite hypotheses. In this paper, we apply
the relatively simple matrix multihypothesis test of [19]. The
average number of observations for a sequential test has been
extensively studied in [23]–[27]. While the original results pre-
sented in [17], [18] apply to binary problems where the ob-
servations are independent and identically distributed (i.i.d.),
[23]–[27] extend the analysis of sequential testing procedures
to multihypothesis tests such as the one in [19] and to non-i.i.d.
scenarios. Of particular interest to us are the results in [23] and
[26] because they include asymptotic lower bounds and approx-
imate expressions for the average number of observations re-
quired by the matrix SPRT under non-i.i.d. observations. The
non-i.i.d. case applies to our work because every observation
is made with a different transmission waveform based on the
current class probabilities. By adapting the SHT through up-
dated waveforms, we desire to achieve an additional reduction
in the average number of required observations (and, therefore,
the number of transmissions).

In other related work, it should be mentioned that a sequen-
tial Bayesian approach to radar detection was presented in [28],
[29]. In [28], the author demonstrated efficient sequential allo-
cation of available energy to a set of detection problems in order
to rapidly make decisions on the entire set. Although the work
in [28], [29] used a fixed number of observations and did not
explicitly consider waveform design, it is the earliest published
work that the authors can find in which a radar system is treated
as an adaptive interrogation system where the nature of the in-
terrogations (i.e., the waveforms) are intelligently modified ac-
cording to the results of previous interrogations.

This paper evaluates the benefits and potential of CR using
target recognition as a sample application. The target recogni-
tion application is chosen because of its previous use in the liter-
ature for evaluating matched illumination techniques. The main

contribution of this paper is to propose and analyze the cou-
pling of sequential hypothesis testing with adaptive, matched
waveforms in order to implement a closed-loop active interro-
gation system. In doing so, we quantify the performance benefit
of using adaptive, matched waveforms compared to other wave-
forms. For example, we compare our adaptive waveform ap-
proach to waveforms that are matched to the original ensemble
of target hypotheses but do not adapt throughout the experiment.
These comparisons show the benefit of cognitive, closed-loop
operation. We also contribute by applying the matched illumi-
nation technique of [4], [5] to a multihypothesis scenario, by im-
plementing the information-based matched illumination tech-
nique of [3] in a practical and concrete example, and by com-
paring the performance of the two techniques. Finally, despite
the fact that we cannot predict the particular path a given sequen-
tial experiment will take (such as what particular waveforms
will be transmitted), we demonstrate that prior results on the av-
erage number of observations for non-i.i.d. sequential tests can
be used to approximate the number of illuminations required by
our closed-loop system.

In the next section, we define the problem statement and as-
sumed signal model. The SHT procedure and Bayesian update
equations are presented in Section III. In Section IV, two wave-
form design techniques are summarized. Simulations results are
presented in Section V, and conclusions are made in Section VI.

II. PROBLEM STATEMENT AND SIGNAL MODEL

We consider the target identification problem in which one of
possible targets is known to be present. Note that one of these

could also be the null hypothesis. Each target hypothesis is char-
acterized by a known impulse response , .
The objective of the CR system is to identify which target is
present as efficiently as possible in terms of transmitted energy.
Each time the radar transmits a waveform, a noise-corrupted
version of the reflected target echo is received. The CR system
uses the noisy data to improve its understanding of the channel
and, if possible, to draw conclusions related to its objectives.

Let the waveform transmitted by the active system be denoted
as . We assume the waveform is energy-limited since other-
wise no waveform or system optimization would be necessary.
Practical waveforms are also time-limited; thus, we assume the
waveform is nonzero only in the time interval

. These restrictions require that

(1)

where is the energy allocated to a single transmission. When
a signal is transmitted, one of possible waveforms is received
according to

(2)

where denotes the convolution operator and is AWGN
at the receiver with average power normalized to . The
target impulse responses are assumed to be nonnegligible for a
finite duration of time ; therefore, the received waveform can
be observed over a finite duration of length .
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To facilitate simulation on a computer, we use a discrete-time
formulation of the signal model. In the discrete-time formu-
lation, the transmit waveform is sampled with a sampling in-
terval of . Hence, the transmit waveform is represented by a
length- vector where . Using a normalized sam-
pling interval of , the transmit energy constraint is

(3)

where is the transpose operator and is defined in arbi-
trary units of energy. Likewise, the target impulse responses are
sampled at the same rate to produce length- impulse response
vectors . It is convenient to define a target convolu-
tion matrix (shown here for ) according to [5]

. . .
...

...
. . .

. . .
...

...

...
...

. . .
...

(4)

where the length of the receive signal vector is
. Using the convolution matrix, the received data are

(5)

III. SEQUENTIAL PROBABILITY RATIO TESTING

AND BAYESIAN UPDATES

In this paper, we focus on the target recognition application. A
finite number of target alternatives are possible, each character-
ized by a prior probability of being true . Together, the target
impulse responses and their probabilities form our Bayesian
representation of the channel.

While the end user objective usually involves hard decisions
concerning target identification, a CR system interrogates the
radar channel in order to update its probabilistic understanding
of the channel. In other words, the closed-loop operation of CR
is not necessarily concerned with making hard decisions—it
is the goal of the system designer to draw actionable conclu-
sions from the cognitive system’s Bayesian representation of the
channel. Instead, CR updates the probabilistic channel descrip-
tion after each illumination, and only after one channel alterna-
tive is clearly favored over the others are hard decisions made.
This operational concept is an ideal application for SHT.

SHT is a procedure for statistical decision-making based on
a sequence of observations. After each observation, a decision
is made to either accept one of the hypotheses (thereby ending
the test) or to continue the test by making another observation.
Therefore, the number of observations required to complete the
test is a random variable. In particular, we will consider the se-
quential probability ratio test (SPRT) [18] where the decision

at each stage (or iteration) of the test is based on the likelihood
ratio test. For a given error rate, the SPRT requires, on average,
fewer observations than decisions based on the most powerful
test for a fixed number of observations. Detailed descriptions of
the SPRT and its extensions can be found in [18]. In this paper,
we apply the multihypothesis sequential test of [19], which is
summarized below.

Let there be target hypotheses denoted as
. Further, let for be the de-

sired probability of incorrectly selecting given that is
true. The likelihood ratio including prior probabilities for a pair
of hypotheses and after the data observation is

(6)

where is the pdf of the observation under the
hypothesis and is the received data due to the illumi-
nation waveform. The experiment is terminated and is se-
lected when the condition

(7)

is met for some . After a given illumination and data collec-
tion, if the condition in (7) is not met, then another illumination
cycle is made. If the condition is met, then the number of iter-
ations/illuminations required to make the decision is .
The threshold in (7) to which the likelihood ratio is compared
is taken from [25], [26]. It is the threshold necessary to prevent
the average rate of making an error in favor of when is
true from exceeding . Note that since the SPRT is based on
a Bayesian approach, obtaining this error rate requires accurate
knowledge of the target prior probabilities. Since these proba-
bilities can be difficult to define for applications such as radar
target recognition, this could be a limiting factor in achieving
desired error performance levels.

For many investigations of the SPRT in the literature, the pdf
of the observations does not change with iteration number. That
is, , and the iteration index can
be dropped from the pdf notation. In our case, however, we are
updating the illumination waveform at each iteration. The pdf
of the observations under AWGN is

(8)

Since the mean of the pdf depends on the transmit signal, a dif-
ferent pdf applies to each observation. Fortunately, the thresh-
olds used by sequential testing to terminate the experiment do
not depend on the actual distribution of the data, which means
that the same likelihood threshold can be used regardless of the
shape or energy of the transmit signal.

When the distribution of the likelihood ratio can be obtained,
it can be used to approximate the statistical moments of the
number of iterations, . This is most easily done when the
observations of the sequential test are i.i.d.; however, useful
asymptotic results do exist for non-i.i.d. cases. In particular, we
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use the results of [23], [26] for the matrix SPRT to obtain asymp-
totic approximations for the average value of , called the av-
erage sample number (ASN). From [23], [26], we know that
the average number of illuminations, or ASN, can be approx-
imated for small probabilities of error if the following conver-
gence holds almost surely:

(9)

where is an increasing function and the ’s are positive
finite constants. More specifically, [23] proves that if (9) holds
for , then the ASN of a sequential test when is the
true hypothesis can be lower bounded by

(10)

Furthermore, as the desired error rates approach zero, the bound
becomes tighter and becomes an approximation to the ASN.

When the test’s observations are i.i.d., the ’s in (9) and
(10) are the Kullback–Leibler (KL) distances between the
and hypotheses. In our application, however, the KL dis-
tances vary with the illumination waveform. Hence, in the adap-
tive waveform case there is not a unique KL distance to be used
and it is not immediately clear what the values should be. In
fact, it is not certain that the convergence in (9) will hold. In-
tuitively, however, we reason that as , the probability
of the true hypothesis will approach one while the probabili-
ties of the other hypotheses will approach zero. In this limit, the
transmitted waveform will stabilize, which results in i.i.d. ob-
servations for large . Furthermore, the observations for large

should always converge to the same distribution regardless of
the particular waveforms used for small . Hence, we conclude
that (9) should still hold for our closed-loop observation system,
and based on this conclusion, it should be possible to numeri-
cally estimate the ’s through Monte Carlo simulation. This
estimation has been performed with good results in Section V.
For rigorous derivation of (9) and (10), please see [23], [26].

IV. WAVEFORM DESIGN TECHNIQUES

The two matched-illumination waveform design techniques
that we will investigate are summarized in this section. The first
technique is based on the work in [4], [5], [7]–[9] in which wave-
form pulse shaping was optimized to yield maximum SNR at the
output of the receiver matched filter. This technique provides a
provably optimal transmission waveform for the case
and is heuristically extended for . For , define the
target autocorrelation matrix as

(11)

The optimum transmit signal is the one that separates the two
signal echoes as far as possible in the whitened received signal
space. The solution is the transmission waveform vector that
maximizes the quantity , which is the eigenvector cor-
responding to the largest eigenvalue of . For the present as-
sumption of white noise, the noise covariance matrix is

where is the identity matrix. Thus, the op-
timum waveform for the binary-hypothesis case is the eigen-
vector corresponding to the largest eigenvalue of

. Once the eigenvector is found, it is normal-
ized to have the proper energy as defined by (3).

When , the strategy of creating maximum signal sepa-
ration is less clear. There are several possible distances to maxi-
mize; hence, it is unclear if the average distance between receive
echoes should be maximized, the minimum distance, or some
other criterion. Moreover, even if the optimum signal criterion
was known, it is not clear if a unique solution can be found.
This is because we lack direct control of the receive signals. In-
stead, we have indirect control via a transmission waveform that
interacts with target impulse responses. A logical approach sug-
gested in [7] is to form an overall target autocorrelation matrix
via a weighted sum of the individual matrices for each binary
pair. In [7], the autocorrelation matrix for the -ary case is sug-
gested to be in the form

(12)

where is a weight factor that accounts for the relative im-
portance of discriminating between hypotheses and . Unfor-
tunately, a specific suggestion for the weight factor is not pro-
vided in [7]. Using the target probabilities, we studied two op-
tions: and . The first option is an
ad hoc selection that seems to make intuitive sense, but one can
see that even if the probability assigned to one of the targets is
zero, that target will still factor into the overall waveform. The
second option is known to maximize the average divergence be-
tween output echoes [6], and we found that this weighting pro-
vided better results. After each transmission and reception by
the radar system, if a decision cannot be made, the hypothesis
probabilities are updated. Since the weights are based on these
probabilities, the target autocorrelation matrix is modified after
each data collection, which leads to a new waveform on the next
transmission. Waveforms obtained from this approach will be
referred to as eigen-based waveforms or the eigensolution.

The second matched-illumination waveform design tech-
nique is based on mutual information as described in [3].
Let be a random process that can be thought of as an
ensemble of target impulse responses. We will assume that
all of the sample functions of have finite energy and are
causal impulse responses. If we further assume that is
a Gaussian random process, then we can find the waveform
that maximizes the mutual information between the ensemble
of impulse responses and the received waveform. Let the
waveform have finite energy , be confined to the time interval

, and be essentially bandlimited such that
most of its energy is contained within the frequency band

. The information-maximizing waveform under
these constraints has the magnitude-squared spectrum defined
by [3]

(13)
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where is the receive observation interval defined in Section II
and the quantity is called the spectral variance and is
defined by

(14)

The constant in (13) enforces the finite-energy constraint by
satisfying

(15)

In the present application, the objective is to decide between a
finite number of target hypotheses that do not form a Gaussian
ensemble. Hence, the waveform based on (13)–(15) is no longer
optimum in terms of mutual information. Nevertheless, the ap-
proach is still intuitively satisfying and can be integrated with
our Bayesian representation of the target hypotheses by defining
the ensemble variance according to

(16)

Finally, we point out that the solution in (13) is obtained
by performing the waterfilling action [30] on the function

. Therefore, this waveform technique will be
called the waterfilling solution.

In the following section, we apply these two matched illu-
mination techniques to a multihypothesis target identification
scenario. Using Monte Carlo simulation, we compare the two
techniques and quantify the improvement obtained by adapting
the matched waveforms in response to previous observations. In
addition to the adaptive matching, the following results are in-
teresting because the two matched illumination techniques have
rarely been applied and compared in practical scenarios.

V. RESULTS

In this section, we demonstrate the benefits of matched illumi-
nation for -ary target identification and the improved conver-
gence obtained through the adaptive CR approach. We also com-
pare the performance of different waveform design approaches.
To estimate the ASN for the closed-loop system, 1500 different
sets of target impulse responses are created by generating
sample functions of a Gaussian random process with specified
power spectral density (PSD). Once the impulse responses are
generated, it is assumed that they are known perfectly. For each
set of impulse responses, the adaptive sequential testing proce-
dure is performed. The specified error rate is for
all and , and the target probabilities prior to any observations
are all equal. The length of all impulse responses and the wave-
form vector is samples. For each trial we note
the number of illuminations required for making a decision, and
the final metric is the number of illuminations averaged over all
trials. In these experiments, the 90% confidence intervals for
1500 trials are less than 10% of the absolute value of the esti-
mated value.

After obtaining the ASN for each data point, we perform an-
other Monte Carlo simulation to obtain a numerical estimate

of the ’s necessary for the asymptotic approximation. First,
for each transmitted energy level and adaptive waveform tech-
nique, we define a fixed-length experiment equal to approxi-
mately twice the ASN of the variable-length sequential test.
That is, the fixed length is . Then, for each of the
1500 sets of impulse responses, we repeat the fixed-length test
50 times and store ( is the true hypothesis) for each itera-
tion of each trial. After 50 trials, we average the ’s for each

value of to obtain an average path, , taken by each of the
binary SPRT’s over observations. The value of was chosen
experimentally such that a plot of versus approached a
constant value prior to termination of the fixed-length test. This
constant value was taken to be . Finally, the lower bound for
that particular set of hypotheses was computed as

(17)

and the final data point for the lower bound curve was obtained
by averaging the lower bound values over all impulse response
sets.

For Fig. 1, we generated 1500 sets of impulse re-
sponses from a flat PSD. Therefore, the targets are all sample
functions of the same random process. Fig. 1 shows the average
number of iterations required for each waveform design ap-
proach as a function of energy units allocated to a single illumi-
nation. The nonadaptive curves refer to the situation where the
waterfilling or eigensolution waveforms were initially matched
to the target ensemble with equal prior probabilities, but were
not adapted as the hypothesis probabilities changed. The best-
performing waveform is the eigensolution with adaptivity be-
cause it requires, on average, the fewest illuminations to reach
a decision. The waterfilling waveform performs slightly poorer
than the eigensolution while the impulse waveform (defined as

) and nonadaptive approaches perform sig-
nificantly worse. The lower bound (LB) curves, shown only for
the two adaptive waveform techniques, are good approxima-
tions of the ASN. Furthermore, this approximation would im-
prove if the error rate were reduced.

Fig. 1 clearly demonstrates the benefit of the SHT imple-
mentation of CR. Updating the system’s understanding of the
channel after each observation and updating a waveform to
match that understanding reduces the average number of illu-
mination cycles. Since each illumination has the same energy,
reducing the number of illuminations also reduces the total
amount of energy expended, which is useful in energy-limited
applications such as distributed sensor networks. The impulse
waveform performs approximately as well as the nonadaptive
matched illumination approaches because it is matched to
the PSD from which the impulse responses were created. If
the bandwidth of the impulse signal were not matched to the
bandwidth of the impulse responses, the performance would be
much worse.

Fig. 2 shows results for a scenario in which the impulse re-
sponses are generated from different PSDs. For Fig. 2, each im-
pulse response was generated from a PSD shaped like a Han-
ning window, but the windows were shifted by different amounts
for each of the four hypotheses. Therefore, each hypothesis had
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Fig. 1. Average illuminations to reach a decision versus energy per illumina-
tion.

Fig. 2. Average illuminations to reach a decision versus energy per illumina-
tion.

its energy concentrated (on average) into a different frequency
band. Since the PSDs underlying the hypotheses were different,
the best performance of the adaptive eigensolution and water-
filling waveforms is improved over the results of Fig. 1. It is in-
teresting, however, that performance of the nonadaptive eigen-
solution and waterfilling waveform is actually worse than in
Fig. 1. The performance of the impulsive waveform is relatively
unchanged.

Despite having somewhat similar performance, the wave-
forms produced by the eigensolution and the waterfilling
solution have quite different characteristics. In Fig. 3, we show
sample power spectra of signals produced by the two techniques
and compare them to the ensemble variance defined in (16).
Both power spectra are for the first illumination in a sequential
test. Fig. 3(a) compares the power spectrum of the eigensolution
and the ensemble variance. The eigensolution focuses most
of its energy into one or two narrow frequency bands that are
most useful. This effect is clearly seen in Fig. 3(a) and has been

Fig. 3. Waveform spectra compared to ensemble variance. Eigensolution spec-
trum is shown in (a) and the waterfilling spectrum is shown in (b).

noted in [5]. The waterfilling waveform, however, spreads its
energy into several narrow bands as seen in Fig. 3(b). Both the
ensemble variance and the eigensolution spectrum are normal-
ized to their peak power. In order to show that the waterfilling
solution allocates less energy to more bands, the waterfilling
spectrum in Fig. 3(b) is normalized to the eigensolution spec-
trum’s peak power. In this case, the waterfilling spectral peak
is approximately 40% of the eigensolution’s spectral peak.

The differing spectral characteristics of these two waveform
approaches translate into differences in the distances between
target echoes. In the same way that larger distance between
symbols in a communication system reduces errors, larger dis-
tance between target echoes makes it easier for the system to
make an accurate identification. Defining the distance between
(noise-free) echoes as

(18)

we have computed the average and minimum distance between
target echoes for both waveform design approaches and for 100
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Fig. 4. Comparison of the (a) average distance and (b) minimum distance be-
tween receive echoes for both waveform techniques.

different impulse response sets. In Fig. 4(a), we see the average
distance between received target echoes. The eigensolution
waveforms clearly produce echoes with larger average distances
than the waterfilling waveforms. However, the eigensolution
focuses energy into only one or two narrow frequency bands,
which may not be good frequency bands for all hypotheses. In
other words, a few well-separated hypotheses can increase the
average distance between echoes at the expense of a few poorly
separated echoes. The waterfilling solution, on the other hand,
spreads energy into several more frequency bands. As seen in
Fig. 4(b), this characteristic means that the waterfilling solu-
tion usually produces the largest minimum distance between
echoes. For this application, average distance seems to be more
important since the eigensolution outperforms the waterfilling
solution.

Finally, we present an example of how the waveforms and hy-
pothesis probabilities evolve over a single sequential test trial.
In Fig. 5, we show the positive half of the normalized power
spectrum for four different target hypotheses generated from flat
PSD’s. These are the target hypotheses that we are attempting to
discriminate in this experiment. The first hypothesis is the true

Fig. 5. Positive-frequency spectra of four sample target hypotheses.

Fig. 6. Progression of hypothesis probabilities over a realization of a sequential
test.

hypothesis in this case. Fig. 6 shows the evolution of the hypoth-
esis probabilities, and Fig. 7 shows four different waveforms
used during the test. Prior to observing any data, the hypotheses
are equally probable. The customized waveform for this equal
probability case is shown in the upper-left panel of Fig. 7. After
the first transmission, the probabilities do not change signifi-
cantly, but after the second transmission, the first and second hy-
potheses become the clear favorites. This change in likelihood
causes the waveform to change—careful comparison of wave-
forms #1 and #3 in Fig. 7 shows that the narrow band of signal
energy has shifted in response to the updated probabilities.

For the next several iterations, the likelihood of hypothesis
#1 becomes stronger while hypothesis #2 remains the next
likely candidate. Since the same two hypotheses are clearly
favored over this interval, the waveform spectra do not change
considerably. Finally, after eight transmissions, the second and
fourth hypotheses become approximately equally likely. This
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Fig. 7. Eigensolution waveform spectra at several key iterations of the sequen-
tial test.

results in waveform #9, where transmit energy is somewhat
divided between two frequency bands. These are the bands that
are useful for discriminating hypothesis #1 from hypotheses
#2 and #4. When the likelihood of the first hypothesis be-
comes even stronger after the tenth transmission, the relative
importance of the two frequency bands shifts a final time in
waveform #11. After the twelfth transmission, the system is
sufficiently confident to decide in favor of hypothesis #1 and
the experiment is terminated.

VI. CONCLUSIONS

We have proposed and simulated a closed-loop active sensor
by updating the probabilities on an ensemble of target hy-
potheses while adapting customized waveforms in response to
prior measurements. We have compared the performance of two
different waveform design techniques—one based on the eigen-
solution of [4], [5] and one based on information theory [3]. For
both waveforms, the advantage of adapting waveforms on the
fly in response to previously received data was substantial, and
the eigensolution slightly outperformed the waterfilling-based
approach. Moreover, we combined closed-loop radar operation
with a sequential testing procedure that allows the system to
update its understanding of the propagation channel until a
hard decision can be made with confidence. These supporting
technologies, acting together, yield a radar system that uses
measured data and other information to continually update its
understanding of the radar channel. In response to that under-
standing, the radar system transmits waveforms customized to
the environment and objective at hand while making conclu-
sions when sufficient confidence is achieved.
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