
Optimum and Decentralized Detection for
Multistatic Airborne Radar

The likelihood ratio test (LRT) for multistatic detection is

derived for the case where each sensor platform is a coherent

space-time radar. Due to the geometric separation of the

platforms, target statistics are modeled as independent from

platform to platform but constant over the local data on a single

platform. Clutter statistics are also assumed independent from

platform to platform but have a local space-time correlation

structure typical of monostatic space-time adaptive processing

(STAP). Moreover, the target Doppler hypothesis varies from

platform to platform due to multiple viewing perspectives.

Previous published work has investigated the detection

improvement obtained by multiple input, multiple output

(MIMO) radar. This prior work, however, has only considered

white noise. When clutter is considered, the diversity benefit

of a MIMO or multistatic radar system is strongly dependent

on geometry. We investigate the relationship between geometry

and diversity gain for multistatic airborne space-time radar and

the effects of this relationship on decentralized and centralized

detection.

I. INTRODUCTION

Multistatic radars can provide improved
performance against stealth targets, protection against
attack through the use of stand-off transmitters,
and improved performance against electronic
countermeasures. Due to these benefits, multistatic
radar has been a popular area of research at
several times in the last few decades. Currently,
the deployment of unmanned air vehicles, the
cross-fertilization of multiple-input, multiple-output
(MIMO) principles from communication theory, and
the increased desire to network sensors together, are
again making multistatic radar systems and signal
processing an interesting field of study.
Existing work includes results in both optimal

multistatic detection [1—2] and decentralized detection
[3—11]. In [1], optimum and suboptimum receiver
structures are compared for several signal models
in the presence of spatially and temporally white
Gaussian noise. In [2], detection of signals and noise
with various space and time correlation structures is
analyzed. In both [1] and [2], each radar platform
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that contributes to the multistatic system consists of
a single spatial channel. Here, each radar platform
possesses a multi-channel space-time receiver.
Moreover, the target Doppler hypothesis is allowed
to vary from platform to platform due to multiple
viewing perspectives.
Minimizing the communication bandwidth

required to share raw data among sensors is the
primary motivation for decentralized methods.
The decentralized Bayesian hypothesis test was
considered in [3] where it was shown that each sensor
implements a local likelihood ratio test (LRT) with
local thresholds that are coupled between sensors. In
[4] the optimum fusion rule, given the structure of
the local tests, was derived. Optimum decentralized
Neyman-Pearson detectors have been considered in
[5]—[8]. The situation where the local detectors have
the constant false-alarm rate (CFAR) property has
been considered in [9]—[10], and the impact of fused
sensors on area coverage is considered in [11].
In recent years, space-time adaptive processing

(STAP) for radar [12—14] has also received significant
interest, but the existing work in multistatic detection
considers each sensor to consist of a single spatial
channel. Therefore, the problem of multistatic STAP,
where each sensor platform possesses a coherent
space-time radar, has not been fully explored. Each
STAP is assumed to reside on a separate airborne
platform, which leads to several unique attributes
of the current problem compared with the existing
literature:

1) Clutter components are assumed to be
independent between sensors, and each sensor
observes a unique local space-time correlation
structure,
2) The amplitude and phase of a target fluctuate

independently between sensors but are constant over
the space-time data collected at each sensor, and
3) The space-time signature of a target may fall

within the clutter ridge for one sensor but not for
another.

Multistatic detection is also related to the MIMO
radar concept presented in [15]. In [15], MIMO
radar was defined as a multistatic system of spatially
distributed transmitters and receivers that observe
independent target fluctuations. A spatial Swerling
II target model [16] was used, that is, the target was
modeled as having exponentially distributed radar
cross section (RCS) with independent fluctuations
in space rather than time. Additive white Gaussian
noise (AWGN) was the only interference considered.
When clutter is considered, the diversity gain obtained
through multiple observations of a fluctuating target
depends strongly on geometry. We investigate the
relationship between geometry and diversity gain
for multistatic airborne radar and the effects of this
relationship on decentralized and centralized detection.
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In the following, we derive the (clairvoyant)
LRT for multistatic STAP and use the LRT to assess
optimum and decentralized detection performance.
Although the clairvoyant case implies that the
system is not truly adaptive, for convenience we
refer to each radar platform as having a space-time
adaptive processor (STAP). In Section II, the assumed
signal model is briefly summarized and the LRT
is derived. Characteristics such as the mean and
variance of the output detection statistic under both
hypotheses are also presented since they are used
in the signal-to-interference-plus-noise ratio (SINR)
metric applied here. In Section III, the decentralized
detection rule of [1] is summarized. The LRT and
decentralized detection are evaluated via simulated
results in Section IV, and conclusions are made in
Section V.

II. SIGNAL MODEL AND THE LIKELIHOOD RATIO
TEST

In this section, we first summarize the signal
model, including assumptions concerning the
target and interference characteristics. Then, we
derive the LRT for the proposed model and discuss
characteristics of the output.

A. Signal Model

Let a multistatic radar system be defined by K
different sets of space-time observations of the same
volume. In the context of the current work, these
sets of observations are statistically independent due
to geographical separation of K radar platforms;
however, in the general context of MIMO radar they
might also represent measurements collected by
the same radar platform due to orthogonal transmit
waveforms. For example, the data sets may include
space-time measurements collected by the same
radar over different frequency bands as long as the
target and interference observations on the different
bands are independent. Let the kth space-time data
set be denoted by the vector zk for 1· k ·K. Each
zk is formed by stacking the space-time data samples
collected by a local multi-antenna array over multiple
pulses into a length-Nk column vector where Nk is the
number of space-time measurements observed by the
kth radar platform. The kth data vector is defined as

H0 : zk = nk

H1 : zk = ak exp(jÁk)sk +nk:
(1)

In (1), nk is the vector of noise and interference
collected by the kth radar, sk is the normalized
space-time steering vector for the target hypothesis
relative to the kth platform, ak is the unknown
amplitude of the target signature, Ák is the unknown
phase of the target signature, H0 is the null hypothesis,

and H1 is the target-present hypothesis. The
interference vector nk is a zero-mean circularly
symmetric, complex Gaussian process characterized
by the covariance matrix Mk. Since the target’s
absolute position and velocity vector map into
different relative angles and Doppler shifts for
different platforms, each steering vector sk is different
despite referring to the same target. The target
amplitude ak is Rayleigh distributed with average
power E[a2k] = 2A

2
k , and Ák is uniformly distributed

between zero and 2¼. With these assumptions, the
vector ak exp(jÁk)sk is a zero-mean complex Gaussian
random vector with covariance matrix Sk = 2A

2
ksks

H
k

where (¢)H denotes the conjugate transpose operator.
The noise vectors, target amplitudes, and

target phases are all assumed to be independent
from platform to platform. This implies that the
geographical separation of the platforms is sufficient
to preclude their flight trajectories from overlapping
during a coherent processing interval (CPI). Due to
the independence assumptions, the joint probability
density functions (pdfs) of the data are

p(z1,z2, : : : ,zK jH0) =
KY
k=1

1
¼Nk jMkj

exp[¡zHkM¡1
k zk]

(2)
under the null hypothesis and

p(z1,z2, : : : ,zK jH1)

=
KY
k=1

1
¼Nk jMk +Skj

exp[¡zHk (Mk +Sk)
¡1zk]

(3)
under the target-present hypothesis.

B. Likelihood Ratio Test

The likelihood ratio is defined by

¤(z1, : : : ,zK) =
p(z1, : : : ,zK jH1)
p(z1, : : : ,zK jH0)

=
KY
k=1

p(zk jH1)
p(zk jH0)

:

(4)

Substituting (2) and (3) into (4), taking the logarithm,
and simplifying with the matrix inversion lemma
yields

³ =
KX
k=1

r2k
1
2A2k

+ sHkM
¡1
k sk

(5)

where rk = jsHkM¡1
k zkj. Note that each rk is the

magnitude of a complex Gaussian random variable;
therefore, under both hypotheses the test statistic in
(5) is a sum of K exponential random variables where
the mean of the kth term depends on the target’s
average power, the target’s steering vector, and the
interference covariance matrix as observed by the
kth radar platform. For any given radar platform,
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if the target’s expected power is small, then that
platform’s contribution to the overall test statistic
is minimal. If the target’s average power is large,
then that platform’s contribution to the overall test
statistic is controlled by the target hypothesis relative
to the interference spectrum. Closed-form evaluation
of the detection and false alarm probabilities for the
detector in (5) requires the cumulative distribution
function (cdf) for a weighted sum of exponential
variates, which is presented in [17]—[18]. Although
the cdf cannot be directly inverted to get the
threshold that provides the desired probability of false
alarm, the threshold can be easily obtained with a
one-dimensional numeric search.

C. Properties of the Test Statistic

Let Ck = s
H
kM

¡1
k sk and Dk =

1
2A

2
k +Ck. Under the

null hypothesis the test statistic is

³ jH0 =
KX
k=1

sHkM
¡1
k nkn

H
kM

¡1
k sk

Dk
=

KX
k=1

Xk0: (6)

The mean of each Xk0 is

E[Xk0] = Ck=Dk = ¹k0 (7)

and the variance of each Xk0 is

Var[Xk0] = ¹
2
k0: (8)

The mean of the detection statistic under H0 is

E[³ jH0] =
KX
k=1

¹k0 (9)

and due to the independence assumptions, the variance
is

Var[³ jH0] =
KX
k=1

¹2k0: (10)

Under the target hypothesis the test statistic is

³ jH1 =
KX
i=1

sHk M
¡1
k
(ake

jÁk sk +nk)(ake
jÁk sk +nk)

HM¡1
k
sk

Dk

=

KX
i=1

a2kC
2
k +2RefakCkejÁknHkM¡1

k
skg+ sHk M¡1

k
nkn

H
k M

¡1
k
sk

Dk
:

(11)

In (11), each term in the summation is again
exponentially distributed, but is now made up of three
components. The first component is a signal term,
the second is a cross term that contains both signal
and noise, and the third is the same interference-only
output that was present under the null hypothesis.
Denote the first, second, and third components as Xka,
Xkb, and Xk0, respectively. Due to the independence

of the interference and target parameters, the mean of
Xkb is zero. The expected value of the first term is

E[Xka] =
C2k
Dk
E[a2k] =

2A2kC
2
k

Dk
= ¹ka: (12)

Therefore, the mean of the detection statistic under the
target hypothesis is

E[³ jH1] =
KX
k=1

(¹k0 +¹ka) = E[³ jH0]+
KX
k=1

¹ka

(13)
and the variance is

Var[³ jH1] =
KX
k=1

(¹k0 +¹ka)
2: (14)

D. Approximate SINR Metric

In a monostatic STAP scenario, a linear filter w
is applied to the received data, which can be neatly
separated into signal and interference components.
This leads to a situation where the output signal
can also be divided into signal and interference
components, and the ratio of output signal power to
average output noise power can be computed. In the
multistatic case described by (5), however, the cross
terms that appear under the target hypothesis (see
(11)) make this definition of output SINR difficult
to apply because signal and noise cannot be cleanly
separated. We would like to evaluate an SINR metric
since SINR performance analysis is a hallmark of
STAP analysis and provides a good visualization of
performance versus target hypothesis. Therefore, in
this paper we use the deflection ratio [15, 19] defined
as

SINR
¢
=

jE[³ jH1]¡E[³ jH0]j2
1
2 [Var(³ jH1)+Var(³ jH0)]

(15)

where expressions for the means and variances have
been presented in the previous subsection.
The deflection ratio is not a strict indicator of

detection performance unless the test statistic is
Gaussian distributed under both hypotheses. Since this
is not true for the current situation, we must be careful
in how we interpret the SINR metric. One reason that
the SINR metric does not strictly indicate performance
is that the target amplitude has been allowed to
fluctuate, and this fluctuation affects the variance
of the target hypothesis as seen from (12) and (14).
Hence, as the target’s average power is increased, the
separation between the means of the two hypotheses
increases. However, so does the variance under the
target hypothesis, which prevents the output SINR
from increasing without bound. We use the SINR
metric as a tool for visualizing approximate relative
performance between different target hypotheses, not
as an absolute performance indicator.
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III. DECENTRALIZED DETECTION

The detection statistic in Section II requires
significant amounts of data to be shared between
radar platforms. In this section, we summarize a
decentralized detection scheme designed to limit the
required communication bandwidth while operating
within a few dB of the LRT. The scheme used is the
one proposed in [1]. The approach is to allow each
radar to produce its own binary decision, called the
local decision. Then, the binary decisions are shared
with a centralized processor, which makes a final
decision based on a simple Boolean “OR” operation.
Other, more sophisticated, decentralized detectors are
available; however, our goal here is to characterize
how decentralized detection might behave under the
unique geometry of airborne multistatic radar rather
than to propose or optimize a particular decentralized
architecture. For example, the decentralized scheme
used here can be optimized through selection of the
local false-alarm rates and the fusion order [20], but
for simplicity we assume that the local detection
threshold at each radar is set such that all radars
operate with the same local probability of false alarm,
PF . The results in Section IV show that this approach
works well for our application.
Using equal false-alarm rates at each local detector,

the exponentially distributed output at each radar
under the null hypothesis leads to a threshold at the
kth radar of

vk =¡¹k0 lnPF: (16)

For a Boolean OR operation at the central processor,
the overall probability of false alarm is approximately
[1]

PFA
»=KPF (17)

when PF is small. Likewise, the overall probability of
detection is

PD = 1¡
KY
k=1

(1¡PDk) (18)

where PDk is the probability of detection for the kth
platform. In the work presented here, we set the local
detection threshold using (16), then evaluate PD using
(18) and the known exponentially distributed output
of each radar under H1. In the following section, the
detection performance of this simple decentralized
scheme is compared with the LRT of Section II under
various situations.

IV. RESULTS

In this section, the improvement offered by
multistatic configurations is evaluated using output
SINR and probability of detection metrics. First,
the SINR performance of a one-platform system is
compared with that of a three-platform system. Then,
multistatic detection performance is analyzed under

Fig. 1. Multistatic geometry used in SINR and PD analysis.

various configurations of target signal-to-noise radar
(SNR) and target hypothesis.
The results presented in this section are based

on simulation with the following parameters. Up to
three radars observe a scene from different aspects
as shown in Fig. 1. The direction of travel of each
radar is perpendicular to the look direction. The
hypothesized target, which is located at the origin of
the coordinate system, is in the center of the beam
for each radar. Hence, the local azimuth angle to the
hypothesized target is zero for each platform. Each
radar only receives its own signal.
Each radar has a common set of system parameters

such as an operating frequency of 450 MHz, velocity
of 100 m/s, pulse repetition frequency (PRF) of
600 Hz, and CPI length of 32 pulses. Each radar uses
a twelve-element antenna array with half-wavelength
spacing. The interference covariance matrices Mk are
different for each radar with clutter-to-noise ratio
(CNR) ranging from 39 to 43 dB. Effects such as
antenna misalignment, range-varying clutter power,
heterogeneous clutter, and finite sample support are
not considered here. We evaluate ideal performance
through use of the true interference covariance
matrices and accurate target steering vectors. A small
amount of internal clutter motion (ICM) has been
added via covariance matrix tapers applied to the
clutter covariance matrices.

A. SINR Performance

Output SINR is a common metric used in the
STAP literature to quantify the ability of a radar
system to separate the null and target hypotheses
through space-time filtering. The single-platform
system observes a null in performance when the
velocity of a target along the line-of-sight (LOS)
of the platform is small, which causes the target
to fall into the clutter notch. The target may be a
moving target, but may be moving perpendicular to
the radar. A second radar at a different location is
able to observe target motion perpendicular to the first
radar; therefore, multistatic STAP provides improved
performance through geometry as well as through
multiple independent observations of a fluctuating
target [15]. This effect is clearly seen in the following
examples.
Fig. 2 shows an image of SINR performance

versus target velocity in the x- and y-directions for the
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Fig. 2. Output SINR versus target velocity components for a
single STAP.

first radar. From the geometry of Fig. 1, the first radar
can only measure the x-component vx of the target’s
velocity. Therefore, when vx is small, the target falls
into the space-time clutter ridge and space-time
filtering is ineffective. This reduced performance
is seen as a deep notch in SINR performance for
small vx.
When a single radar is used, the direction of

motion is just as important as the absolute speed.
If multiple radars observe the target from multiple
perspectives, however, the target can be detected as
long as it is moving in any direction with sufficient
speed. This effect is seen in Fig. 3, which shows
SINR performance for three radars performing
optimum detection. Note the scale change in Fig. 3
that is necessary to clearly show the SINR behavior.
If the speed of the target is significant, geometry
precludes target motion from being perpendicular to
more than one of the radars. Therefore, at least two of
the radars are able to separate the target from ground
clutter, which leads to an improvement in the best
achievable SINR. In Fig. 3, the highest achievable
SINR is approximately 1.6 dB compared with ¡3 dB
for Fig. 2. The dips in Fig. 3 occur when the target
velocity vector is such that only two of the radars
can separate the target from ground clutter; hence,
only two independent observations of the target have
enough SNR to be useful. The largest improvement is
seen around small vx where the improved geometry of
the second and third radars relative to the first radar
maximizes the benefit of the additional observations.
For any geometry, the ultimate benefit of

multistatic detection is the available diversity gain,
which we define here as the reduction in average
input SNR needed to achieve the same detection
performance as a single-radar system. Since for any
one observation, the fluctuating target RCS may be
very low, it is valuable to obtain multiple independent
observations such that target RCS may be large for
one or more of the observations. This is the same

Fig. 3. Output SINR versus target velocity components for
three-platform STAP.

principle as diversity combining for communication
where a signal may be faded at one measurement but
not at another [15, 21]. The benefit of an independent
observation, however, depends on the average SNR of
that observation; consequently, the geometry of each
radar platform controls its diversity gain contribution.

B. Detection Performance

We now consider the detection performance of
the optimum and decentralized detectors presented
in Sections II and III. The improvement obtained by
adding platforms is considered, then the optimum
and decentralized detectors are compared for a
two-platform system under various assumptions
concerning average target RCS and target velocity
vector. For all results presented in this section, the
overall probability of false alarm has been set to
PFA = 10

¡6.
First, we make a comparison between the SINR

metric and probability of detection. As mentioned
earlier, the deflection ratio does not strictly indicate
performance in a quantitative manner unless the
test statistic is Gaussian distributed under both
hypotheses. In Fig. 4 we show an image of PD versus
target velocity for the same simulation setup used
to create Fig. 3. In comparing Fig. 4 with Fig. 3,
it is seen that the basic structure of the detection
performance is faithfully represented by the deflection
ratio; hence, the qualitative intuition obtained in the
previous section is valid. Furthermore, for large K
the output distributions under both hypotheses will be
approximately Gaussian via the central limit theorem,
and the deflection ratio will become a more accurate
predictor of performance.
Next, the detection performance for one, two,

and three platforms is compared for two different
target hypotheses. The multistatic configurations
for one, two, and three platforms correspond to the
same geometry as shown in Fig. 1. The first target

810 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 43, NO. 2 APRIL 2007



Fig. 4. Image of detection performance for same parameters as
in Fig. 3.

Fig. 5. Detection performance versus average target power for
varying number of radar platforms. Target velocity hypothesis is
well within third radar’s angle-Doppler clutter ridge. PFA = 10

¡6.

hypothesis has vx = 10 m/s and vy = 18 m/s. This
corresponds to normalized (to the PRF) Doppler
shifts of 0.05, 0.09, and 0.03 for the three radars,
respectively. For the given system parameters, the
target is partially buried in the angle-Doppler clutter
ridge of the first and third platforms, but is mostly
separated from clutter in angle-Doppler for the second
radar. Detection performance is shown in Fig. 5. For
a single platform, the optimum and decentralized
detectors are identical. For two and three platforms,
the decentralized detector performs worse than the
optimum detector; however, the degradation is small.
In Fig. 5, the Rayleigh parameter was the same for all
platforms, A1 = A2 = A3 = Ak.
Detection performance for the second target

hypothesis is shown in Fig. 6. In this case, the
velocity hypothesis is vx =¡10 m/s and vy = 18 m/s,
which corresponds to normalized Doppler shifts of
¡0:05, 0.09, and 0.1 for the three radars, respectively.
Since the target falls outside the angle-Doppler clutter
ridge for the third radar, the diversity gain provided
by the third radar is significantly increased from the

Fig. 6. Detection performance versus average target power for
varying number of radar platforms. Target hypothesis is outside

angle-Doppler clutter ridge for each radar. PFA = 10
¡6.

Fig. 7. Detection performance versus average target power for
each radar platform. Target hypothesis is within angle-Doppler

clutter ridge for first radar. PFA = 10
¡6.

diversity gain seen in Fig. 5. At 90% probability of
detection, the diversity gain provided by the second
radar in Fig. 5 is approximately 9 dB, but is negligible
for the third radar except at high input SNR. In
this case, the geometry of the second radar allows
diversity benefit while the geometry of the third radar
prevents it from making a significant performance
contribution. In Fig. 6, the diversity gain at 90%
probability of detection is about 7 dB for the second
radar, which is reduced from the previous case, but
there is 5 dB of additional improvement provided by
the third radar.
Next, optimum and decentralized detection are

compared for a two-platform system (the first two
radars in Fig. 1) under independently varying target
RCS. Fig. 7 shows detection performance for vx =
3 m/s and vy = 20 m/s as the Rayleigh parameter
Ak is varied independently over both platforms.
Probability of detection is plotted versus A1 and the
curves are parameterized by A2. In Fig. 7, the target
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Fig. 8. Detection performance versus average target power.
PFA = 10

¡6.

is moving nearly perpendicular to the first radar
platform. The effect is that detection performance
is nearly independent of A1 until A1 becomes large
enough that the target is brighter than the surrounding
clutter background. The difference in performance
between the optimum and decentralized detectors
never exceeds a few dB. In contrast, Fig. 8 shows
results when the Rayleigh parameters are varied
for vx = 12 m/s and vy = 16 m/s. Since the target
hypothesis falls outside ground clutter for both radars,
performance depends on both A1 and A2 at lower
input SNR than in Fig. 7.
The above results demonstrate the relationship

between geometry and diversity gain achieved through
multistatic STAP. The physical geometry clearly
controls the contribution of each radar. In Fig. 5, the
third radar is in a poor position for detecting the target
hypothesis; hence, it’s diversity benefit is minimal.
The same behavior is also seen for the first radar in
Fig. 7. In Figs. 6 and 8, however, large improvements
are observed because the target hypothesis is outside
the clutter ridge of the additional radar platforms.
The results also show that decentralized detection

techniques should perform well for multistatic STAP.
For the few cases shown, as well as for other cases
evaluated but not presented here, the decentralized
OR detector performs within a few dB of the
optimum detector. Furthermore, more sophisticated
decentralized techniques and optimizations [20]
are available, which should push decentralized
performance even closer to optimum.

V. CONCLUSIONS

We have presented the optimum detector for
multiple independent sets of space-time data, such as
might occur for multiple, widely spaced space-time
radars. The resulting LRT can be applied to bistatic
configurations or to multiple monostatic data
collections as long as the target reflection coefficient,

noise statistics, and clutter statistics are independent
for each data set. The optimum detector is similar
to other optimum multistatic detectors [1] in that
the detector is a weighted sum of the local LRT
results from each sensor. However, analysis of the
detector in terms of common STAP parameters and
target hypotheses makes clear that performance
improvement is obtained through both geometry
and diversity gain. Diversity gain refers to the
performance improvement obtained by collecting
multiple independent observations of a fluctuating
target. Geometry gain is obtained by observing a
target hypothesis from multiple perspectives such that
the target falls outside the observed clutter ridge for
one or more of the observing platforms. The results
show that geometry gain is essentially a factor that
controls the realizable diversity gain.
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Analytic Performance Bounds on Estimates of
Scattering Center Parameters

Cramér-Rao bounds (CRBs) on the estimates of the main

scattering center parameters, i.e., the position, intensity and

geometry type, are presented in analytic forms. The resolution

limit for wideband radar and the SNR threshold for the correct

identification of the geometry type parameter of scattering

centers are further deduced. Though the results are obtained

from the CRB matrix for damped exponentials (DE) after many

approximations and simplifications, their validity and adaptability

for geometric theory of diffraction (GTD) based scattering center

model have been verified both numerically and experimentally.

I. INTRODUCTION

Radar targets at high frequencies can be well
characterized by a few scattering centers. The
response of each scattering center is a resonance
in the frequency domain. If we ignore the
frequency-dependent character of the scattering
centers, i.e., assuming ideal point scattering centers
[1—3], the target response can then be mathematically
modeled as undamped exponentials (UE). However,
most scattering centers are frequency dependent
in intensity and this dependency is related to the
local geometry of the scatterer as predicted by the
geometrical theory of diffraction (GTD) [4]. Both
exponential function and power function can be
used to describe this dependency. The exponential
function makes the pole of the exponentials vary a
little bit around the unit circle, and therefore the target
response has the form of damped exponentials (DE)
mathematically [5, 6]. The estimation problem of DE
model, or Prony model as it is also named in radar
applications, is thoroughly researched with fruitful
results [7—9]. The power function is validated to first
order by the GTD coefficients of canonical targets
[4]. Consequently, this model is called the GTD
model whose explicit formation is firstly proposed
by the research group led by L. Potter and R. Moses
[10, 11]. The power exponent, or the geometry-type
parameter as it is usually named, is independent
of aspect and relative polarization, which helps in
scattering mechanism analysis and scattering center
identification. Though GTD model is more difficult to
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