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I. INTRODUCTION

A primary objective of airborne radar is to
detect targets in the presence of interference such
as ground clutter, noise, and jamming. In practice,
these interference signals can dominate target signals;
therefore, target detection requires signal-processing
techniques such as space-time adaptive processing
(STAP) [1—6]. STAP exploits the specific structure
of ground clutter in the two-dimensional (2-D)
angle-Doppler domain to distinguish moving targets
from ground clutter and other interference.
Traditionally, STAP is performed by estimating

interference statistics from secondary training data
taken from range bins near to, but not including,
the range bin under test (RUT). This is intuitively
satisfying since range bins that are in geographic
proximity to the RUT are expected to be statistically
similar to the RUT. Unfortunately, it has been shown
in [7] that significant secondary sample support,
on the order of twice the number of space-time
measurements, is required to achieve an average
signal-to-interference-plus-noise ratio (SINR)
loss of 3 dB relative to ideal, known-covariance
performance. With this amount of required training
data, it is inevitable that at least some range bins used
for training will contain an angle-Doppler clutter
spectrum that is significantly different from the RUT.
These problems of sample support

and data heterogeneity have motivated the
development of reduced-order methods [1, 8—11],
structured-covariance methods [12—15] and
knowledge-aided methods [16—20]. Reduced-order
methods improve performance in situations where
the space-time interference covariance matrix must
be estimated from a limited amount of training data.
Structured covariance methods significantly enhance
STAP performance by reducing the amount of sample
support required when partial information about the
interference covariance matrix is known a priori.
For example, the fast maximum likelihood (FML)
approach of [14] reduces the training data requirement
by reasonably assuming the power and structure of
white receiver noise.
We present an alternative training method,

originally summarized in [20], that incorporates
a priori estimates of the scattering background for
use in heterogeneous clutter environments. It has
already been demonstrated that knowledge sources
such as digital elevation maps, land cover databases,
roadmaps, and other known features can be used to
compute high-fidelity estimates of observed ground
clutter [21—22]. Based on this modeling capability,
we propose a spectral-domain approach to estimating
the interference covariance matrix used in STAP.
A priori modeling of the clutter profile is used in
cooperation with real-time data to estimate clutter in
the range-Doppler domain. This approach enables
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clutter averaging over statistically similar scattering
regions rather than over range bins that are often
statistically dissimilar. Once the range-Doppler
clutter profile is estimated, it is transformed to
the clutter covariance matrix based on known
space-time steering vectors. In practice, only
limited knowledge of the radar system’s parameters
and flight geometry is available. Therefore, in
addition to the ideal performance of the proposed
technique, the work presented here also explores
and characterizes the effects of some potential errors
in the assumptions made and presents examples
of how real-time data might be used to minimize
these errors. The clutter background used here
for the simulations are more realistic and have a
higher dynamic range than the clutter background
used in [20]. This has motivated development of
the minimum-variance estimation presented here.
Moreover, the analysis here includes ICM effects
and narrowband channel mismatch, which were not
evaluated in [20].
In the following sections, we describe our

proposed technique and compare performance with
ideal, known-covariance performance and with the
FML approach of [14]. In Section II, the assumed
signal model is summarized. In Section III, the
knowledge-aided spectral-domain approach to
covariance estimation is described. In Section IV, a
minimum-variance range-Doppler image formation
technique is presented. This technique improves
range-Doppler clutter estimation through the use of
a priori modeling of the clutter scene. In Section V,
simulation results are presented to demonstrate
the performance of the proposed spectral-domain
covariance estimation. Errors in a priori knowledge
are also investigated. Conclusions are made in
Section VI.

II. SIGNAL MODEL AND STAP FUNDAMENTALS

Let the radar system transmit a coherent pulse
train. The signal from a point scatterer at cross-range
position fx arriving at an antenna at position r is a
scaled and delayed version of the transmitted signal,
which is down-converted and matched filtered to
produce a baseband received signal of

x̃(r, t,fx)¼ °0(fx)e¡j!c¿(r,t,fx) (1)

where ¿(r, t,fx) is the two-way propagation delay that
depends on space, slow time, and scatterer position
and °0(fx) is a complex random variable that accounts
for propagation loss, antenna patterns, scatterer
reflectivity, and other factors.
While (1) represents the signal received from

a single scatterer, the complete space-time signal
measured by the radar is due to all scatterers within a
constant range contour. To obtain this signal, the point

scatterer response in (1) is integrated over the entire
range bin of interest. Denoting Rx as the iso-range
contour of interest within the area illuminated by the
radar’s transmit beam gives

dc(r, t) =
Z
Rx

°0(fx)e
¡j!c¿(r,t,fx)dfx (2)

where the subscript c denotes that this is the
contribution due to ground clutter. For simulation
purposes, the cross-range dimension is divided
into cells, called clutter patches, and the integral
is approximated with a summation. If the effective
reflection coefficient accounting for all scatterers
(and all other amplitude and phase terms such as the
antenna patterns and propagation loss) within the ith
clutter patch is °(fxi), then the discrete signal model
for clutter is

dc(r, t) =
NcX
i=1

°(fxi )e
¡j!c¿(r,t,fxi ) (3)

where Nc is the number of patches in the
constant-range contour Rx.
Finally, the radar samples the received signal

at multiples of the pulse repetition interval at each
antenna element. If there are M pulses and N
antennas, then the radar collects MN space-time
measurements defined by

dc(n,m) =
NcX
i=1

°(fxi)e
¡j!c¿(rn ,tm ,fxi ) (4)

where rn is the position of the nth antenna element for
0· n· (N ¡ 1) and tm =mTR for m· 0· (M ¡ 1).
The space-time steering vector v(fxi ) is defined
by stacking space-time samples of the complex
exponential in (4),

v(fxi) = [e
¡j!c¿(r1,t1,fxi ) e¡j!c¿ (r1,t2,fxi ) ¢ ¢ ¢
e¡j!c¿(r1,tM¡1,fxi ) ¢ ¢ ¢e¡j!c¿(rN¡1,tM¡1,fxi )]T (5)

where (¢)T denotes the transpose operation. The
space-time clutter snapshot, dc, for a single range bin
is

dc =
NcX
i=1

°(fxi )v(fxi ): (6)

It is well known that the optimum weight vector
used to test for the presence of a target is [1—4]

w= kR¡1I s (7)

where k is an arbitrary constant, s is the space-time
steering vector for a target at a given azimuth
location and Doppler shift, and RI is the interference
covariance matrix. In practice, the interference
covariance matrix must be estimated with training
data. Data-domain techniques require averaging
over range, but unfortunately, poor performance
often results due to nonstationarity of the training
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data. In reality, the angle-Doppler power spectrum
of ground clutter varies with range due to varying
clutter background or other factors. Furthermore,
additional targets within the training region can
corrupt the covariance estimate [21], and aircraft crab
[1] and nonlinear arrays [23] cause the space-time
clutter ridge to vary with range. Some discussions
of real-world effects and their impacts on STAP
performance can be found in [2].
Although data-domain covariance estimates can

be corrupted by heterogeneity of the training data,
they have some definite benefits that should be
mentioned. Because the interference statistics are
estimated from real-time data, any jammers that are
present will also be estimated in the training process.
Hence, data-domain techniques inherently estimate
the statistics of clutter, additive noise, and jammers
in a single well-defined process. Furthermore,
channel mismatches and other uncalibrated system
characteristics are inherently included in the
covariance estimation, although mismatches will still
be present in the target steering vector, s.
The FML approach that we use for comparison

also has these advantages, but in addition, the FML
approach effectively uses realistic information about
the thermal noise covariance matrix to significantly
enhance the convergence performance of STAP.
In [14], the interference covariance matrix is
separated into an unknown matrix describing colored
interference and a known matrix representing white
noise. The maximum likelihood estimate of the
unknown matrix is derived, and since the estimation
is of the lower-rank matrix of colored interference,
convergence is much improved. It was shown in [14]
that the FML approach performs significantly better
than the sample covariance matrix when factors such
as clutter heterogeneity limit the amount of useful
training data. The proposed spectral-domain technique
is compared here with ideal performance and with the
performance of the FML technique.

III. KNOWLEDGE-AIDED SPECTRAL AVERAGING
APPROACH

We now propose an alternative technique for
computing the interference covariance matrix used
in STAP. In the following, we emphasize that
range-Doppler processing inherently provides an
estimate of ground clutter, and we maintain that
the range-Doppler domain is a natural domain for
applying knowledge sources that typically provide
information as a function of geographic location on
the Earth.
Consider the correlation between two

measurements of ground clutter that are separated
in both time and space by the quantities º and Â,

respectively. Using (2), this correlation is

Rc(Â,º)

= E[dc(r, t)d
¤
c (r+Â, t+ º)]

= E

·Z
Rx

°0(fx)e
¡j!c¿(r,t,fx)dfx

Z
Rx

°¤0(f
0)ej!c¿(r+Â,t+º,f

0)df 0
¸

=

Z Z
Rx

E[°0(fx)°
¤
0(f

0)]e¡j!c¿(r,t,fx)ej!c¿ (r+Â,t+º,f
0)df 0dfx

(8)
where the asterisk operator denotes complex
conjugate. In (8), the expected value operator can be
restricted to the reflectance variables since they are the
only random quantities–the complex exponentials
are known for a given geometry and set of radar
parameters. Assuming that the complex reflectance
is uncorrelated for scatterers at different locations, the
expected value in (8) becomes

E[°0(fx)°
¤
0(f

0)] = ¾2o(f
0)±(fx¡f 0) (9)

where ¾2o(f
0) is the position-dependent radar cross

section (RCS) density of the background within
the range bin and ±(f) is the Dirac delta function.
Substituting (9) into (8) and simplifying yields

Rc(Â,º) =

Z Z
Rx

¾2o(f
0)±(fx¡f 0)e¡j!c¿(r,t,fx)ej!c¿(r+Â,t+º,f

0)df 0dfx

=

Z
Rx

¾2o(fx)e
¡j!c¿(r,t,fx)ej!c¿ (r+Â,t+º,fx)dfx: (10)

Equation (10) is a continuous version of the
traditional space-time clutter covariance model. The
clutter covariance matrix contains every space-time lag
sampled by the radar system:

Rc = E[dcd
H
c ] (11)

where the superscript H denotes conjugate transpose.
Substituting (6) into (11) and proceeding similar to
the steps for (8)—(10) gives

Rc =
NcX
i=1

¾2c (fxi )v(fxi )v(fxi )
H

=
NcX
i=1

¾2i viv
H
i (12)

where ¾2i = ¾
2
c (fxi) is the expected power contribution

from the ith clutter patch.
Equation (10) represents the space-time

autocorrelation function of the clutter random
process. The function ¾2o(f

0) is a power spectral
density (PSD) that describes the expected power of
ground clutter reflections as a function of cross-range
position for a given range bin. Hence, clutter can be
estimated either in the space-time data domain via
the sample covariance matrix or FML, or through
spectral estimation in the frequency domain via

1012 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 42, NO. 3 JULY 2006



(12). The spectral-domain approach corresponds
to the process of estimating clutter power versus
cross-range position. Since cross-range can be mapped
to specific geographic locations on the Earth’s surface
for a known flight geometry, the spectral domain is
a logical domain for applying a priori knowledge
sources to improve clutter estimation. This is because
many possible knowledge sources provide their
information as a function of position on the Earth;
therefore, performing clutter estimation in the spectral
or range-Doppler domain provides an opportunity
to register a priori knowledge with data-derived
clutter estimates. It also enables clutter to be averaged
geographically in a manner that is consistent with land
cover type, terrain slope, and other factors rather than
averaging over range bins that may or may not be
statistically consistent.
The spectral-domain approach involves computing

the clutter covariance matrix using (12) rather than
by averaging snapshots in the data domain. We note
that range-Doppler processing inherently provides
a spectral estimate of ground clutter–it creates a
map of stationary-scatterer reflected power versus
range and Doppler. But unfortunately, the values
in a range-Doppler image cannot be used in (12)
directly due to the speckle phenomenon. That is, each
pixel in a range-Doppler map represents the sum
of many scatterers within a resolution cell; hence,
a single range-Doppler image pixel is probably not
equal to its statistical average. This is consistent
with the expected value operator in (9), which says
the PSD must be an averaged estimate. Fortunately,
if multiple resolution cells from the same surface
type are available, they can be averaged to get an
accurate value of that surface’s RCS. For example,
if the boundaries of a grassland, lake, or agricultural
area could be identified, the scattering from all
range-Doppler cells within the boundaries of one
of these features is expected to adhere to the same
probability distribution. If the boundaries of such
homogeneous regions, or segments, can be identified
using knowledge sources such as digital elevation
databases, land cover databases, and prior synthetic
aperture radar (SAR) surveys, then all cells within
the boundaries can be averaged. Then, each cell can
be replaced with its region’s average reflected power
for use as a clutter patch power coefficient in (12).
In heterogeneous scattering environments, the terrain
statistics may vary dramatically over small changes in
range. Therefore, it makes more sense to average over
surface types having the same probability distribution
in the spectral domain than it does to average over
dissimilar range bins in the data domain.
Of course, in order to transform between the

spectral and data domains, we see in (12) that
space-time steering vectors are needed. Under ideal
circumstances, these steering vectors can be computed
based on available ownship data and knowledge of

the flight geometry, but in practice, performance can
be sensitive to even small errors in these parameters.
This, in turn, places strong requirements on the
accuracy of ownship and scenario knowledge. The
ultimate efficacy of the proposed approach will
depend on the accuracy with which radar parameters
and scenario features can be predicted or estimated.
In a subsequent section, we analyze the performance
effects of a few specific cases of imprecise knowledge
such as inaccurate crab angle, inaccurate wind speed
in an assumed ICM model, and narrowband (NB)
channel mismatch due to imperfectly calibrated spatial
channels.
A summary of the proposed technique is given as

follows.

1) Knowledge sources are used to model the observed
clutter scene for a predicted flight profile. The
output of the modeling is an RCS map versus
range and cross-range.

2) Homogeneous scattering regions are identified
in the modeled clutter scene. This is performed
by image-processing techniques such as median
filtering and edge detection applied to the modeled
scene.

3) The radar collects data and forms a range-Doppler
image. In our results, we use minimum-variance
spectral estimation to form the image.

4) This image is then segmented using the
information from step 2 above to isolate
homogeneous scattering regions.

5) Within each homogeneous segment, all pixels
are replaced by the segment’s average to obtain
the estimated clutter power profile for use in
(12). Compensation for antenna patterns is
included during averaging, but R4 and grazing
angle variations are negligible within individual
segments.

6) The collected data are used to correct imprecise
knowledge that could corrupt the computation of
the space-time steering vectors for each clutter
patch. For example, collected data can be used to
estimate platform crab angle.

7) The interference covariance matrix is calculated
using (12).

Fig. 1 shows a block diagram of the proposed
processing approach.

IV. MINIMUM-VARIANCE RANGE-DOPPLER
FILTERING

Range-Doppler processing provides an
estimate of ground clutter by creating a map of
stationary-scatterer reflected power versus range
and azimuth. The simplest method for generating
a range-Doppler image is to compute the discrete
Fourier transform of the pulses for each range
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Fig. 1. Block diagram of the proposed knowledge-aided spectral-averaging approach.

bin. Unfortunately, while this technique may be
sufficient for basic range-Doppler imaging or as the
foundation for SAR imaging, it does not produce
a spectral estimate that is sufficient for forming a
clutter covariance matrix. There are two reasons
why Fourier-based imaging is insufficient for this
purpose. First, when the clutter background has a
high dynamic range (high-RCS regions adjacent
to low-RCS regions), clutter power from stronger
regions will leak into resolution cells of weaker
regions through sidelobes of the Doppler filters and
range compression. Window functions can reduce
these sidelobes, but the tradeoff in resolution may be
unacceptable since in STAP we are already starting
with short processing intervals. The second reason that
Fourier-based range-Doppler imaging is insufficient
is that thermal noise biases regions of low clutter
power. Consider a region that should have negligible
backscatter. Resolution cells corresponding to this
region in the range-Doppler clutter map should be
nearly zero, but the imaging process will produce
a non-zero result due to the presence of white
receiver noise. Even if resolution is improved or if
the dynamic range of the clutter background isn’t
enough to make Doppler sidelobes an issue, noise
will still bias the spectral estimates for low-RCS
regions. Hence, when attempting to detect targets
in these low-clutter regions, the STAP filter will be
mismatched and the clutter will be overnulled.
To overcome these problems, a minimum-variance

range-Doppler image formation technique has been
developed. This technique incorporates a priori
modeling of the clutter background directly into a
minimum-variance estimate of the clutter scene. We
derive this technique in the following discussion.

A. Minimum-Variance Filter Derivation

The temporal data from a single spatial channel is
used to compute the range-Doppler clutter estimate.

Let k represent the current clutter patch (the patch
under test) whose power is being estimated. Let
uk = u(fxk ) be the temporal steering vector for the
kth clutter patch. The minimum-variance spectral
estimator for the kth patch, wk, is found by
solving

min
wk
wHk Rtwk (13)

subject to the constraint wHk uk = 1. In (13), Rt is the
a priori temporal covariance matrix

Rt =
NcX
i=1

¾2i uiu
H
i +¾

2
nI (14)

where ¾2i is the a priori estimate of the power from
the ith patch as in (12). The solution is

wk = ¾
2
kR

¡1
t uk (15)

which leads to

wk = ¾
2
k

Ã
NcX
i=1

¾2i uiu
H
i +¾

2
nI

!¡1
uk: (16)

The filter defined by (16) is very similar to the
optimum detection filter for STAP, except that the
covariance matrix is obtained from a priori knowledge
and the target steering vector is a temporal vector
for a clutter patch rather than space-time vector for
a moving target.

B. Performance of Minimum-Variance Filter

Fig. 2 demonstrates the performance of the
minimum-variance range-Doppler filtering based
on the clutter background for the first KASSPER
datacube [24]. More details about how this datacube
was used are given in the following section. In
Fig. 2(a), we see that the true range-Doppler clutter
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Fig. 2. (a) Original range-Doppler power profile of clutter along with (b) Fourier-based range-Doppler image and
(c) Minimum-variance-based range-Doppler image.

profile has a dynamic range of over 800 dB. Note
that this is not the dynamic range of the radar, but the
dynamic range of the background that is input into
the simulation. Because of the high dynamic range,
there are very low power regions adjacent to very
high power regions. In Fig. 2(b), we clearly see the
effects of this dynamic range on the output of the
Fourier-based range-Doppler image. The low-power
regions have been washed out by sidelobe leakage
and noise corruption, which leads to overnulling.
In Fig. 2(c), we see that the minimum-variance
range-Doppler image does an excellent job of
reconstructing the original clutter power profile. Of
course, the radar cannot measure an 800 dB dynamic
range. The estimated power for every patch, however,
is a function of both collected data and a priori
knowledge. In regions where the reflected power
is extremely low, the minimum-variance estimator
believes the a priori knowledge more than the noisy
data. This is easily confirmed by noting that the
magnitude of wk in (16) is proportional to the kth
patch’s a priori power estimate.

V. SIMULATIONS AND RESULTS

In this section, we demonstrate the potential
performance of our spectral-based covariance
estimation compared to known-covariance
performance and FML performance. The FML method
[14] was simulated with the true noise covariance
matrix as the initial estimate and with sample support
of 100 snapshots. First, performance is compared
under perfect a priori knowledge assumptions.
Then, the effects of various errors in knowledge

are investigated. We study the effects of inaccurate
platform crab angle, of mismatched wind speed when
accounting for ICM, and of NB channel mismatch
resulting from imperfect calibration. This analysis
shows that of these factors, inaccurate crab angle can
degrade performance the most. An example of using
real-time data to estimate unknown platform crab
angle is also demonstrated.
Since the spectral-domain technique involves

identification and averaging of homogeneous
scattering regions, it is most useful for higher
resolution scenarios where varying clutter background
can be observed and segmented within the radar’s
main beam. Therefore, the simulation used to produce
the results in this section is based on the RCS
background from the publicly released first KASSPER
data set [24], but the data has been resimulated
at higher resolution and does not include every
error effect that was in the original data set. The
range/cross-range clutter background from the first
KASSPER data set was used as the clutter power
input to our own STAP simulation. We convert
the background patch powers to random complex
reflectances and compute the datacube. ICM is
added to the ideal and knowledge-aided covariance
matrices using covariance matrix tapers (CMT)
[25—27] and added to the simulated datacube with a
corresponding random temporal modulation. Likewise,
NB channel mismatch is added to covariance matrices
with a rank-one CMT and is added to the datacube
through channel-dependent amplitude and phase
terms [2].
The simulation parameters are as follows. The

radar is flying at an altitude of 3000 m looking
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sideways at an elevation angle of ¡5±. The radar
operates at 1240 MHz with a bandwidth of 10 MHz.
The antenna array has 11 elements. On transmit,
the array elements operate coherently to produce a
directed narrow beam. On receive, each array element
collects and samples the received signal independently.
The radar velocity is 200 m/s, the pulse-repetition
frequency (PRF) is 900 Hz, and the number of pulses
in a coherent processing interval (CPI) is 64. These
parameters yield a CPI that is four times longer than
the original KASSPER data set. ICM corresponds
to the Billingsley exponential decay model [28]
with a wind speed of 15 mi/h and ¯ parameter of
5.7. Where appropriate, NB channel mismatch is
modeled with random gain and phase factors for
each channel [2]. The simulated datacube consisted
of noisy space-time data for 2MN range bins plus the
RUT and a few guard cells. In the simulation results
provided below, SINR performance is generalized
by averaging over a set of range bins. This approach
is taken because SINR results for any single range
bin can be misleading if there is accidental similarity
between that range’s clutter spectrum and the average
clutter spectrum of the training data.

A. Performance Under Perfect Knowledge

Figs. 3 and 4 show the performance of
spectral-domain averaging under accurate knowledge
assumptions. The ideal clutter background was
processed with an image-processing program to
obtain the boundaries around homogeneous regions
of similar power. The image-processing program
smoothed the clutter background with a three-pixel by
three-pixel median filter, segmented the background
with the Sobel edge detector [29], and averaged the
pixels within each segment. The clutter background
was also used as a priori knowledge for the
minimum-variance range-Doppler image formation.
It is assumed that the space-time steering vectors
needed to transform from the range-Doppler domain
to the clutter covariance matrix are known perfectly.
Hence, after averaging the range-Doppler estimate,
the estimated clutter and noise covariance matrices
are computed and SINR performance is evaluated.
Fig. 3 shows SINR performance averaged over range
bins 264 through 292. It can be seen in Fig. 3 that
spectral-domain averaging performs very well. In
Fig. 4, another set of range bins from 420 through
470 is tested and it is observed that spectral-domain
averaging outperforms the FML approach. The major
improvement is possible in this case because the
clutter in range bins 420 through 470 is relatively
weak, but other range bins within the training range
contain strong clutter. Hence, clutter needs to be only
partially rejected. But because data-domain techniques
include range bins in the training data that have
very high clutter power, their estimated covariance

Fig. 3. Average SINR performance over first set of range bins,
[264 : 292], under conditions of perfect knowledge.

Fig. 4. Average SINR performance over second set of range
bins, [420 : 470], under conditions of perfect knowledge.

matrices contain too much clutter power. The result
is that FML severely overnulls clutter although it
certainly performs better than a traditional, slowly
converging approach. Spectral-domain averaging
with prior knowledge, however, makes a distinction
between clutter regions with different average power.
High-power range bins have not contributed to the
average for the RUT; therefore, the clutter estimate
is much more accurate and excellent results are
achieved. All subsequent results are based on the first
set of range bins: [264—292].
In generating Figs. 3 and 4, perfect knowledge of

the ideal clutter background was assumed for purposes
of generating homogeneous region boundaries and
for computing the range-Doppler filters. It was also
assumed that the space-time steering vectors for each
clutter patch were known exactly. This implies exact
knowledge of the flight scenario, the true aircraft
crab, and the individual channel calibrations. The
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Fig. 5. Average SINR loss for case of incorrect platform crab
knowledge.

true wind speed and clutter type were used to apply a
CMT account for ICM and the NB channel mismatch
was set to zero. Finally, an accurate noise covariance
matrix was added to the clutter covariance matrix.

B. Effects of Imperfect Knowledge

In practice, many of the above assumptions will
be invalid. In the following, we present results for
situations where our assumed knowledge does not
agree with reality. In the first case, the effects of a
mismatched velocity vector are studied. For Fig. 5,
all the parameters are identical to Fig. 4 except for
a mismatch in the assumed platform crab angle.
In producing Fig. 5, the datacube was generated
for a platform with an actual crab angle of 3:5±. In
computing the space-time steering vectors necessary
for transforming the clutter power coefficients to the
clutter covariance matrix, it was assumed that the
platform’s crab angle was 3±. This mismatch causes
an incorrect mapping from the range-Doppler domain
to the space-time data domain, and SINR performance
is degraded as seen in Fig. 5 due to a displaced
clutter null. Actually, the presence of ICM has
reduced the sensitivity to inaccurate crab, but there
is still enough mismatch to degrade performance.
In this case, the clutter PSD has been estimated
very well, but the covariance matrix is inaccurate
due to a flawed spectral-domain to data-domain
transformation.
Fig. 6 demonstrates the effect of imperfect ICM on

SINR performance. In producing Fig. 6, the true wind
speed was 15 mi/h while the assumed wind speed
was 2 mi/h. Spectral-domain averaging performs well
even for this large amount of mismatch in ICM wind
speed. This implies that spectral-domain averaging
is somewhat insensitive to incorrect ICM modeling
as long as some ICM is present in reality and in the

Fig. 6. Average SINR loss for case of imperfect ICM knowledge.

Fig. 7. Average SINR loss for case of unknown NB channel
mismatch.

modeling. Precise ICM modeling does not appear to
be required.
In Fig. 7, imperfect channel calibration is

investigated. The incorrect channel calibration is
modeled as a NB channel mismatch, which modifies
the measurements with a different amplitude and
phase for each channel. In producing Fig. 7, the
true variation in gain and phase are between 0:97·
"i · 1 and ¡4± · Ái · 4±, respectively, whereas,
perfect channel calibration is assumed in applying
the spectral-domain to data-domain transformation
("i = 1 and Ái = 0

±). From Fig. 7, imperfect NB
channel mismatch has some effect on spectral-domain
averaging, but the observed degradation is less than
what is observed for incorrect crab angle.
Fig. 8 shows performance when all three previous

errors are present. Crab angle, ICM wind speed, and
channel calibration are all inaccurate. In performing
this simulation, these effects are combined to see
the overall degradation. Comparing Figs. 5, 6, and
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Fig. 8. Average SINR loss for case of imperfect crab, ICM, and
channel calibration.

7 to Fig. 8, it can be concluded that most of the
degradation in performance is due to the imperfect
knowledge of crab angle with some additional
degradation due to the imperfections in ICM and
channel mismatch. When crab angle is accurate,
spectral-domain averaging seems to perform very
well.

C. Correcting Scenario Parameters with Real-Time
Data

Finally, we demonstrate that it may be possible to
correct some knowledge errors using real-time data.
The simulation used to generate Fig. 5 was repeated;
however, crab angle was estimated from the datacube.
First, a traditional sample covariance matrix was
computed using sample support from only 40 range
bins. This matrix was used to locate the clutter ridge
in the angle-Doppler domain by computing the crab
angle that would be required in order to produce
the location of the estimated clutter ridge. This crab
estimate was then used in calculating the space-time
steering vectors.
Unfortunately, a simple Fourier-based estimate

of the clutter spectrum is not sufficiently accurate.
Therefore, 2-D superresolution has been applied
to locate the clutter ridge in angle and Doppler.
The sample covariance matrix was divided into
clutter+noise and noise-only subspaces by estimating
the clutter rank via Brennan’s rule [1]. Next, the
noise-only covariance matrix, Rn, was formed from
the noise-only subspace, and the angle-Doppler
MUSIC [30] spectrum was calculated as

Sc(fx,fD) =
1

s(fx,fD)HRns(fx,fD)
(17)

where s(fx,fD) is the hypothesized steering vector for
spatial frequency fx and Doppler frequency fD. Once
the angle-Doppler clutter spectrum is obtained from

Fig. 9. Average SINR loss for case of mismatched crab angle
that has been corrected with real-time data.

(17), the brightest peaks in the spectrum are selected.
The number of peaks chosen is less than the predicted
clutter rank. Finally, the locations of those peaks
are used to compute crab angle using a curve-fitting
approach.
Even with the small sample support used to

form the covariance estimate for superresolution,
the crab estimates are very accurate. Note that the
clutter-to-noise ratio (CNR) might be as high as
40—60 dB in a given range bin. Since clutter is the
desired signal for the purpose of estimating crab, this
superresolution problem has excellent SNR properties
and leads to excellent crab estimates. For Fig. 9, the
superresolution crab estimate was 3:5083±, which was
sufficient for excellent results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new technique
for estimating the interference covariance matrix for
STAP. We have proposed that the range-Doppler
domain is a natural domain for applying a priori
knowledge since both the range-Doppler domain
and many knowledge sources provide information
as a function of position on the Earth’s surface.
Furthermore, clutter can be averaged over statistically
homogeneous regions when averaged in the
range-Doppler domain. This leads to better clutter
estimates than traditional techniques since traditional
techniques average clutter over range bins that are
often quite statistically different from the RUT.
We have demonstrated that in the limit of perfect

knowledge, spectral-domain averaging produces
near-ideal performance. In practice, very accurate
space-time steering vectors are required to make
the transformation from the spectral domain to the
measurement domain. An initial evaluation of the
effects of errors in radar system parameters such as
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platform crab angle, ICM, and channel calibration was
presented, as well as an example of how real-time
data could be used to obtain an accurate estimate
of platform crab angle in order to restore accurate
space-time steering vectors. Ultimately, the benefits
of the proposed spectral-domain clutter averaging
will depend on the ability to obtain precise, accurate
knowledge of the radar parameters and scenario.
Without this ability, the space-time steering vectors
are inaccurate and the clutter spectrum estimate is
incorrectly mapped into the measurement domain.
Significant future research is still required. The

range-Doppler image formation should be extended
to a space-time technique to allow moving targets to
be excluded from the estimate of the clutter spectrum.
Strong clutter discretes and slow targets might still
corrupt the clutter estimate, but their impact will
depend on the number of cells averaged within a
homogeneous region. Also, the effects of jammers
should be studied, as well as the integration of
spectral-domain averaging into the FML technique
with assumed clutter covariance (FMLACC) of [15].
Finally, the impacts of other sources of error need to
be quantified.
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