Superresolution of Coherent Sources in Real-Beam
Data

In this work we study the unique problems associated with
resolving the direction of arrival (DOA) of coherent signals
separated by less than an antenna beamwidth when the data
are collected in the beamspace domain with, for example,
electronically or holographically scanned antennas. We also
propose a technique that is able to resolve these coherent signals.
The technique is based on interpolation of the data measured by
an element-space virtual array. Although the data are collected in
the beamspace domain, the coherence structure can be broken
by interpolating multiple shifted element-space virtual arrays.
The efficacy of this technique depends on a fundamental tradeoff
that arises due to a nonuniform signal-to-noise ratio (SNR) profile
across the elements of the virtual array. This profile is due to the
structure imposed by the specific beam pattern of the antenna.

In addition to describing our technique and studying the SNR
profile tradeoff, we also incorporate a strategy for improving
performance through a subswath technique that improves

covergence of covariance estimates.

I.  INTRODUCTION

Superresolution of signals separated by less than
an antenna beamwidth has received considerable
attention in the array signal processing literature.
Two common subspace-based superresolution
techniques are MUSIC [1-4] and ESPRIT [5].
MUSIC works by decomposing the covariance matrix
into a signal-plus-noise subspace and an orthogonal
noise-only subspace using eigenvalue decomposition.
The angles of arrival are estimated by projecting the
array manifold onto the noise subspace. The inverse
of the power spectrum of such a projection gives
signal peaks in the estimated directions. ESPRIT
[5] works by exploiting rotational invariance of the
underlying signal subspace induced by requiring that
the sensor array have translation invariance. Most of
these methods, however, have been applied almost
exclusively to multi-channel arrays. For example,
techniques such as spatial smoothing [6], which
enable resolution of coherent signals, can only be
applied to antenna arrays that can be decomposed
into multiple subarrays with identical structure except
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for a translational shift. If such a subarray structure

is not available, then the subarray data can also be
interpolated [7], but the underlying data collection
domain is still in element space. Work has also been
reported toward efficient implementation of techniques
such as MUSIC. Of these techniques, root-MUSIC
deserves special mention [2, 3].

There has, however, been little work reported
on resolving signals within the antenna beamwidth
when the sensor, instead of being a multi-channel
array, collects data by scanning a real antenna beam
over the possible directions of arrival (DOAs). Data
collection in beamspace can occur using electronically
and holographically scanned antennas having fast
scanning capability but only a single output data
channel. Consider a real-beam system that collects
observations over an angular range of §_ to 6, with
N angular beam positions. The system has only
one receiving channel. If the system has an antenna
array, the single data output implies that the element
signals are combined prior to downconversion and
analog-to-digital conversion. On the other hand, a
traditional antenna array used for direction finding
will usually require separate analog-to-digital data
streams for each antenna element, or at least from
several subarrays.

Recently, Ly et al. [8] developed a scan-MUSIC
(SMUSIC) algorithm for achieving angular
superresolution with a single, stepped-frequency
radar having a scanned, narrow-beam antenna.

Their observed data are in matrix form with beam
positions along columns and frequency steps along
the rows. Once the matrix is obtained, each column is
linearly averaged over all frequencies. This averaging
results in a single vector, each element of which is

a frequency-averaged observation from a particular
angular direction. Ly et al. then go on to divide this
beamspace vector into subvectors and apply subvector
averaging as a form of spatial smoothing. The goal is
to generate a covariance matrix of sufficient rank that
it can be used to perform beamspace MUSIC. There
is, however, a difficulty with this approach related to
the covariance matrices for each subvector.! Different
subvectors in beamspace correspond to measurements
collected over different angular sectors. Since a given
angle of arrival is not in the same relative position
for all beam positions, a given signal’s power profile
is different in each subvector. (See Section IVD for
more details.) As a result, averaging the covariance
matrices of each of these subvectors results in poor
performance because the source seems to be in a
different location for each subvector.

A data snapshot vector collected in beamspace corresponds to

the entire angular range of interest as illustrated in Fig. 2(a). A
subvector of the data snapshot vector corresponds to measurements
taken over a certain portion of the entire angular range.
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Fig. 1. Beamforming using the common electronically scanned
phased array. Spatial frequency response is controlled by complex
weight vector w. The noise vector n = [ny,n,..., ny,_ 1, where M

is the number of sensors, corresponds to the AWGN case.

In this paper we propose a new technique for
resolving coherent signals in data collected by a
real-beam antenna. In Section II we introduce the
data model. Section III briefly discusses coherent
and noncoherent signals. In Section IV we introduce
our proposed solution along with a discussion of the
unique problems associated with covariance-based
techniques when applied to real-beam superresolution
of coherent signals. Our simulated results are given in
Section V, and we conclude in Section VI.

II.  DATA MODEL

In the case of traditional uniform linear arrays
(ULAs), data are collected in the element-space
domain by spatially sampling the incoming signal. As
shown in Fig. 1, the spatial sampling is performed by
M antenna elements whose multi-channel output s =
[59(®),5,(1),...,8_,(®)] is sampled and then weighted
by a complex weight vector w. The complex weight
vector emphasizes signals from a particular DOA
while supressing others, thus performing beamforming
[9, 10]. By changing the weight vector, the array
beam can be electronically scanned to focus on a
different DOA. The shape (linear, planar) and size
(aperture size) of the array geometry and the number
of sensors affect system performance by establishing
basic system constraints.

In contrast, a real-beam antenna system
collects data in the beamspace (spatial frequency
or wavenumber) domain, and data collection is
performed by sweeping a narrow beam through the
entire field of view (FOV). The antenna beam stops
to collect a measurement at each of several positions
that are uniformly spaced in angle. Therefore, at each
beam position, the contributions from all sources are
weighted by the real-beam antenna pattern before
being summed into a single output. The contribution
due to a signal arriving from a particular DOA
rises and falls as the mainlobe and sidelobes of
the real beam’s antenna pattern sweep across the
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FOV. A single sweep of the FOV results in a single
data snapshot vector. We assume the signals to be
narrowband.

Let 6 be the source signal DOA and let ; be the
pointing angle of the ith beam position in azimuth. We
first define a(f) = [a(~,,0),a(v,,0),. ..,a(nyb,O)]T to be
the beamspace steering vector for a signal arriving
from direction 6 where a(v;,0) is the response of
the antenna due to the signal arriving from 6 when
steered to angle ;. Let the v, i = 1,2,...,N, be the
beam sweep positions (angles). We can now define the
antenna response matrix (or beamspace manifold) as

A =[a(0)),a(0,),...,a(0y )]

where Gj, Jj=12,...,N, are the signal DOAs. Let
s(k) be the N, x 1 vector of signal amplitudes during
the kth sweep. Defining s;(k) as the signal amplitude
due to the jth DOA during the kth sweep, the signal
amplitude vector for the kth sweep is

s(k) = [sl(k),sz(k),...,sNa(k)]T. (O

We also define n(k) as the N, x 1 additive noise vector
for a single sweep. The signal model is then given by

y(k) = As(k) + n(k), k=12,...,K 2)

and the data vector y(k) for a single value of k is a
single beamspace data snapshot.

It is important to note that although (2) resembles
a typical snapshot model for a multi-channel system,
the elements of A have varying amplitude. The
variation in amplitude is due to the real beam’s
directional gain, which results in unequal and varying
weighting of the DOAs as the beam is scanned across
the FOV.

IlI. COHERENT AND NONCOHERENT SIGNALS

Given the snapshots y(k), k = 1,2,....K, we

define the data covariance matrix as Ry = E[§~H]

The additive noise is assumed to be complex white
Gaussian noise with variance 2. Using (2) and
making the typical assumption of independence
between the signal sources and the receiver noise,

we get Ry = ARAM + 071, where R, = E[ss"] is the
signal covariance matrix. The white noise assumption
is valid because, firstly, the different beam positions
are scanned in time and, therefore, the receiver noise
at one beam position is independent of the receiver
noise at a different beam position. Secondly, the noise
is due to the receiver, and as shown in (2), the antenna
pattern has no effect on it.

If the signals are not coherent, then rank(R,) = N,
(full rank), and we can apply any superresolution
technique (e.g. MUSIC) directly in the beamspace
domain as long as the beamspace manifold, or the
physical beampattern, is accurately characterized.

On the other hand, if the signals are coherent
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Fig. 2. (a) Data snapshot for a source arriving from 0°.
(b) Subvectors (no overlap for conceptual convenience) generated
from the data snapshot in (a). It can be seen that subvectors do
not have identical structure because signal strength is function of
angle. As a consequence, corresponding covariance matrices also
will not have identical structure.

then rank(R,) # N, and we cannot directly apply
any superresolution technique. Coherent signals

are defined as having perfectly correlated signal
amplitudes that differ only by a constant. Therefore,
they always add together in the same proportion,
leading to a degenerate covariance matrix.
Subspace-based superresolution techniques, unlike
maximum likelihood (ML) methods,? achieve their
performance by exploiting the structure of the data
covariance matrix, which is ruined by a degenerate
covariance matrix. To resolve such signals, their
coherence must be broken. Canh Ly et al. [8] do
this by employing smoothing in the beamspace
domain. However, as mentioned in the Introduction,
the angular range or sub-FOV of each subvector

is different. Fig. 2(a) shows the beamspace data
vector for a signal coming from 0°. On dividing
this beamspace snapshot into subvectors as seen in

2ML methods consider DOA estimation as a parameter estimation
problem and often involve solving a multivariate maximization
problem using numerical search methods [11, 12].
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Fig. 2(b), we see that the signal has a different power
profile in different angular ranges. This causes the
covariance matrices corresponding to the different
subvectors to be unequal, which leads to degraded
performance. To overcome this difficulty, we propose
to interpolate the element-space data of several virtual
antenna arrays [7], which can then be used in a spatial
smoothing algorithm. Unfortunately, there are also
problems associated with this method that arise from
the structure associated with the beam pattern. We
explain these problems in the next section where we
also discuss our proposed solution.

IV. PROPOSED SOLUTION

Our proposed solution uses minimum-variance
beamforming [9], though the MUSIC algorithm is
also a reasonable alternative. Minimum-variance is
a quadratic technique while MUSIC is a subspace
method. The difference is that the minimum-variance
technique considers the whole of signal space
(the data covariance matrix, as is shown below)
while MUSIC uses the noise subspace. As a result,
minimum variance does not require the explicit
step of separating the signal and noise subspaces
as required in MUSIC. On the other hand, both
approaches require the number of sources when
using root-based techniques. Below, we describe our
minimum-variance beamforming solution and discuss
the resulting tradeoffs. These tradeoffs, as we show,
are fundamental to the nature of the problem and
are independent of either of the above-mentioned
techniques.

A.  Minimum-Variance Beamforming

Consider a signal s(f) whose structure is
parameterized by # and measured in the presence
of other signals and noise. By applying the correct
weight vector h to the measurement vector y, s(6)
can be emphasized while noise and signals with
different values of # can be suppressed. The minimum
variance criterion for specifying h is to minimize the
average power, E[|htly|], at the output of the filter
subject to the constraint that the desired signal with
parameter value 6 is not suppressed. The desired
signal constraint is mathematically specified by
R[sH(#)h] = 1. Hence, the optimization problem is
stated as

mhinE[|th|2] subject to R[s"(®Hh]=1 (3)
and the solution is given by
R;'s(4
h= )
sH(Q)Ry 1s(0)

where Ry is the covariance matrix of the
measurements. As can be seen, the optimum weight
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vector is a function of the covariance matrix Ry and
the assumed direction of propagation. Instead of
calculating h, however, we can directly compute the
minimum-variance spectrum by calculating the power
in the beamformer’s output as a function of parameter
0 according to

P@©) = [s"O)R, 's(®)] . )

In principle, the minimum-variance spectrum of (5)
can be directly applied either in the element-space
domain or the beamspace domain. If operating in

the element domain, the signal vector s(6) is simply
interpreted as the steering vector of phase shifts

that are measured by a multi-channel array due to a
signal arriving from direction 6. Likewise, the (m,n)
element of the covariance matrix Ry represents the
correlation between measurements collected at the mth
and the nth antenna elements. This element-domain
covariance matrix can be estimated by averaging the
outer product of the element-domain data vector over
many data snapshots. If operating in the beamspace
domain, then s(f) = a(f) is the vector of measurements
that a plane wave from direction 6 excites at the
output of the real-beam antenna as the beam is swept
across the scene. The (m,n) element of the covariance
matrix Ry in this case refers to the correlation between
the output of the mth beam position and the nth beam
position. This beamspace covariance matrix can

be estimated by averaging the outer product of the
data vector formed from the outputs of the different
beam positions in an angular sweep. The averaging is
performed over multiple sweeps. For either domain,
the number of snapshots required to get a good
estimate of Ry is approximately twice the size

of Ry. Note that this number can be reduced by
employing diagonal loading, a simple yet effective
method [13].

For noncoherent signals that fluctuate relative to
each other from azimuth sweep to azimuth sweep, the
above technique works very well with no modification
and we will not discuss it further. For coherent
targets, however, the minimum-variance technique
will not work in either beamspace or element space.
In order to break up this coherence, we wish to apply
spatial smoothing in the element-space domain. First,
the beamspace data snapshot is transformed to a
virtual element-space snapshot by using a modified
inverse discrete Fourier transform (mIDFT). The
modified transform compensates for two factors.

One factor has to do with the amplitude taper in the
element-space domain resulting from the actual shape
of the beamspace antenna pattern. The second factor
is due to the real-beam positions being uniformly
spaced in angle rather than spatial frequency. Uniform
sampling in angle leads to nonuniform sampling in
frequency because the relationship between spatial
frequency (2 and the azimuth angle € is nonlinear
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according to
2
Q = Tsin(9) (©)

where ) is the wavelength of the narrowband source.
We briefly discuss both modifications in the following
subsection.

B. Modified IDFT

Consider the continuous inverse Fourier transform

v L™ 01 e
5= 5= [ 5Gmed ™
™ —00
where (2 is an analog frequency in radians per units
of x. Suppose that y(j§2) is the signal spectrum as
observed through a finite antenna aperture. The
smoothing of the observed signal spectrum caused
by the specific pattern of the antenna corresponds to
weighting the element-space data with a taper 7(x)
that is the inverse Fourier transform of the antenna
beampattern. For example, a uniform amplitude taper
in the x-domain corresponds to a sinc-shaped beam
in the 2 domain. Furthermore, the width of the taper
t(x) is inversely related to the width of the beam in
the ) domain. Since most antennas do not have a
sinc-shaped beampattern, the corresponding taper 7(x)
is not uniform and must be compensated for if we
want the source power to be uniform in the element
domain. Therefore, we express the element-domain
snapshot data as y(x) = #(x)y(x), and the inverse
Fourier transform becomes

30 =1y = - [

—00

+00

YD)/ dQ. (8)

As mentioned, the inverse transform in (8) gives the
tapered data y(x). To obtain untapered data, we move
t(x) into the transform to obtain

_ TG o
y(x) = > [m ) el**dQ. 9
Since the beamspace data are collected at discrete
beam positions, and we wish to obtain virtual
element-space data which are also discrete, we need
a discrete transform. Discretizing the data in both
domains yields

Np—1 ~

1 YU i na
Ax) = — XL p/PHNEY A Q)
y(nAx) 2 — t(nAx)e k>

n=0,1,...,N,—1 (10)

where N, is the number of virtual array elements

that we wish to obtain in the spatial-domain. It is
important to note that the interpolated spatial sampling
is uniform while frequency sampling is not, which

is why we denote the discrete frequency bins as
having width AQ), rather than some uniform A€). The
relationship between the uniform angular sampling

A# and the nonuniform frequency sampling follows
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directly from (6). Defining normalized discrete
frequency to be w, = Ax{};, we obtain the following
mIDFT

N,—1
(1L

where y(jw,) is the beamspace measurement obtained
at the kth beam position and ¢, is the amplitude

taper at 1(nAx). We can rewrite the transform (11) in
matrix-vector form as

y=Wy (12)

where [W],,, = (1/2nt,)e/™n Aw, . Thus, (12)
transforms the nonuniformly sampled real-beam data
to an untapered virtual array in element space.

C. Nonuniform SNR

We can express the beamspace snapshot vector in

(2) as
y=y,+n (13)

where y, is the signal component and n is the receiver
noise. Note that the signal part of the beamspace
data y has been shaped by the beampattern of
the real antenna. Thus, the transformation (12) is
required to convert the beamspace data to the data
that would have been received by an untapered
multi-channel array, i.e., a virtual array. The
beamspace noise contribution, however, does not
follow the beampattern because it is due to internal
receiver noise and not the result of a propagating
signal received by the antenna.

Applying the mIDFT transform to the noisy
beamspace data yields

Wy = Wy, + Wh. (14)

Let us simplify this situation further, for the sake

of explanation, by considering a scenario where

y, consists of only one source signal. The average
power of this signal in each virtual array element is
determined by the diagonal of E[Wy y"WH]. The
taper term in the denominator of (11) normalizes the
expected signal power to be uniform across all virtual
elements. On the other hand, the noise covariance for
the virtual array is

E[Wnn"'WH] ~ N, ondiag(ty *.0, %, 1y% )

(15)
where diag(-) forms a diagonal matrix out of the
elements of a vector and we have ignored the fact that
the mIDFT transformation is not strictly an orthogonal
transformation. The validity of this assumption
depends on the angular span of the real-beam data.

If the data amplitude taper #(x) is nonuniform, then
(15) shows that the noise power is not uniform across
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Fig. 3. Transformation of beamspace data to element-space data
consisting of 100-element shifted virtual subarrays. The shift
between any two virtual subarrays is 2B~!. The figure shows

nonuniform SNR profile.

the virtual array. Unfortunately, if we correct for the
nonuniform average noise power by multiplying by
the amplitude taper, we will achieve uniform average
noise power, but will cause nonuniform average signal
power. We wish to maintain uniform signal power in
the virtual element domain so that spatial smoothing
can be used to break signal coherence. Hence, we are
faced with nonuniform SNR on each array element.
Although we are able to create multiple shifted virtual
arrays with identical structure, the SNR-per-element
of each virtual array will be different. This results in
a fundamental problem where the covariance matrices
corresponding to different virtual arrays are not equal.
In addition, the eigenvalues of the noise subspace

are no longer equal, which complicates the ability to
separate signal and noise subspaces. However, when
applying spatial smoothing to break signal coherence,
it is more important to have uniform signal power
across the array than it is to have uniform noise power
across the array.

There are a couple of important points to consider
here. First, the nonuniform SNR profile results from
the shaping of the data by the antenna beampattern
and is inherent to the data collection model. Second,
our approach is different from Ly’s method [8], which
applies smoothing directly to the real-beam data.

The difference is two-fold. 1) Beamspace smoothing
results in a different signal profile in different angular
spans as opposed to a nonuniform SNR profile.

Thus the resulting covariance matrices have unequal
signal components. 2) In our approach, even though
we inherently have a nonuniform SNR profile, we
explicitly attempt to ensure that the signal component
is uniform across the array, as required by the spatial
smoothing technique.

The mIDFT transformation can be performed
several times to obtain data for several virtual arrays
shifted by different amounts [7]. Fig. 3 shows five
100-element virtual arrays with the uncompensated
amplitude taper. Specifically, if we look at the
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amplitude for the same element index across the five
virtual arrays, we see that they have different signal
strengths. In typical applications of spatial smoothing,
the subvectors of the data snapshot in element-space
domain may have little or no overlap. This is not

an option in our application as nonoverlapping

virtual arrays would result in extremely disparate
noise-power characteristics between subarrays. Thus,
the choice of shift between virtual arrays embodies the
fundamental tradeoff in this application. By selecting
small shifts, the disparity in SNR characteristics of the
shifted virtual arrays is minimized, but the ability to
counteract signal coherence is degraded. On the other
hand, virtual arrays with large shifts would have better
smoothing effect on the signal coherence, but would
cause corrupted covariance estimates due to varying
noise characteristics.

To summarize, the data from each beamspace
sweep is transformed to several shifted element-space
snapshots using the mIDFT. The interpolated data for
each shifted virtual array is treated as a subvector
to obtain a final covariance estimate via the spatial
smoothing algorithm. Once this final covariance
estimate is obtained, the minimum-variance signal
spectrum can be estimated, but performance will be
degraded by nonuniform SNR characteristics across
the different virtual arrays.

D. Swath Subsectioning

We now exploit the fact that the beamspace data
due to a single source is highly localized to an angular
region where the antenna beam is approximately
aligned with that source’s DOA. This fact allows for
a reduction in computational complexity as well as
improved performance. In this method, we divide the
full FOV covered by a sweep of the antenna beam
into several subswaths, or subsections. We then apply
root minimum-variance beamforming to estimate the
DOA s of sources present within a given subsection.
The advantage of using a root-based technique is that
it gives better resolution than the minimum-variance
spectrum for the same SNR [14]. Details on root
minimum-variance beamforming are available in [10]
and [14].

The swath subsectioning reduces computational
complexity and increases the convergence rate of the
covariance matrix estimates. Each swath subsection
has a reduced angular extent; hence, it also has a
smaller spatial bandwidth. Since the required element
spacing éd of the virtual array is inversely related to
the spatial bandwidth of the arriving sources, reduced
bandwidth implies that the spacing between virtual
elements can be increased without violating Nyquist’s
sampling theorem. The ability to increase the spacing
between virtual array elements allows the virtual array
aperture length (and, hence, the same array resolution)
to be represented with fewer elements. This reduces
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Fig. 4. Swath subsectioning by moving sliding window over
beamspace. Partial overlap at edge of each subsection avoids
discontinuities.

the size of the element-domain covariance matrix,
which reduces the sample support required to

obtain quality covariance estimates. Computational
complexity is reduced because the required matrix
inverses are now applied to smaller matrices, but more
importantly, performance is improved by increased
convergence of the covariance estimates.

The swath subsectioning approach can be thought
of as moving a sliding window over the beamspace
data as illustrated in Fig. 4. Each window location
filters the spatial spectrum of arriving sources. The
filtered azimuth spectrum is then transformed to
the element-space domain for several virtual arrays,
spatial smoothing is applied, and finally the roots
of the spectral polynomial are obtained. For a given
subsection, the first N, roots lying closest to the unit
circle in the complex plane are assumed to correspond
to N, signal DOAs.

Computing roots to estimate signal DOAs using
swath subsectioning requires two additional steps. The
first involves overcoming the aliasing resulting from
different angular (and as a result spatial frequency)
ranges covered by swath subsections having a fixed
bandwidth. The second step is the mapping of the
estimated DOA from the swath subsection to the FOV.
We discuss both steps in detail.

Consider a swath subsection spanning an angular
range from ¢, to ¢, lying wholly within the full
system FOV. From (6) we see that this angular
range defines a spatial frequency range from , =
27sin(g,)/ )\ to 2, = 2wsin(¢,)/\ and hence a spatial
bandwidth B = Q, — Q,. The spatial bandwidth in turn
defines the virtual array element spacing éd = 27/B,
which can be used to obtain the normalized spatial
frequencies w, = Q,6d and w, = Q,6d. Note that the
virtual array spacing is based on the spatial bandwidth
of the swath subsection, not of the full FOV. Also,
since 0d has been chosen to satisfy Nyquist sampling
for the subswath, we have w, —w; = 27, and the
normalized spatial bandwidth of the subswath
corresponds to a single trip around the unit circle in
the z-plane.

In general, however, w, # —7 and w, # 7. Hence,
the path around the z-plane unit circle for a given
swath subsection does not generally have a mid-point
located at zero. This asymmetry means that for
polynomial-based DOA algorithms applied to the
data from a subswath, a root on the positive real axis
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does not necessarily correspond to a source arriving
from the middle of the subswath. In other words, each
subswath has a unique clockwise or counterclockwise
rotation of its normalized spatial frequencies in the
z-plane.

To correct this rotation, we simply need to know
the normalized spatial frequency w, corresponding
to the start of the subswath. If the swath subsection
data leads to a polynomial root with angle w, that
is deemed to correspond to a signal source, the
nonnormalized spatial frequency €2, with respect to
the full FOV is

(wy —wy)

6d
The estimated signal DOA can then be calculated by
substituting 2 into (6).

The procedure above is applied to multiple
swath subsections in order to cover the full FOV.
However, there is the possibility of discontinuities
in the beamspace data if a source DOA corresponds
to the endpoints of a subswath. To avoid these
discontinuities, we apply partially overlapped
subsections. The midpoint of the overlapped region
is used as a boundary in accepting any DOA
estimates from a given subswath. By using overlapped
subswaths, we insure that the sweep of the real-beam
antenna pattern across the source DOA is fully
contained within a subswath. In other words, the
subswath endpoint does not occur until after the
source has fallen out of the mainlobe and primary
sidelobes of the real-beam sweep. This minimizes any
truncation error that may occur due to the subsection
approach. Alternatively, the reduced spatial bandwidth
of the subswath means that larger virtual array spacing
can be used. This larger spacing means that the
virtual array can consist of fewer virtual elements,
which reduces computational complexity and reduces
the amount of data needed for obtaining a good
estimate of the data covariance matrix needed for the
minimum-variance beamformer.

In Fig. 5 we show three targets placed in the
antenna beam’s FOV spanning from —15° to 15°.
Two of the targets are separated by less than an
antenna beamwidth while the third target has a very
different DOA. We use a subsection window size of
7.5° to resolve these three targets based on the swath
subsectioning method explained above. The figure
illustrates the stitching together of different subswaths
to produce the entire FOV including the superresolved
signals.

0, =0, + (16)

V. RESULTS

To analyze our proposed approach, we place two
coherent sources separated by less than an antenna
beamwidth. The sources have equal amplitude and
phase, and are placed at 0.41° and 0.59°. The 3 dB
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Fig. 5. Three signals resolved using swath subsectioning method
with window length of 7.5°. Two of the signals are closely spaced
and lie in same swath subsection while third one lies in entirely
different swath subsection. This figure shows “stitching” together
of different swath subsections to produce spectrum estimate of
entire FOV ranging from —15° to 15°.

antenna beamwidth is 0.44°, which makes the sources
about two-fifths of a beamwidth apart. The antenna
beam covers an azimuth angular range from —15°

to 15°.

Given the above setup, Figs. 6(a)—(d) show the
the root mean-squared error (RMSE) metric versus
SNR performance curves as a function of the virtual
element array shift and subswath window size. The
RMSE metric is defined as

RMSE = , |E (17)

Q ~
P 9")21
i=1

where 6, is the true DOA for the ith source and éi is
the estimated DOA for the same source. The total
number of sources in this simulation is Q = 2. The
expectation in (17) is estimated by averaging the
algorithm performance over 500 Monte Carlo trials.
For each subswath in a trial, we interpolate the data
received by several virtual subarrays, each shift by
a particular amount with respect to the previous
subarray. For example, a shift of “0.5” indicates that
all subarrays are shifted by 0.56d with respect to
each other. The virtual subarray data is used in the
spatial smoothing algorithm to obtain a smoothed
covariance matrix, which is then used in the root
minimum-variance distortionless response algorithm.
From Fig. 6, we observe the following.

1) The error is less for small subswath window
sizes, regardless of shift size.

2) For a specific window size, performance initally
improves with increasing subarray shift, but then
begins to degrade. A shift of one element seems to
perform best.

3) There does seem to be a threshold SNR where
performance begins to improve dramatically, and
the threshold SNR seems to shift to lower SNR
for smaller subswath window size. The threshold
phenomenon is common in estimation problems [10].
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Fig. 6. RMSE versus SNR plots for different shifts and window lengths. Shift of 0.25 means that each virtual element array is
shifted from previous one by one-fourth of virtual element spacing. (a) Window length = 3.25°. (b) Window length = 7.5°.
(c) Window length = 15°. (d) Window length = 30°. Note that window length of 30° covers entire azimuth angular range.

For our approach, performance at low SNR improves
with reduced window size.

The reason for improved performance with
decreasing window size is likely due to improved
convergence of the estimated covariance estimate.
The number of data samples necessary to obtain
a good estimate is proportional to the size of the
matrix. Since the swath subsection approach increases
virtual array element spacing, it reduces the number of
virtual array elements necessary for a given array size.
This reduces the dimensions of the data covariance
matrix and improves the convergence of its estimate.
Furthermore, the important data for estimating a
given DOA are largely localized to a few real-beam
positions where the antenna mainlobe is nearly
aligned with the DOA. At other beam positions, the
source’s contribution to the measured data is small
since the source must pass through low sidelobes.
This means that error induced by truncating the
beamspace data window is insignificant relative to
the large performance improvement obtained through
better convergence of covariance estimates.

The reason for the second observation follows
from the fundamental tradeoff that exists between
the nonuniformity of SNR profiles across the shifted
virtual element arrays and the degree to which signal
coherence is broken by those shifts. For small shifts,
the effect of nonuniform SNR profile across the
shifted arrays is small, but the ability of the shifted
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arrays to break the coherent signal structure is weak.
For large shifts, signal coherence can be easily
broken but the shifted virtual arrays have significantly
disparate SNR profiles. A shift of one virtual array
element seems to be a good compromise between
these competing requirements.

We next compare the performance of MUSIC and
minimum-variance beamforming. In Fig. 7 we plot
the MUSIC and minimum-variance beamforming
RMSE error in estimating #, in the presence of 6,. All
results are for a virtual subarray shift of one virtual
element. We note that, as expected, both MUSIC and
minimum-variance beamforming follow similar trends,
although the latter seems to perform better for small
window size and at lower SNR. Plotting the RMSE
for one DOA 1in the presence of the other also allows
us to compare our results with the Cramer-Rao bound.
Strictly speaking, the Cramer-Rao lower bound is a
bound on the variance of an unbiased estimate of a
nonrandom parameter, not for the RMSE metric that
we use here. However, it helps us better analyze our
results in the following discussion.

Fig. 7 shows that the RMSE performance of
minimum-variance beamforming and MUSIC tends
toward the Cramer-Rao bound for decreasing window
size and lower SNR. Both methods, however, possess
a pronounced performance floor. We analyze this
further for window size of 30°, which has the worst
performance. The separation of RMSE into bias
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Fig. 7. RMSE for él versus SNR plots for different window lengths and shift of one virtual element. Shift of one element means
that each virtual element array is shifted from previous one by one virtual element spacing. Minimum variance (MV) beamforming,
MUSIC and Cramer-Rao bound plots are shown. (a) Window length = 3.25°. (b) Window length = 7.5°. (c) Window length = 15°.
(d) Window length = 30°. Note that window length of 30° covers entire azimuth angular range. Fig. 7(d) also shows the bias and
variance plots for MV beamforming.

and variance components for minimum-variance
beamforming are plotted in Fig. 7(d). It can be
seen that the performance floor for increasing SNR
results from the presence of bias. The reason for
this bias seems to be the fundamental nature of the
data collection model which leads to nonuniform
SNR profile across the virtual array. We are able to
significantly improve performance by reducing the
window size and exploiting the tradeoff between
element array shifts and SNR disparity across
these shifted arrays, but we cannot totally remove
the bias.

VI.  CONCLUSION

In this paper we describe a fundamental problem
that arises when resolving coherent targets separated
by less than an antenna beamwidth when the data is
collected in beamspace by sweeping a real antenna
beam. We have explored the performance tradeoff
between the nonuniform SNR profile that is observed
over multiple shifted virtual arrays and the efficacy of
spatial smoothing for different array shifts. We also
proposed a swath subsectioning technique that reduces
the number of virtual elements needed to populate
a virtual array. This step improves performance by
reducing computational complexity and reducing the
amount of training data necessary to obtain quality

CORRESPONDENCE

covariance estimates. Our proposed method gives
promising results for performing superresolution of
coherent signals using real-beam data.
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Comments and Further Results on “Observability of
an Integrated GPS/INS During Maneuvers”

The above-mentioned paper [1] presented an
observability analysis of GPS/INS during maneuvers
based on a perturbation model. This note is on
several issues regarding two theorems (Theorem 4
and Theorem 5) for the time-varying cases in [1],
[2]. Specifically, this note points out and corrects
several errors in the proof of Theorem 4, and extends
Theorem 5 to yield full observability.

Firstly, it refers to the development below (18) in
Theorem 4. As for the equation

Wi, X X =bsF+bF,  bs,bseR (1)

the authors stated that “If b5 and/or b, are non-zero,

then w;, should be perpendicular to the plane-FF....”
In fact, (1) only implies that w,, is perpendicular to
the vector bsF + b F, not the entire plane-FF. Note
that there always exists, in any plane (including the
plane-FF), a vector to which w,, is perpendicular.
Consequently, the conclusion w;, x X = 0 cannot be
arrived at in this case. In addition, with Assumption 4
satisfied, w;, x X = 0 does not lead to X = 0.

In order to make Theorem 4 valid, Assumption 5
might be instead stated as “w;, lies in the plane-FF.”
Then w;, x X =0 is a direct result with (1) because
X is also in the plane-FF from [1, eq. (17a)].
Suppose X = b,w,,, b; € R. Substituting into (16b)
and (16a) in turns yields 0 = b,F x w;,. It means
b; = 0 with Assumption 4, so X = 0. Note that the
revised Assumption 5 is physically a rare event. It is
wondered whether a looser assumption exists.

Secondly, a couple of minor typing errors exist in
Theorem 5 ([1, pp. 531-532]). Specifically, v, below
(25) should be

FP —[wh, 170 1 ([wh,1* — [Wh1)F?
O ([wh, 1" — [wp)F?

Consequently, ®,, defined in Assumption 3 of
Theorem 5 should be

Dy, = {64,3 + (64,4 - 64,3[Wfb]X)@fl([wi’b]X —[wp 19}
3)

Furthermore, Theorem 5 can be refined to obtain full
observability.

2)
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