
TABLE VI
Small- and Medium-Scale Test Hub Positions

Total Displacement (cm)
Data Set Polarization from Start

1/2 Vertical/Horizontal 0.0
3/4 Vertical/Horizontal 1.7
5/6 Vertical/Horizontal 2.5
7/8 Vertical/Horizontal 3.8
9/10 Vertical/Horizontal 5.0
11/12 Vertical/Horizontal 10.1
13/14 Vertical/Horizontal 15.2
15/16 Vertical/Horizontal 20.3
17/18 Vertical/Horizontal 25.4
21/22 Vertical/Horizontal 20.5
23/24 Vertical/Horizontal 50.8
25/26 Vertical/Horizontal 91.4
27/28 Vertical/Horizontal 111.7
29/30 Vertical/Horizontal 132.1
31/32 Vertical/Horizontal 172.7
33/34 Vertical/Horizontal 213.4
35/36 Vertical/Horizontal 254.0
37/38 Vertical/Horizontal 294.6
39/40 Vertical/Horizontal 335.8
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Adaptive Detection and Diversity Order in
Multistatic Radar

We derive the generalized likelihood ratio test (GLRT) for

multistatic space-time radar where each sensor platform has

a coherent multi-channel array. A multistatic version of the

adaptive matched filter (AMF) detector is also developed and its

performance results compared with that of the GLRT. Results

show that the multistatic GLRT outperforms the multistatic AMF

and that the performance advantage increases with the number of

radars in the system. The concepts of geometry gain and diversity

gain for multistatic STAP are defined in terms of asymptotic

properties of the system’s probability of miss.

I. INTRODUCTION

Space-time adaptive processing (STAP) is an
extension of adaptive antenna techniques that uses the
signals received on multiple elements of an array and
multiple pulses of a coherent processing interval (CPI)
to form a space-time filter that maximizes system
signal-to-noise ratio (SNR). The benefits of this
filtering technique are enhanced detection performance
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and improved rejection of external interference
[1—3].
Even though STAP is a powerful technique in

clutter cancellation, certain radar/target geometries
are less favorable than others, and ground-based
interference is still a significant factor in most
circumstances. If the target velocity vector is
approximately perpendicular to the radar platform’s
line of sight, the target will be hard to distinguish
from background clutter. However, this can be
overcome by adding additional viewing perspectives
that realize more radial velocity from the target.
Furthermore, we show below that the number of radar
platforms observing a fluctuating target controls the
asymptotic slope of the system’s probability-of-miss
(Pm) performance while the specific geometry controls
the asymptotic shift.
The system that we study here is a multistatic

radar system made up of widely separated airborne
platforms. Each platform is capable of acting as both
transmitter and receiver. As a receiver, each platform
possesses a coherent, multi-channel array capable
of collecting a space-time data set. Furthermore,
we also assume that each receiver can collect and
separate the data due to multiple transmitters, which
requires separable waveforms. For example, multiple
waveforms can be separated when transmitted on
nonoverlapping frequency bands. The multistatic
system consists of several unique propagation
paths. First, there are monostatic paths where
receivers measure reflections due to their co-platform
transmitters. Second, there are bistatic paths where
receivers measure reflections due to the waveforms
transmitted from different platforms.
Multistatic radar has the advantage of viewing

the same target from multiple perspectives. As
described in [4], in the presence of ground clutter this
provides two types of performance gains: diversity
gain and geometry gain. Diversity gain is obtained
by observing multiple independent observations of
a fluctuating target. For example, the MIMO radar
work of [5]—[6] shows how these fluctuations can be
exploited. The work in [5]—[6] considers spectrally
white interference. For multistatic STAP, however,
the effectiveness of these multiple observations is
controlled by how well ground clutter and other
interference can be rejected. This rejection, in turn,
depends on the geometry of the radar platform and the
target’s velocity vector. Fortunately, a moving target
that has no radial velocity with respect to one radar
will likely have some radial velocity with respect
to a second radar provided there is enough spatial
displacement between the two viewing perspectives.
Hence, geometry controls the diversity gain, and we
have called this factor the geometry gain.
In this paper, we derive constant false-alarm

rate (CFAR) detectors for multistatic STAP and
quantify their performance in terms of diversity and

geometry gain. The CFAR detectors are multistatic
extensions of the monostatic CFAR tests of [7] and
[8]. We compute Pm and show that in the presence of
a fluctuating target, Pm curves for both CFAR tests
possess an asymptotic slope. This asymptotic behavior
is analogous to the probability-of-outage behavior
used to define diversity order (DO) in communication
theory. Therefore, we propose definitions of diversity
and geometry gain in terms of the asymptotic
behavior.
In the next section, we define our problem

statement and signal model. Section II also develops
the multistatic versions of the GLRT and AMF
detection methods and discusses their statistical
properties. Section III presents the results from a
series of experiments using the detection methods
developed in Section II. These experiments not
only compare the methods as a function of number
of radars employed, but also outline a way to
characterize which geometries optimize performance
for a given multistatic configuration. Also discussed in
Section III is the performance increase associated with
including bistatic paths between radars as a means
of increasing diversity gain without increasing the
number of radar platforms. Section IV concludes the
paper.

II. SIGNAL MODEL AND DETECTION STATISTICS

A. Multistatic STAP Signal Model

Let a multistatic radar system be comprised of
multiple airborne platforms at different locations
surrounding an area of interest. Each platform
possesses a multi-channel array; therefore, the system
model is defined by Q independent sets of space-time
observations of the same area on the ground. In the
context of this paper, independent observations can
be realized by geographical separation of the radar
platforms and from both monostatic and bistatic
propagation paths.
Let the primary data corresponding to the

qth space-time data set be denoted by the vector
zq for 1· q·Q. Each zq is formed by stacking
the space-time data samples collected by a local
multi-antenna array over multiple pulses into a
column vector where the length Nq is the number
of space-time measurements observed in a single
snapshot of the qth data set. The qth primary data
vector is defined as

H0 : zq = nq

H1 : zq = bqsq+nq:
(1)

In (1), nq is the vector of noise and interference
corrupting the qth data set, sq is the normalized
space-time steering vector for the target hypothesis
relative to the specific propagation geometry of the
qth data set, and bq is the complex amplitude of the
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target signature in the qth data set. H0 is the null
hypothesis, and H1 is the target-present hypothesis.
The interference vector nq is a zero-mean complex
Gaussian process characterized by the covariance
matrix Mq. The noise vectors are assumed to be
independent from data set to data set.
Since the target’s absolute position and velocity

vector map into different relative angles and Doppler
shifts for different data sets, each steering vector
sq is different even though they describe the same
absolute target hypothesis. Therefore, the mapping
of hypotheses from absolute parameters to relative
parameters must be very accurate, which implies
accurate knowledge of the relative locations of
the radar platforms. If the mapping is inaccurate,
the target may still be detected, but estimates of
the target’s absolute position and velocity may be
inaccurate due to improper alignment of the relative
hypotheses of each platform. In this paper, we do not
address how the mapping of relative hypotheses takes
place, nor do we quantify the effects of inaccurate
mapping on detection or parameter estimation.

B. Multistatic STAP Generalized Likelihood Ratio Test

Let Zq be a matrix of space-time measurements
that comprise the qth data set. This matrix is
defined as Zq = [zq zq(1) zq(2) ¢ ¢ ¢zq(Kq)] where
zq is the primary data vector defined above, and
zq(1), : : : ,zq(Kq) are Kq secondary data vectors. The
Zqs combine to form the full matrix of observations
due to all Q data sets, Z= [Z1 Z2 ¢ ¢ ¢ZQ]. Due to the
independence of the interference between data sets,
the joint probability density function (pdf) of all data
matrices from all radar platforms reduces to a product
of the individual pdfs from each of the data sets. The
joint pdfs for the H0 and H1 hypotheses for Q data
sets are

f(Z jH0) = f(Z1,Z2, : : : ,ZQ jH0) =
QY
q=1

fq(Zq jH0)

f(Z jH1) = f(Z1,Z2, : : : ,ZQ jH1) =
QY
q=1

fq(Zq jH1):
(2)

Under the H0 hypothesis, the primary data vector
has the same pdf as the secondary data. Since clutter
returns are assumed to be complex Gaussian, the null
hypothesis pdf for a single data vector and data set
can be represented as

fq(zq(k) jH0) =
1

¼NqkMqk
exp[¡zHq (k)M¡1

q zq(k)]

(3)

where (¢)H denotes the conjugate transpose operation
and k ¢ k denotes the determinant of a matrix. In (3),
Mq is the interference covariance that applies to the

qth data set; therefore, Mq = Efzq(k)zHq (k)g where Ef¢g
denotes expected value. Equation (3) also applies to
all zq(k) under the H1 hypothesis, but the pdf for the
primary data vector under H1 is

fq(zq jH1) =
1

¼NqkMqk
exp[¡(zq¡ bqsq)HM¡1

q (zq¡ bqsq)]:

(4)
If the space-time data snapshots within a given data
set are independent, the pdf for that data set is

fq(Zq jH0) = fq(zq,zq(1), : : : ,zq(Kq) jH0)

= fq(zq jH0)
K
qY

k=1

fq(zq(k) jH0)

fq(Zq jH1) = fq(zq,zq(1), : : : ,zq(Kq) jH1)

= fq(zq jH1)
K
qY

k=1

fq(zq(k) jH0):

(5)

Using the identity vHA¡1v= tr[A¡1V] where v is a
vector, A is a square matrix, V= vvH, and tr[¢] is the
matrix trace operator, we can derive

fq(Zq jH0) =
(

1

¼NqkMqk
exp[¡tr(M¡1

q TqjH0 )]

)K
q
+1

(6)

and

fq(Zq jH1) =
(

1

¼NqkMqk
exp[¡tr(M¡1

q TqjH1 )]

)K
q
+1

(7)
where

TqjH0 =
1

Kq+1

Ã
zqz

H
q +

KqX
k=1

zq(k)z
H
q (k)

!
(8)

TqjH1 =
1

Kq+1

Ã
(zq¡ bqsq)(zq¡ bqsq)H +

KqX
k=1

zq(k)z
H
q (k)

!
:

The likelihood ratio test (LRT) is

¤(Z) =
f(Z jH1)
f(Z jH0)

=
QY
q=1

fq(Zq jH1)
fq(Zq jH0)

: (9)

To obtain the GLRT, the numerator and denominator
of (9) are independently maximized over their
respective unknown variables, which in this case
includes all bqs and Mqs. Fortunately, both the
numerator and denominator of (9) can be maximized
by maximizing each of the fq(Zq jHi) terms
individually. Moreover, maximizing an individual
term is the same problem solved in [7] to derive the
monostatic STAP GLRT. Under the H0 hypothesis,
maximization of the qth term is accomplished by
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the covariance estimate M̂qjH0 = TqjH0 . Under the H1
hypothesis, the maximization is accomplished by the
covariance estimate M̂qjH1 = TqjH1 . Substituting these
estimates into (6) and (7), respectively, the ratio in (9)
becomes

¤G(Z) =
QY
q=1

24kTqjH0kKq+1
kTqjH1k

K
q
+1

35 : (10)

Next, we define a matrix using only the secondary
data as

Sq =

K
qX

k=1

zq(k)z
H
q (k) (11)

and using the same manipulations as in [7], we find
that the signal estimates that maximize the ratio in
(10) are b̂q = s

H
q S

¡1
q zq=s

H
q S

¡1
q sq. With these estimates,

the multistatic GLRT is

¤G(Z) =
QY
q=1

0BBB@ 1+ zHq S
¡1
q zq

1+ zHq S¡1q zq¡
jsHq S¡1q zqj2
sHq S¡1q sq

1CCCA
K
q
+1

=
QY
q=1

(lq)
K
q
+1: (12)

C. Multistatic Adaptive Matched Filter

The difference between the GLRT derivation and
the procedure for deriving the adaptive matched filter
(AMF) test statistic is the starting assumption for
the interference covariance matrix. In the case of the
multistatic GLRT, it is assumed that the noise statistics
are unknown and must be estimated. In the case of
the multistatic AMF, the noise statistics are assumed
known, but then an estimate is substituted into the
final form of the test statistic. This simplifies the
derivation and provides a simpler test statistic.
As in the GLRT, the derivation begins with the

LRT of (9). Since the Mqs are treated as known
quantities, however, terms in the LRT attributed to the
secondary data cancel each other in the numerator and
denominator. Thus, the LRT can be simplified to

¤(Z) = ¤(z1,z2, : : : ,zQ) =
QY
q=1

fq(zq jH1)
fq(zq jH0)

: (13)

Substituting in the Gaussian pdfs, simplifying, and
taking the logarithm yields

° = ln(¤) =
QX
q=1

(2Refb¤qsHqM¡1
q zqg¡ jbqj2sHqM¡1

q sq):

(14)

Again, we can maximize this expression with
respect to the unknown signal amplitudes by

maximizing each component of the summation.
Therefore, we need to maximize

°q = 2Refb¤qsHqM¡1
q zqg¡ jbqj2sHqM¡1

q sq (15)

with respect to bq, which results in

b̂q =
sHqM

¡1
q zq

sHqM¡1
q sq

: (16)

The result of (16) represents the same maximum
likelihood estimate for the target amplitude that we
derived for the GLRT derivation except that here
the covariance matrix is still assumed to be known.
Substituting (16) into (14) for each observation
platform yields

°AMF =
QX
q=1

jsHqM¡1
q zqj2

sHqM¡1
q sq

: (17)

Finally, the AMF approach of [8] calls for substituting
in the maximum likelihood estimate of the
interference covariance matrix computed from the
secondary data. Thus, the multistatic AMF is

°AMF(Z) =
QX
q=1

jsHq M̂¡1
q zqj2

sHq M̂¡1
q sq

(18)

where

M̂q =
1
Kq

K
qX

k=1

zq(k)z
H
q (k): (19)

D. Properties of the Test Statistics

In order to set the threshold using the
Neyman-Pearson criterion, knowledge of the
probability distribution of the test statistic under the
null hypothesis is required. Taking the logarithm of
(12), we have

ln[¤G(Z)] =
QX
q=1

ln[(lq)
K
q
+1] =

QX
q=1

(Kq+1)ln(lq):

(20)

Each lq term in (12) is equivalent to the monostatic
GLRT of [7] where the probability of false alarm (Pfa)
for a single data set is shown to be

Pfa = Prflq ¸ l0g=
Z 1

l0

fq(lq)dlq = (l0)
N
q
¡1¡K

q :

(21)

Since Prflq > l0g= Prfln(lq)> ln(l0)g, we define
xq = ln(lq) and x0 = ln(l0) and rewrite (21) as

Pfa = Prfxq ¸ x0g=
Z 1

x0

fq(xq)dxq = (exp(x0))
N
q
¡1¡K

q :

(22)
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Fig. 1. Multistatic geometries used for simulation of three-platform systems.

Next, if Fq(x0) is the cumulative distribution function
(CDF) of the random variable xq, then Fq(x0) = 1¡Pfa.
Using the right hand side of (22) for Pfa and taking
the derivative of the cumulative distribution function
(CDF), the pdf of xq under H0 is

fq(xq) = (Kq+1¡Nq)exp(¡xq[Kq+1¡Nq]):
(23)

Therefore,
xq = ln(lq) (24)

is exponentially distributed with E[xq]=1=(Kq+1¡Nq),
and (Kq+1)ln(lq) is exponentially distributed with a
mean of (Kq+1)E[xq].
Based on the above, the logarithm of (12) results

in a test statistic that is the sum of independent
exponential random variables. Since Kq and Nq
may be different for each platform, the mean of
each term in the resulting statistic may be different.
Hence, calculating the probability of false alarm for
the multistatic GLRT requires the distribution for
a weighted sum of exponential variates, which is
presented in [9]—[11]. Furthermore, we can now use
these relationships to determine the CFAR properties
of the multistatic GLRT. The pdf of a weighted sum
of independent exponential variates depends only on
the weights (means) of the individual terms. Since the
above expression for the mean of a single term does
not depend on any clutter statistics, it follows that the
complete multistatic GLRT is a CFAR test. The pdf of
the test output under H0 depends only on the snapshot
length and number of secondary snapshots for each
platform.
It is not unexpected that the multistatic GLRT is a

CFAR test since the independence assumptions reduce
the test to a summation of terms that individually
are equivalent to the CFAR test of [7]. Similarly,
the multistatic AMF consists of a summation in
which the individual terms are themselves CFAR.
Again, in [8] the individual terms are proven to be
functions of Kq and Nq, but not functions of the
underlying interference statistics. The summation of
these individual test statistics into a single statistic
preserves the CFAR property of the multistatic
AMF. Unfortunately, a closed-form solution for the
probability of false alarm for the single-platform
AMF was not presented in [8]. In order to calculate

the probability of false alarm for the single-platform
case, Robey [12] performs a numerical integration
over the pdf of a random loss factor ½, which is beta
distributed. With this being the case, a closed-form
expression for the probability of false alarm of the
multistatic AMF is currently unavailable, and in our
results below we have set detection thresholds for this
test empirically.

III. RESULTS

In this section, the performance characteristics
of the two multistatic detection methods are
evaluated and compared. Performance was evaluated
numerically using a multistatic STAP Monte Carlo
simulation. First, we evaluate probability of detection
(Pd) as a function of input SNR for tests using one,
two, and three radars in a multistatic system. Initially,
the target has fixed amplitude as observed by all
radars in the system. The geometry used for the
first scenario is geometry A, shown in Fig. 1. As
Fig. 1 indicates, each of the three radars observes
the scene from a different aspect. Each radar’s look
direction is perpendicular to its velocity vector, and
the hypothesized target is assumed to be in the center
of the beam for each radar. After performing this
experiment for the nonfluctuating target model, the
same performance is reviewed for a fluctuating target
model.
In the first set of tests, only monostatic data

collections are employed. In other words, each radar
platform transmits and receives its own waveform, but
does not observe the reflections due to transmissions
from the other platforms. The data from each platform
are still used to produce a joint test statistic. In
subsequent results, we consider the use of bistatic data
to improve the DO of the system.
For this simulation, each radar platform has the

same operating frequency, 450 MHz, and pulse
repetition frequency (PRF), 600 Hz. (We assume that
some type of signal coding enables each receiver to
separate out reflections due to its own transmitter.
In practice, the simplest way to do this might be to
transmit on different bands.) All radars are traveling
at 60 m/s in the direction indicated in geometry A of
Fig. 1. Each radar platform uses a 5-element antenna
array with half-wavelength spacing. The interference
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Fig. 2. Multistatic GLRT and AMF performance as function
of Q.

covariance matrices Mq are calculated using arbitrary
ground reflectivity profiles in such a way that each
ground profile is unique for each radar perspective.
Clutter-to-noise ratios (CNRs) ranged from 47 to
53 dB. No antenna alignment or ownship position
errors were considered; therefore, target steering
vectors were assumed to be accurate. A small amount
of internal clutter motion (ICM) has been added to the
interference covariance matrices to simulate surface
wind conditions.
The first experiment looks at multistatic GLRT

and AMF methods where all platforms have 10 deg
of freedom and use 20 secondary data snapshots
to form a sample covariance matrix. This particular
setup is used so that results for a single platform will
be comparable with those of [8]. The target has the
same constant amplitude for all radar observation
platforms. As can be seen in Fig. 2, the performance
of the combined system improves as the number of
radar platforms increases, regardless of the method
employed. Also, the multistatic GLRT performs
slightly better than the multistatic AMF, and the
margin of that performance advantage increases as
the number of platforms increases.
Fig. 3 expands the scale on the single-radar and

three-radar cases of Fig. 2 to show the AMF/GLRT
performance crossover phenomenon discussed in [8].
It is interesting to note that the performance crossover
seems to be unique to the single-radar case. It is
possible that the crossover point still exists for the
multistatic system, but if so, it is located at a Pd that
increases as the number of platforms is increased.
Since the multistatic system consists of multiple

moving airborne platforms, a fading target model
better represents the radar cross section (RCS)
fluctuations associated with multifaceted complex
target returns. Therefore, the next experiment uses
the same parameters as those used in Fig. 2, but
employs a Swerling I target fluctuation model to

Fig. 3. GLRT versus AMF performance at high probability of
detection.

Fig. 4. GLRT and AMF performance for Swerling I target
model.

simulate target fades with respect to target orientation.
The target fades are modeled as being independent
from radar to radar, which is a good assumption if
the radar platforms are widely separated. However,
we should point out that the detection statistics of
Section II were derived under the assumption of
deterministic but unknown target amplitudes, not the
Swerling I model. Hence, we are applying a somewhat
mismatched signal model, but this approach is not
without precedent. The behavior of the monostatic
GLRT and AMF under a Swerling I target model
was evaluated in [8]. Moreover, one of the significant
benefits of multistatic radar is the diversity gain
associated with random target fluctuations, which
implies a fluctuating target model.
The performance curves in Fig. 4 become steeper

as more radar platforms are added to the system.
This is due to the fact that multistatic observations
of a fluctuating target enhance the likelihood that
the target will be observed from an aspect where
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its RCS is high. In a nonfluctuating target model,
multistatic observation provides little benefit at low
SNR because each platform observes low SNR. With
a fluctuation model, however, the probability that the
target is faded for all radar platforms is low. Also note
in Fig. 4 that the performance advantage of the GLRT
over the AMF again becomes larger as the number of
platforms increases, just as it did in the nonfluctuating
target model case.
An alternative way of looking at diversity gain

comes from looking at the metrics used to characterize
MIMO communication channels (or other systems
using diversity reception). In communication theory,
probability of outage is defined as the probability
that SNR drops to a level at which communication
becomes unreliable. The diversity order (DO) of a
communication system is defined as the asymptotic
(as SNR approaches infinity) slope of probability of
outage versus SNR [13] plotted on a log-log scale:

DO =¡ lim
SNR!1

log(Poutage)

log(SNR)
: (25)

In MIMO communication systems, this slope is equal
to the number of independent channels employed by
the system.
In comparison, probability of miss (Pm) is the

probability that a radar system fails to detect a
target that is present. This radar performance metric
is directly analogous to probability of outage in
communication systems. Therefore, the asymptotic
log-log rate at which Pm decreases in a multistatic
radar system should be equal to the number of
independent target fluctuations observed by the
system. The radar equivalent of DO is then

DO =¡ lim
SNR!1

log(Pm)
log(SNR)

: (26)

Fig. 5 uses the same data that were used to create
Fig. 4, but displays log(Pm) as a function of SNR
to determine if this asymptotic relationship exists
in a multistatic STAP system. As Fig. 5 indicates,
DO is directly linked to the number of independent
observations obtained by the multistatic system. As
SNR becomes large, the performance curves in Fig. 5
become linear in the log-log scale. Moreover, for each
10 dB of SNR increase within the linear region of
these curves, Pm decreases by Q factors of 10 where
Q is the number of data sets containing independent
target fluctuations.
In the previous simulations, all observations were

collected using the monostatic scenario described
above. That is, each platform only received reflections
due to its own transmitted waveform. Next, we
consider how detection can be improved by adding
data collected from the available bistatic propagation
paths. If two platforms observe the target from
different aspects, it is reasonable that the bistatic

Fig. 5. Multistatic radar DO as function of number of platforms.

target fluctuation would be independent from the
fluctuations observed over the two monostatic paths.
Thus, the bistatic paths provide an opportunity to
increase the number of independent target fluctuations
observed by the system without increasing the number
of radar platforms.
In the next simulation, the multistatic system

exploits both monostatic data collection and bistatic
data collection geometries. We only consider a
single direction for each bistatic path since the
target fluctuation in the reverse direction would
not be independent if it is due to a transmitter
operating on the same frequency band with different
temporal coding. If there are N radar platforms, this
assumption results in Q =N(N +1)=2 independent
target fluctuations. Alternatively, if we were to
assume that each transmitter operates on a different
frequency band such that the frequency dependence
of the target’s reflection coefficient results in
nonreciprocal target fluctuations, we could obtain
Q =N2 independent fluctuations. For the purposes
of this study, any resolution issues associated with
wide bistatic angles are ignored. Four geometries are
considered in Fig. 6. We consider the three-platform
scenarios of geometry A and geometry B where only
monostatic paths are considered. We also consider a
two-platform system consisting of radars 2 and 3 in
both geometry A and B but allow for the bistatic path
between the two. All four scenarios have three unique
propagation paths; hence, all scenarios have a DO of
three.
Despite constant DO, the four collection

geometries have different performance levels that can
be understood by considering the geometry of each.
The shifts in the curves are a result of differences in
geometry with respect to the target’s velocity vector.
Both configurations from geometry A outperform
their corresponding configuration from geometry B
because the third radar in geometry A is in better
position to observe the target’s Doppler shift.
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Fig. 6. Example of geometry gain for multistatic GLRT with DO
of three but different physical configurations.

Fig. 7. DO comparison for correlated versus independent target
fluctuations.

It is clear that when colored interference such
as ground clutter is present, target-radar geometry
plays a key role in determining the diversity benefit
realized by the system. We can exploit the fact that
the Pm curves are asymptotically linear to quantify
this controlling factor, which we term geometry gain.
If DO is the asymptotic slope of the Pm curves, we
define geometry gain as the shift between curves in
the asymptotic, linear-slope region. Thus, we can
say, for example, that the two-platform system in
geometry A has a geometry gain of nearly 5 dB
over the three-platform system in geometry B, or
that the three-platform geometry A configuration
has a geometry gain of less than 1 dB over the
three-platform geometry B configuration. These
relative shifts in the performance curves reflect the
fact that good geometries reach their asymptotic
performance and realize their diversity benefit at lower
SNR than poor geometries.
Finally, we consider the case where multiple

radar platforms are available, but are located in a

configuration where the target reflections are not
always independent. This may occur, for example,
when two of the radar platforms observe the target
from nearly the same aspect angle. The angle span
over which the target reflections are correlated
depends on target properties as well as whether
the same frequency band is being used by the two
platforms. For now, we force two of the target
reflection coefficients in the simulation to be equal.
It is expected that perfect correlation between two data
sets will reduce DO by one, which is exactly what is
seen in Fig. 7. Defining a signal coefficient vector as
b= [b1 b2 ¢ ¢ ¢bQ]T, DO will, in general, be directly
related to the rank of the signal coefficient covariance
matrix, E[bbH].

IV. CONCLUSIONS

The analysis shows that the multistatic GLRT test
statistic outperforms the AMF method, especially
as the number of platforms collecting independent
observations is increased. Furthermore, a closed-form
expression for the probability of false alarm is
available for the multistatic GLRT but not for the
multistatic AMF.
We have used asymptotic Pm performance to

isolate and quantify the differences between geometry
gain and DO. We have noted that the number of
independent observations collected by a multistatic
system can be increased by incorporating bistatic
configurations between radar platforms, thereby
increasing the DO of the system without additional
platforms. When only monostatic data collections are
employed by the multistatic system, the number of
independent looks increases linearly with the number
of observing platforms. However, when each unique
bistatic path is also included in the test statistic, the
DO of the system increases roughly as the square
of the number of platforms according to either Q =
N(N +1)=2 or Q =N2, depending on assumptions in
the target fluctuation model.
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Pulse Compression for a Simple Pulse

A new pulse compression method for a simple pulse is

proposed. The proposed method has a filter with impulse response

h(t) whose Fourier transform H(f) is given by D(f)=S(f), where

D(f) is the Fourier transform of desired output waveform d(t)

and S(f) is the Fourier transform of input signal s(t). Frequency

characteristics D(f) are considered not to make H(f) divergent,

since frequency characteristics S(f) have zero points at the

multiplication number of the reciprocal number of the input

pulsewidth. The proposed method has an advantage because it

can be compressed to the arbitrary pulsewidth given by waveform

d(t) and can be designed for compressed output with small peak

sidelobe level.

I. INTRODUCTION

Pulse compression has been employed to
simultaneously satisfy the requirements of
maximum detection range and range resolution [1].
Generally, pulsewidth compressed by these methods
approximately equals the reciprocal of the main
spectrum width where the spectrum energy of the
transmitting pulse is concentrated. Therefore, it is
necessary to spread the bandwidth of the transmitted
pulse to obtain narrower range resolution. It is
important to obtain narrower range resolution
without wider bandwidth of the transmitted pulse
because this leads to the effective use of radio waves.
Many investigators have studied pulse compression
techniques [2]. R. H. Barker proposed codes with an
autocorrelation function whose peak sidelobe level
is only 1 [3]. J. Lindner [4] and M. N. Cohen et al.
[5] investigated optimum binary codes that have an
autocorrelation function with peak sidelobe levels
which are the smallest possible level for a given
code length in the relatively small compression ratio
region (optimum binary codes). Rao and Reddy
investigated the binary codes of relatively long code
length that have an autocorrelation function with
comparatively small peak sidelobe levels (PSLs)
[6]. G. Coxson and J. Russo extended the upper
limit of the length to 70 [7]. These methods are
compressed to pulse wide given approximately by the
reciprocal of the main spectrum of the transmitted
pulse which is modulated. L. K. Cuomo tried to
compress an input pulse into a narrower pulsewidth
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