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Abstract— Adaptive and knowledge-based radar focus on 
improving the performance of the radar receiver through 
signal processing.  However, rather than develop transmission 
waveforms and signal-processing techniques independently, it 
is useful to consider a closed-loop system complete with an 
adaptive radar transmitter. 

In this paper, we summarize and demonstrate a framework 
being developed at the University of Arizona for 
implementation of closed-loop radar with adaptive waveforms.  
This framework integrates a Bayesian channel representation, 
matched illumination techniques, and sequential hypothesis 
testing.  The result is a closed-loop system that modifies its 
understanding of the channel based on measured data, 
customizes waveforms to hasten understanding of the channel, 
and draws conclusions (such as target classification) when 
sufficient understanding of the propagation channel is 
achieved.   

I. INTRODUCTION

Adaptive and knowledge-based (KB) signal processing 
focus on improving radar performance through advanced 
signal processing at the receive end of the system.  However, 
rather than develop transmission waveforms and signal-
processing techniques independently, it is useful to consider 
the implementation and performance of a closed-loop radar 
system.  The closed-loop system possesses an adaptive radar 
transmitter that responds to the propagation environment and 
to previously received data. This type of system, termed 
cognitive radar in [1], can be viewed as an intelligent system 
that continually interrogates the environment in order to 
achieve its objectives.  

In related work, Bell applied information theory to design 
radar waveforms in [2]. In [3], Guerci and Pillai develop a 
theory for the two-target ID problem and then propose an 
extension to the M-target ID problem. The problem of 
temporal waveform shaping for improved target detection 
and identification is also considered in [4].  

In [5], we have presented a closed-loop framework for 
radar target identification when the targets are each 
characterized by a known impulse response.  In [5], we used 
sequential hypothesis testing to determine when the 
experiment should be terminated while achieving a desired 
error rate.  Two different matched waveform techniques were 
compared. 

In this paper, we begin by summarizing the cognitive 
radar framework being developed at the University of 
Arizona.  This framework integrates a Bayesian channel 
representation, matched illumination techniques, and 
sequential hypothesis testing.  The result is a closed-loop 
system that modifies its understanding of the channel based 
on measured data, customizes waveforms to hasten 
understanding of the channel, and draws conclusions (such as 
target detection or classification) when sufficient 
understanding of the propagation channel is achieved.  We 
then demonstrate the effectiveness of our framework with 
simulated results from two applications.  The first application 
is a target recognition scenario while the second uses the 
closed-loop framework to control transmit beamforming for 
integrated search and track. 

II. CLOSED-LOOP, OR COGNITIVE, RADAR

At the University of Arizona, we are researching 
capabilities and implementations of the Bayesian approach to 
cognitive radar described in [1].  In this approach, the radar 
is responsible for deriving various hypothetical alternatives 
that could describe the radar channel.  Since prior knowledge 
and data can be inaccurate, corrupt, or outdated, the receiver 
also assigns probabilities to these hypotheses and feeds the 
information back to the transmitter. The transmitter is 
responsible for minimizing the uncertainty associated with 
the competing hypotheses in light of other restrictions such 
as priorities placed on certain aspects of the hypotheses.  For 
example, the transmitter may choose to minimize uncertainty 
about potentially threatening targets while sacrificing 
uncertainty about non-threatening targets.  The transmitter 
can minimize uncertainty through waveform design, 
platform control, and collaboration with other sensors. 

To apply the Bayesian approach, it is necessary to have 
an efficient description of the channel.  This description 
contains information about the channel such as target tracks, 
clutter, and external interference.  Moreover, the description 
can be converted into impulse responses and statistical 
information about the interference.  In other words, the 
channel description contains an encoding of the information 
necessary for describing expected components of the 
received signal.  Uncertainty about the channel state 
manifests itself as a probability density function. The 
adaptive illuminator must evaluate the ensemble of channel 
states inherent in the description and determine a waveform 
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to transmit that minimizes the uncertainty about the channel 
at the next interval.  In other words, we want to customize 
the system’s interrogation of the channel in order to 
minimize uncertainty about the channel.  Formulation of this 
problem in much more detail, however, is application-
specific and is an important component of our ongoing 
research.   

Evaluation of the channel state uncertainty after a data 
collection requires knowledge of the state’s pdf given the 
data.  This relationship can be described with Bayes’ 
Theorem as 
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where ( )nx  is the channel state descriptor at time step n and 
( )nr t  is the received waveform due to the active 

illumination at time step n. The denominator term in (1) is a 
scale factor common to all channel alternatives, and since the 
channel descriptor can be used to describe the deterministic 
and random components of ( )nr t , there is hope that the 
likelihood ( ) ( )( )|np r t nx  can be evaluated.  The remaining 
component, ( )( )p nx , is obtained from the probabilistic 
rating of the channel prior to data collection and includes 
propagation of time-varying channel components up to the 
time instant of the data collection. Just as in traditional target 
tracking, longer time intervals between state predictions lead 
to larger uncertainty.   

Target parameters such as range and Doppler shift are 
continuous.  Therefore, there is an infinite span of potential 
channel states that must be updated using (1).  In order to 
make the problem practical, the resolution of the system in 
range, Doppler, and angle must be used to limit the number 
of channel states being considered. 

In Fig. 1, the Bayesian framework for cognitive radar is 
compared to human perception and decision-making.  In Fig. 
1a, cognitive radar interrogates its environment, processes 
the data and other knowledge sources into an ensemble of 
channel hypotheses, then feeds the information back to the 
transmitter.  The transmitter makes decisions about which 
platform should move, which should transmit, and what 
should be transmitted.  In Fig. 1b, a human observes the 
environment through the five senses.  The observations are 
assimilated into an understanding of the environment.  Then, 
decisions can be made, and part of the decision-making 
process is whether or not to optimize the use of one of the 
senses. 

The closed-loop radar interrogation procedure is as 
follows.  At each iteration, we transmit a waveform matched 
to the probabilistic rating of target alternatives and collect the 
resulting data.  Once we have the data, we form likelihood 
ratios and update our understanding of the channel in order 
to optimize the next waveform.  While the radar continues to 
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Figure 1.  Block-diagram comparison of Bayesian-based 

cognitive radar to perception and decision making.

operate in this closed-loop fashion indefinitely, it is also 
important for the radar user to be able to draw traditional 
conclusions about the channel such as detections, tracks, and 
identifications.  Therefore, at each iteration we can also 
compare the ensemble probabilities to thresholds derived 
from the theory of sequential hypothesis testing.  If one of 
the hypotheses meets the threshold, a concrete decision can 
be made.  Whether or not conclusions can be drawn from the 
channel, the interrogation of the channel continues.  The goal 
of cognitive radar is generally to make conclusions more 
quickly and over a wider area with fewer resources. 

III. ADAPTIVE WAVEFORMS FOR TARGET RECOGNITION

The first demonstration application that we consider is 
the target recognition scenario reported in [5].  We assume 
that a target is known to be present within the radar channel 
and that the target is known to be one of M alternatives 
characterized by a known impulse response ( ) ,ih t i = 
1,2,…, M . When the waveform )(ts  is transmitted, the 
received signal can be represented as 
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( ) ( ) ( ) ( )y t h t s t n t= ∗ +  (2) 

where * denotes the convolution operator, )(ty  is the 
received signal, and )(tn is additive white Gaussian noise 
(AWGN) with average power normalized to 2 1nσ = .

Next, we let ji,α  for i j be the desired probability of 
incorrectly selecting jH given that iH  is true. In sequential 
hypothesis testing, the experiment is terminated and mH  is 
selected when the condition  
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is met for some m where ,
k
m jΛ  is the likelihood ratio test for 

the mth and jth hypotheses after the kth data collection.   

To compute (3), the pdf of the data under each hypothesis 
is needed.  According to (2), the observation waveform at 
each iteration is a Gaussian random process with mean 
determined by the true impulse response and the actual 
transmit waveform.  Hence, the pdf of the resulting 
(sampled) data vector y is multivariate Gaussian.  The mean 
of y varies for each hypothesis and also as the transmit 
waveform adapts according to closed-loop operation.  In this 
scenario, however, since the transmit waveform and target 
impulse responses are known, the pdf of the data is known 
under each hypothesis.   

We apply two different matched waveform techniques.  
The first technique is based on maximizing mutual 
information (via waterfilling) as originally described in [2].  
The second technique is based on SNR considerations as 
described in [3-4].  The application of both techniques to this 
application has been summarized in [5]. 

In Fig. 2, we show results from simulating this 
application with four target hypotheses.  We generated 1500 
different sets of four target impulse responses by generating 
sample functions of a Gaussian random process.  Once the 
impulse responses were generated, it was assumed that they 
were known perfectly.  The specified error rate was set at 
0.01.  For each set of impulse responses, we continued the 
closed-loop procedure until the sequential testing threshold 
was crossed.  We then noted the number of illuminations 
required for making a decision, and the final metric shown is 
the number of illuminations averaged over all trials. Fig. 2 
indicates that for this application the SNR-based matched 
illumination technique with closed-loop adaptive matching is 
the best performer, though both matched illumination 
techniques outperform the non-adaptive wideband waveform 
and non-adaptive matched waveforms. 

Next, we reconsider the target recognition application by 
allowing each target hypothesis to be represented by a power 
spectral density (PSD) rather than a single known impulse 
response.  This modification affects the closed-loop 
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Figure 2.  Average iterations to make a target ID decision. 

procedure in two different ways.  First, the waveform 
matching techniques must be extended to account for the 
different manner of representing the hypotheses.  For 
example, the information-based matched illumination 
technique requires definition of a spectral variance function.  
This function describes the variance between the transfer 
functions of the hypotheses and is used with the waterfilling 
procedure to define the waveform spectra.  In the results 
presented here, we define the spectral variance as  

( ) ( ) ( ) ( ) ( )
2

2

1 1
Pr Pr

M M

H i i i i
i i

f H f H fσ
= =

= Ψ − Ψ  (4) 

where ( )i fΨ  is the PSD of the ith hypothesis. 

The second way in which statistically described 
hypotheses affect the closed-loop procedure is that it can be 
difficult to achieve the desired error rate when realizations of 
the different hypotheses are not mutually exclusive.  To 
handle this, we defined the class PSDs such that most of their 
energy was in non-overlapping bands.  This minimized the 
number of target realizations, or sample functions, whose 
frequency spectrum actually resembled the PSD of an 
incorrect target class more than the PSD of the correct target 
class.  For realistic targets, non-mutually exclusive target 
classes is a common difficulty that must be accounted for. 

Results for statistically described hypotheses are shown 
in Fig. 3 where we compare a non-adaptive wideband 
waveform, a non-adaptive matched waveform that is 
matched using only the initial target class probabilities, and 
an adaptive matched waveform that updates as the target 
class probabilities are updated.  In Fig. 3, we show the CDF 
of the iterations required to make a decision.  Note that the 
adaptive waterfilling approach usually requires fewer  
iterations than non-adaptive approaches, but can occasionally 
require a huge number of iterations.  This behavior was not 
apparent in the case of known impulse responses. The 
matched waveforms in Fig. 3 are based on the waterfilling 
approach.   
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decision for statistically described targets. 

IV. ADAPTIVE TRANSMIT BEAMFORMING

Next, consider using the closed-loop framework for 
controlling an illumination beampattern. We assume that a 
volume of space can be divided into M cells within which we 
will detect and track targets. Let the received data consist of 
the measurements made by an antenna array (we assume no 
range-Doppler resolution for the moment).  According to the 
typical narrowband signal model for antenna arrays, the 
received data vector is 

( ) ( )( ) ( ) ( )( )
1

, ,
N i i i i

x y i x y
i

S k k k kα
=

= +y v n  (5) 

where ( ) ( )( ),i i
x yS k k is the illumination pattern voltage in the 

cell containing the ith target,  iα  is the ith target’s reflection 
coefficient, and ( ) ( )( ),i i

x yk kv  is the ith target’s steering vector, 
which depends on which cell the target is located through the 
spatial frequency coordinates ( ) ( )( ),i i

x yk k . The ability to 
detect a target in the ith cell depends on the SNR, which in 
turn depends on the illumination of the cell.  Assuming a 
finite energy constraint, we are interested in optimally 
allocating energy to the resolution cells such that we can 
detect and track targets in the cells as energy-efficiently as 
possible.  It must be noted here that this problem is 
essentially the same as the one treated in [6]; however, here 
we emphasize that the solution is obtained with the same 
framework used in Section III. 

Consistent with the approach used for target 
identification, we can define a spectral variance function, 

( )2 ,H x yk kσ  for use with the waterfilling operation.  Each 
cell, due to its different orientation with respect to the 
receive array, is associated with different spatial 
frequencies.  The spectral variance associated with each 
spatial frequency cell depends on the expected target power 
as well as the probability of a target being present. 

Fig. 4 shows a snapshot of the closed-loop beamforming  
procedure.  On the left in Fig. 4, we show an image 

Matched IlluminationTarget Probability

Figure 4.  Target probability (left) and resulting matched 
illumination pattern (right). White is highest intensity. 

representing the probability of target presence at one instant 
in time (true target locations shown with small squares).  On 
the right, we show the spatial power pattern obtained from 
converting the probabilities on the left to a spectral variance 
function.  Note that the most energy is allocated to cells 
where target presence is most uncertain. 

V. CONCLUSIONS

We have presented a brief summary of ongoing research 
in closed-loop, or cognitive, radar at the University of 
Arizona.  We are developing techniques for representing 
radar channels using a probabilistic methodology that is the 
foundation for closed-loop radar operation.  We are also 
investigating techniques for converting such a probabilistic 
channel representation into matched waveforms that can be 
implemented with an adaptive transmitter.  Two applications 
have been quickly demonstrated – one that implements 
temporal matching waveforms and one that implements 
spatially matched waveforms.  In the future, we will combine 
these techniques to develop closed-loop radar systems that 
perform integrated search, track, and identification functions. 
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