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Abstract

In this paper, we exploit recent advances in full-duplex (FD) comnatitnos and self-interference suppression (SIS) to improve
the performance of an opportunistic spectrum access (OSA) syspatifi§ally, we consider secondary users (SUs) that are equipped
with SIS-capable radios. These radios can operate in a simultaneosmisaion-and-sensing (TS) mode to improve the detection
probability of primary users (PUs), or in a simultaneous transmissidr@ception (TR) mode to enhance the SU throughput. The
radios can also revert to the standard sensing-only (SO) mode armechannel switching (CS). The competing goals of the
full-duplex TS and TR modes give rise to a spectrum-awareness/efficteadeoff, which can be optimized by allowing the SU link
to adaptively switch between various modes, depending on the forddastelynamics. In practice, SIS is imperfect, resulting in
residual self-interference that degrades the sensing perfornmatice TS mode. Accordingly, we adopt a waveform-based sensing
approach, which allows an SU to detect (with high accuracy) the PU sigihé presence of self-interference (and noise). In such
a context, we analyze the sensing performance in the TS mode by dethénfalse-alarm and detection probabilities. We also
derive the throughput and the PU-SU collision probability for the TS andmidgles, which we then use to establish an optimal
mode-selection strategy that maximizes an SU utility function subject to aragrison the PU collision probability. This utility
rewards the SU instantly for successful communication (throughput)also includes a long-term component that depends on the
outcomes of the action taken by the SU (the selected mode from thglRetTS, SO, C$). Our results show that the proposed
adaptive strategy results in abdii% reduction in the collision probability and twice the throughput of the half-dupkese. The
results also indicate that the SU should operate in the TR mode if it has a High legarding the PU idleness over a given
channel. As this belief decreases, the SU should switch to the TS mode tmrany change in the PU activity while transmitting.
At very low belief values, where the PU is highly likely to be active, the SUuhswitch to another channel.

Index Terms

Self-interference suppression, full-duplex communications, oppistia spectrum access, spectrum awareness/efficiency trade-
off, cognitive radios.

I. INTRODUCTION

Until recently, the idea of simultaneous transmission aweption over the same channel (STAR-S) was not deemedfeossi
The reason is that while a wireless device is receiving diégdapwn transmission produces strong self-interferendeichv
makes the decoding process impossible. One way to solveptbldem is to suppress the node’s self-interference. Hewev
traditional self-interference suppression (SIS) techegy(e.g., RF and digital interference cancellation) hatebren sufficient.
Even simultaneous transmission and reception over diffédrequencies (STAR-D) is not straightforward, particlylavhen the
transmit and receive bands are not sufficiently separategkréictice, filters are not ideal, and sidelobes/spectaidge is deemed
to occur). In this paper, we focus on STAR-S (the more chgltem case), which we simply refer to as FD communication.

By combining novel and traditional SIS techniques, the argtiin [1-5] have demonstrated the feasibility of FD comration.

In [1], the authors proposed an antenna-based SIS techimiqwhich two properly placed transmit antennas and one vecei
antenna are used to nullify self-interference at the réegiantenna. This technique has two problems. First, it ggas additional
interference in the far field, i.e., it increases the intexfee at other receivers. Second, it has a bandwidth liataas antenna
placement is determined by a single carrier frequency. Wewavireless transmissions typically involve multiplaroars. These
concerns were addressed in [2], where the authors used caffye?nas and proposed an interference cancellation msohan
based on signal inversion. Very recently, the authors impféposed an FD system for 802.11ac devices using only omeamaat
The main objective of these works is to bring down a node'tintdrference to the noise level. As an example, a WiFi devi
has to suppress around 110 dB of its own transmitted sigsalifaing a transmit power of 20 dBm) to reduce it to the noise
level [6].
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In parallel with the developments in SIS techniques, thexeehbeen a number of works that exploit SIS/FD capabilities
in network-protocol design, in the contexts of MIMO commuations [7—-10] and dynamic spectrum access (DSA) [11, 12].
Assuming multiple antennas per node, the authors in [10fesded the issue of choosing between MIMO and FD, as both need
multiple antennas. They showed that the optimal strategy dembination of both schemes. In [13] the authors studiedepo
control in wireless FD devices with imperfect SIS. They deped an optimal dynamic power allocation scheme that miaeisn
the sum-rate of a number of users.

In this paper, we consider a DSA network, where secondargs&Js) have imperfect SIS capabilities, allowing them to
suppress a fraction of their self-interference. This paSilS capability can be exploited to support simultaneoassmission-
and-sensing (TS) by the SU so as to reduce the collision piiigavith primary users (PUs), or simultaneous transnoeissand-
reception (TR) to enhance the SU throughput. The abilitygerate in either mode gives rise to a spectrum awarenes&py
tradeoff. More specifically, the SU may improve the spectutitization by operating in the TR mode, which will dramatily
increase the throughput of the SU link. On the other handSthienay exploit its SIS capabilities in the TS mode, enablirg i
monitor the PU activity while transmitting and to quicklycate the channel whenever such activity is detected. This/ates
the need for the optimal transmission-sensing-recepti@tegy introduced in this paper.

Because the sensing efficiency in the TS mode decreases &Sheapabilities decrease, in some cases the SU needs to
operate in a sensing-only (SO) mode to achieve an accemahking outcome. Also, having a relatively high belief ttieg
PU is active may return a high collision probability in the/TR modes. In that case, the SU should stop transmissionustd |
monitors the channel. Considering the availability of nplét idle channels, the SU may decide to perform channelctivig
(CS) if the PU is more likely to return to the current operatibchannel.

An important aspect of the system design is to determine t@nvtU adaptively switch between different modes (TR, TS,
SO, and CS), considering the highly dynamic spectrum enxient and the possibility of colliding with PUs. Our objeetiis
to find the optimal strategy that maximizes the SU’s utilieyg(, goodput) under a constraint on the PU collision priibab
This strategy is found to be threshold-based, with threshttat depend on the SU’s belief about the PU state. Baseli®n t
belief, the SU will take an optimal action and then update tielief according to the outcome of the action taken. Theamne
is ACK/NACK in case of a transmission decision, free/busycase of a sensing decision, and decoded/undecoded in case of
reception. The SU may also get a combination of these outsdmthe TR and TS modes.

The problem of finding the optimal access strategy at an Sliteédas been studied before [14-17], but for half-duplex YHD
devices. In [14], the authors considered the quickest teteproblem of the PU idle period when multiple PUs are pnése
In their scheme, the SU chooses an action from the followspgctrum sensing, channel switching, or data transmis3ioa
authors in [15] studied the sensing-throughput tradeodf proposed a scheme in which the SU can have multiple congecut
sensing or transmission periods, determined accordingetst)’s belief about the state of the PU. In their scheme, thédn&s
only two options: spectrum sensing or data transmissioe. difjective was to maximize the SU’s utility, which rewartie SU
for successful transmission and penalizes him for cotisicAnother adaptive scheme was proposed in [17], whereuti®s
added another possible action to the SU, namely staying itle motivation behind this action is to save energy when the
probability that the PU is idle is very low.

In [11], we proposed applying SIS/FD in DSA systems and ohiced the TR and TS modes. However, our treatment was
limited to energy-based spectrum sensing (for the TS mdele@rgy detection cannot differentiate between a PU signdlaa
residual self-interference signal. Hence, it is ineffitiender low SIS capabilities. This problem is not present aveform-based
sensing, whereby the sensed waveform is contrasted withkwelvn patterns (pilots, preambles, etc.) of the PU sigima[11],
we also studied the traditional sensing-throughput tréideo the TR and TS modes and determined the optimal sensily a
transmission durations for the SU that maximizes its thhpug subject to a constraint on the SU/PU collision proligbil

The contributions of this paper are as follows. First, wesider a DSA system where SUs are partially capable of SIS.
We analyze the waveform-based spectrum sensing techniqubd TS mode, which is crucial especially at imperfect Si%]
derive the false-alarm and detection probabilities. Séceve derive the probability of successful transmissiontfa SU, its
achievable throughput, and the PU collision probabilitypoth TS and TR modes, taking into consideration that SIS neay b
imperfect and assuming different channel conditions atcttramunicating SUs. Third, we propose an optimal adaptiratesiy
at the SU for switching between the TR, TS, SO, and CS modesciiiteria for choosing the optimal action is to maximize the
SU’s utility subject to a constraint on the PU collision pabidity. To achieve this goal, we formulate the problem asaially
observable decision process and analyze the four actiorisrimulating the myopic and long-term rewards. To the besbuof
knowledge, this is the first paper to address the optimaktréssion-reception-sensing strategy for SUs with immpei/SIS
capabilities.

The rest of the paper is organized as follows. We describesyiseem model in Section Il. In Section Ill, we derive the
false-alarm and detection probabilities under wavefoasel sensing for the TS mode and compare them with the HD case.
We formulate the SU decision process and obtain the optini@btive SU spectrum access strategy in Section V. Finay,
present our numerical results and conclude the paper inoBsct and VI, respectively.



Fig. 1. System model of our DSA network, where SUs are equippiéid SIS/FD capabilities and opportunistically access spectrum of PUs. Each SU
consists of a transceiver with a given SIS capability fagtor

Il. SYSTEM MODEL

As shown in Figure 1, we consider a DSA network, where SUs pporunistically operating on the licensed PUs channels.
PUs can access the available channels at will, and are not aivthe SU’s presence. The PU activity is modeled as amailtieig
ON/OFF random process. Let the OFF and ON durations be dihgt&’ andY’, with corresponding probability distributions
fx and fy, and meansY andY’, respectively. These distributions are assumed to be ardigmt and can be constructed at the
SU through measurements [18, 19].

Each secondary device is capable of partial or completeei&hling it to operate in the TS and TR modes, along with the SO
and CS modes. We usg to quantify the SIS capability of thegh SU, x; € [0, 1]. Specifically,y; is the ratio between the residual
self-interference and the SIS reduction needed to reachdise floor (in dB). Ify; = 0, the node can bring its self-interference
down to the noise floor; otherwise, it can only suppress difmad — y; of its self-interference (imperfect SIS). As an example,
for a transmission power of 20 dBm and a noise floor of -90 dBm9@& dB SIS translates intg; = (110 — 90)/110 = 0.18.

x; may differ from one node to another, depending on the empl&I& technique.

We assume that at a given time instant, and a given frequenty,one SU link is active in a given geographical area. Hence
we focus on the case where different SU links cannot interfeith each other, for example, by implementing an approgria
channel access scheme. Existing techniques can be useckle tiae issue of secondary-secondary interference ($¥e fi&
example), and will not be addressed here. Peindo? denote the transmission power and noise variance at f)catel leth,
be the channel gain between transmiit@nd receiverj. Although the opportunistic spectrum consists of multighannels, the
SU can only monitor/operate on one channel at a time. Semsintiple channels has already been discussed in severatgap
and can be easily incorporated [21].

To sum up how our system works, the SU starts its communitatith an initial belief value. Depending on the adaptive
access strategy, the SU chooses the optimal action thatmizes its utility while maintaining a certain QoS threshddat
the PU communication. The action’s outcome may be ACK/NA®@Kcase of transmission, free/busy in case of sensing, and
decoded/undecoded in case of reception. The SU may also geinhination of these outcomes in the TR and TS modes.
Depending on these outcomes, the SU updates its belief #&m@U state. Getting an ACK/free/decoded outcome willease
your belief that the PU is idle with a certain degree. Howggetting a NACK/busy/undecoded outcome will increase your
belief that the PU is busy. Based on this belief, and accgrdinour spectrum access strategy, the SU will take the optima
action, and so on.

A. SU Operation Modes

1) TSmode: Using SIS techniques, the SU can carry out the spectrumrsepsocess while transmitting its data. This has
two advantages over the Listen-Before-Talk (LBT) scheniiest,HFrom the SU’s perspective, transmitting while segsimcreases
the SU throughput, and reduces the frequency of interrgptintransmission (such interruptions are detrimentaintp raal-time
communications). Second, the SU can monitor the PU actwhiife transmitting. Hence, a better PU detection perforcaais
achieved. This parallel sensing process may be done ovéiptaulconsecutive) short periods instead of one long sgngeriod.

To do that, the SU performs: sensing actiond’s;, i« = 1,2,...,m, while transmitting data for a period df seconds (see
Figure 2(a)). The motivation behind this approach is to aotdor the tradeoff between sensing efficiency and the timeb

in detecting PU activity. On the one hand, increasing thesisgnduration improves the sensing efficiency. Howeverhsarc
increase implies delaying the time to make a decision régarthe change of PU activity. Thus, in the TS mode, we have
a total of m sensing durations. If at the end of any given sensing pefdl,activity is detected, the SU aborts its current
transmission and updates its belief to determine the neidradNe use the ternfFD sensing to refer to the sensing process



PU dynamics

(b) Transmission-Reception (TR) mode

Fig. 2. FD operation modes for the SU.

in the TS mode. Note that under imperfect SIS, such sensiagMease performance than the traditional SO mode due to the
residual self-interference signal.

2) TR mode: In the TR mode, the SU transmits and receives data simultesheover the same channel, as shown in Figure
2(b). Denote the transmission and reception durationg’bgnd T'r, respectively. For simplicity, we assume thgy = 7.
Although operating in the TR mode enhances the SU’s throuighipe SU will not be able to monitor the PU state. Hence, the
probability of colliding with the PU will be higher than in ¢hTS mode.

3) SO mode: In this mode, the SU senses the spectrum for a durdfigrwwhich we refer to a$iD sensing. Under imperfect
SIS, the TS mode is not always efficient. Hence, the SU maychwiit the SO mode to get more accurate sensing results.

4) CSmode: The SU may switch to another channel and carry out spectrunsirgg on this new channel if the SU believes
that the PU is very likely to return to the currently used atelnExisting techniques can be used to select the channsinge
order (see [22], for example). However, any previous infation about the new channel that was obtained from priorisgns
attempts are discarded.

Although we will not consider the transmission-only (TO) eeoas an option, we will use it for comparison purposes. The
reason for not considering it is that the sensing cost is simegligible. Hence, there is no advantage of the TO modetbee
TS mode.

IIl. WAVEFORM-BASED FD SENSING

A significant amount of DSA literature has focused on endrgyed sensing. Despite its simplicity, this technique oainn
differentiate between different types of users. In the TSlepgesidual self-interference can cause energy detetiamongly
indicate PU activity. In this paper, we study the sensinggoerance of the TS mode, assuming waveform-based sensing.

Waveform-based sensing utilizes known patterns in the Bdasi such as preambles and pilot symbols. These patteens ar
typically used for channel estimation, synchronizatiaqyaization, etc. To detect the presence of the PU signalefeem-based
sensing correlates a known pattern with the received si@3al24]. In this section, we analyze waveform-based sensirder
FD operation and derive the false-alarm and detection fibties for the SU, assuming a given SIS factor

In the TS mode, the hypothesis test of whether the channeddgpied by a PU or not can be formulated as follows:

[ xs(n)+w(n) Hy (if PU is idle) (1a)
( ){ I(n)+xs(n)+w(n)  H (if PU is busy) (1b)

wherer(n) is the nth sample of the discretized received signal,) is the self-interfering SU signal(n) is the received PU
signal, andw(n) is the additive white Gaussian noise with variamce We assume that(n) is a zero-mean complex random
signal with variancer2. We also assume that all signal samples are independertte hen)’s are also independent.

In the case of HD sensing, where no self-interference isepiteshe hypothesis test can be written as:

. w(n) H, (if PU is idle) (2a)
(n) = { I(n)+w(n)  H, (if PU is busy) (2b)

where7(n) is the nth sample of the received signal in the HD case.

The performance of any sensing technique is measured bylgedlarm probability Py) and the detection probability?;).
P; and P; are defined as the probabilities that the SU declares theedestsannel to be busy given hypotheéls and H;,
respectively. A good system should have high to reduce collisions between SUs and PUs. At the same timewaer P,
values results in a higher SU throughput due to a reductidheénmissed transmission opportunities.

The decision metric, denoted by, in waveform-based sensing is based on correlating thevestsamplegr(n)’s) with
known pattern samples, and then compardgagainst a given thresholdto determine the state of the sensed channel. Formally,



M is given by:
M = Re

N
zymwmﬂ ®)

n=1

wherel*(n) is the conjugate of I(n). Substituting (1a) and (1b) into, (8¢ obtain}/ under hypothesi¢i, and H,, denoted by
M, and M, respectively. respectively:

N
Mo =Re | Y (xs(n)l*(n) +w(n) l*(ﬂ))} @)
n=1
N N
My =) i) +Re | > (xs(n)I"(n) +w(n) l*(n))] : Q)
n=1 n=1
For FD sensingp; and P; are given by:
Pp=Pr[Mo>~]=1-Fu,(7) (6)
Pd:Pr[M1 >’Y]:1_F]\41(’Y) 7

where Fyy, () and Fyy, () are the CDFs of the random variablé&, and M, respectively.
Proposition 1: Using the central limit theorem (for a larg€), the pdf of M, can be approximated by a Gaussian distribution
with meangu,,, = 0 and the following variance:

N
The = [xQE [s(n)|*E [i(n)|* + E [w(n)” E [I(n)|?] . 8)
Hence, the false-alarm probability can be written as:
P—0 (vuM) , ©)
O'MO

where@ is the complementary distribution function of a standardig&n random variable. Substituting fex;, and o3, in
(9), we get the false-alarm probability for FD sensing:

2
Fr=0 (XQa;%- o2V NSI\IR(':D)) (10)

where NRD) is the SNR at the secondary receiver in the FD case and is biyen

FD) _ E |l(n)|2
R = B )+ B oG -

Note that SNRFP) contains the self-interference term, in addition to noierthermore, the number of sampl@é can be
described as a function of the sensing durafién, i = 1,2,...,m and the sampling rat¢s as follows: N = Tg; fs.

Proposition 2: For a largeN, the pdf of M; can be approximated by a Gaussian distribution with mean= N E |l(n)\2
and the following variance

o, = N|E[I(n)|* = E>[I(n)]*

+;@%meEme+EmmﬁEwmﬂ]

See the Appendix for the proof of the previous two proposgio
The detection probability for the waveform-based FD semsian be written as follows:

P=0Q (7_‘“”1) . (12)

O M,

Substituting foruy, ando3,, in (12), we get:

v/ (ot +03) — NSNRED
\/N [(a — 1) (SNRFD))? 4 NRFD) /2]

Py=Q (13)



wherea is a parameter of the PU signal that relates to its randon28)sAs an exampler = 2 for complex Gaussian signals
and can range from 1 to 2 for other signal types. Formallys defined as follows:

a2 E [I(n)[" /E ()" (14)
The false-alarm and detection probabilities in (10) angd (@8 FD sensing converge to HD sensing at perfect SIS (.e-,0),
as shown in the following equations for a specific sensingtitom T's;, : = 1,2,...,m:

_ 5
Pr=Q (sz W) =
. v/ (e2) — NSNRHD)

P;=Q (16)
\/N [(oz — 1) (SNRHD))? 4 guRHD) /2}

where P; and P, are the false-alarm and detection probabilities for HD sepsespectively, an@dNRM®) is the SNR at the
secondary receiver in the HD case:
HD E |l(”)|2
RHD) = — (17)
E Jw(n)]

Py and Py derived in (10) and (13) for FD sensing are functions of thess®y thresholdy. The optimal sensing threshold
~* can be determined according to the system requirement8yoand (1 — P,;). For a targetP; or Py, v* can be calculated
by finding the inverse of the Q-functions in (10) and (13)pexgtively. As an example, for a system with a requiremerit ifya
and1 — P, are equal. The optimal sensing thresheidcan be determined by equatidgy with 1 — F; in (9) and (12), resulting
in:

4 = UMM, + i, O Mo (18)
OMy T O,y
Substituting thisy* in (9) and (12), and after some mathematical manipulatisspbtain the following forP; and P;:
VN SNRFD)
Py =Q (19)
\/(a — HSNRFD) +1/2 4+ ,/1/2

(20)

( VN SNRFP) )
Pi=1-Q :
\/(a —DNRFD 4 1/2 4 /1/2

IV. OPTIMAL SU STRATEGY
In this section, we present an optimal strategy for opegaéin FD-capable SU link.

A. Problem Formulation

To optimize the selection of the operational mode at an SU fammulate the problem as a partially observable decision
process. LetS = {0,1} be the state space, which defines the actual state (idle gj btithe channel currently being observed
by the SU. The action space at an SU is givendy {TR, TS SO, CS}. While observing the PU channel, the SU has to choose
an action from the setl. The outcome/observation space for the SU depends on tiom aaken. If the SU takes the TR action,
it will later observe the outcoméD}, which means that the SU was able to decode the received gegssathe outcomgU },
which stands for undecoded message. For the transmissibiirppghe TR and TS modes), the SU may get ACK or a NACK
from the peer SU, which are denoted by} and { N}, respectively. For a TS action, the SU will also observe taditonal
outcomes:({ F'} for free or{ B} for busy). Finally, the observed outcomes for the SO/CS actions{a&ik or { B}. Altogether,
these various actions result in an observation sgace {D,U, A, N, F, B}. Later on, we present a reward function, which
maps the state and action space to a reward value.

Our objective is to let the SU choose actions sequentiallynie so as to maximize the expected reward over some random
finite horizon. It is known that the sufficient statistics fidroosing the optimal action at each timés the belief [25], which is
defined as the a posteriori probability € [0, 1] that the PU is idle at time given the whole observation history. We consider a
similar setup as in [15] for the partially observable demisprocess part, where the time indeis defined as the time elapsed
since the PU has switched from ON to OFF. Herice, 0 is the start of the PU idle period, which is assumed to be kntmathe
SU, and thereforg, = P,. Starting fromt = 0, the SU keeps tracking of time, and applying the optimal meelection policy
until switching to a new channel (CS action). At this timeg tBU resets the algorithm and keeps sensing/switching batwe
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Fig. 3. A time diagram for PUs activities at different frequ&s (f1, f2, and f3) and the SU interaction with them using our optimal stratetgp)( The
SU’s belief variation with time is then shown below the timegitam (middle). A description of the shapes used to descrieeTR, TS, SO, and CS modes
is shown at the bottom. The outcomes notations &re} for ACK, { N} for NACK, {D} for decoded{U} for undecoded{ F'} for free, and{B} for busy.
Note that this figure aims to deliver the main general idea ofamlaptive policy (some simplifications are done to not comithe figure).

different channels until catching the start of the PU idlequk Once the beginning of an idle period is detected, thes&1d its
timer tot = 0, and then starts applying the optimal policy. While deriving optimal policy, we assume that both SUs always
have data to transmit. However, at the end of this sectionyllediscuss the more general case that accounts for théctraf
flow between different SUs.

Figure 3 shows a simplified example to illustrate how the SU adaptively choose its optimal actions and update itsebel
according to the resulting outcome. In this example, we hawvee channelsf{, fo, and f3) occupied with PUs and an SU
link that is trying to opportunistically communicate on ookthese channels. Assume that the SU starts monitoringnethan
f1, which is happened to be busy. After getting multiple busycomes, it decides to switch to another chanfiglwhich is
sensed free after multiple busy outcomes. At this point thlesgrts its timer (i.e.f = 0). In that case, the belief is higher
than threshold 3, then the SU starts with the TR mode. Theom#s of the first TR action are ACK and decoded. Hence, as
shown in the figure, the SU’s belief increases and recomm#r@3 R mode again. However, it happened that the SU receives
a NACK and undecoded for the third TR action (may be for a desing at this time instance). The SU then updates its
belief, which decreases below threshold 2, which implied the SU should sense the spectrum (i.e., SO mode). The Fi$ kee
sensing until the belief goes over threshold 2. In that ctme SU switches to the TS mode and updates its belief acaptdin
the outcomes that it gets. The SU continues switching betvaféerent operation modes and updates its belief accglyglias
shown in figure 3 until its belief goes below threshold 1. Iattbase the SU switches to another channel, and so on. Ndte tha
the PU has returned to channgl, while the SU is operating on the same channel. However,pgpéaed that the SU is in the
TS mode, which makes the SU detect the PU activity while tratting. In that case the SU stops its transmission quickly t
prevent collision with the PU (see the figure 3).

Following any given actiom € A and depending on the observatiore O, the SU updates its beligf, and will also gain
a certain reward. Letr be the policy that maps the SU’s beligf to the action space € A at each time.. Define the value
function U (p;, t) as the maximum expected total reward at timeshen the current belief ig;. This function specifies the



performance of the optimal policy*, starting from beliefp,. Based on Bellman equation, we have the following:

U(ps,t) = max {Utr(p:, t), Urs(pe, t), Uso(pe, t), Ues(pe, 1) } (21)

whereUrr(py, t), Urs(ps, t), Uso(pe, t), andUcs(py, t) are the expected total rewards if the SU decides to operdteiR, TS,
SO, and CS modes, respectively, at timand then follows the optimal policy*

Lemma 1: U(p;,t) is a convex function op for a givent.
Proof: We use a similar argument as in [15, 26] to prove this lemn&.0L< A < 1 and0 < py,p2 < 1. Assume that the
initial statep is determined according to the outcome of flipping a biasgd-with a probability\ that a head appears. We set
p = p; if a head appears, angd= p, if a tail appears. The best reward that we can get if we knowotiteome of the coin
flipping is AU (p1,t) + (1 — A\)U(p2, t). However, if we do not know the outcome of the coin flipping thest achieved reward is
U(Ap1+(1—=XN)p2,t). Since, the best reward with no information will not be higtien that achieved with information available.
Therefore U (Ap1 +(1—=X)pa, t) < AU (p1,t)+(1—=N)U(pa, ). [ |

B. Reward Function

In this section, we formulate the SU utility for various acts. Define the immediate and expected future reward thabithe
gains from taking actiori asR (M for myopic) andR( ) (L for long-term), respectively. The probability that thid SU
observes outcome is denoted bywo) The updated belief probability for outconaeat node: is denoted b)€o) Deﬁneq(T)
as the probability that the PU will remain idle during thensenission period’, given that the PU is idle at time Similarly,
defineqt(s) (i) as the probability that the PU will remain idle durifig;, = 1,2,...,m, given that the PU is idle at the start
of this sensing duration. These two quantities can be egpdeas follows:

(T) _ 1 7Fx(t+T)
% 1— Fx(t)

1= Fy (t+ X5, Tsj)
1— Fy (t +i Tsj)
where F'x (t) is the CDF of random variabl& evaluated at point.

Next, we derive the reward function for various SU modes.

1) TR mode: The myopic reward for the SU link, consisting of nodesand b, under the TR mode can be formulated as
follows:

(22)

o\ (i) = (23)

RED = 3 wfTiog (1+SNRY). (24)
ic€{a,b}

wherewg) is the probability that théth SU has successfully decoded the received messagﬂ\a?ﬁd is the SNR in the TR
mode at node, which is given by:
P; |hil”
O' + XzP |hu|
In (25), h;; is the gain of the self-interfering channel at nade
Since the two communicating SUs may experience differeanihl conditions, the ability to receive data differ fromeon
node to another. Although, we assume that the PU signaltaffemth SUs equally, the interference level may differ frone o
node to another because of other interference sourceseHarsuccessful decoding process at one node does not ingpltheh
other node will be able to decode its packet. Also, the SU trggh an ACK although the PU is ON, due to deep channel fading
between the primary transmitter and the secondary recéileof these features are captured in the following two fabilities,
WhICh may differ from one SU to another [15]:
. probability that theith secondary transmitter receives a NACK although the PU is. OFF
? : probability that theith secondary transmitter receives a NACK given that the PU is ON
When the ACK/NACK reflects only whether a collision occurstwihe PU or not, we havéol =0 and 69) =1
For the reception part of the TR mode, the probability thatith SU, i = a, b successfully decode the received message is

as follows: ()_ (™) (1 _ 5 1— ™Y (12 D) 26
g’ ( 0)+( qu)< 1) (26)

Using Bayes’ rule, the probability that the PU is idle afféigiven that theith secondary transmitter successfully decode the
received message (i.e., the belief update) is:

£D = [ptqt(T) (1 - 53“” Sl @27)

SNRR = (25)



Similarly, the probability that théth SU failed to decode the received message and the belieteifu that case can be written,
respectively, as follows:

() thT)5 )+( th )5() (28)

& = [pa"og | fuwl. (29)

For the transmission part, the probability of receiving &dKANACK at nodei is the same as the probability that the other node
succeed/fail in decoding the message as we assume thahtsartm errors in ACK/NACK are negligible. This is also agl

to the belief update for the corresponding cases. Hezn&e £A ,wN , and 5( D will be formulated similarly assw( Y 5( ) ( )

and E,S , respectively.

There are four possible outcomes for the TR mode. An SU magivean ACK for correct transmission and be able to
successfully decode the received message, or the SU miglangBCK and an undecoded message. The other two outcomes
of the TR mode is to either get a NACK and a decoded messageN&C& and an undecoded message. Hence, the expected
future reward for an SU link obtained at thn SU can be formulated as follows:

RE = 3wl U (06,14 7) (30)
k={A,N}
1={D,U}
where the summation over the two indidés!) can be calculated by considering the four possible comioimafA, D), (A,U),
(N, D), (N,U).
Finally,
Urs (pr,t) = RS +n R (31)

wheren € [0, 1] is the discount factor, which determines how far you takeftitere reward into consideration while formulating
the secondary ut|I|t|es Aat; = 0, the SU only cares for the immediate reward. The final beliefr will be the multiplication
of the two updateé,’ )80 , whereO; € {A,N}, andO, € {D,U}.

2) TSmode: The myopic reward of the TS mode is different from that of tHe Mmode because the SU is monitoring the
spectrum while transmission. Hence, the SU could aborsiméssion if a busy outcome is observed after &gy, j = 1,2,...,m.
Therefore, the myopic reward in the TS mode, assuming that BUransmitting to SU;j will be formulated as follows:

R — Hw wPT log (1 + SNR%)) (32)
where the SNR in the TS mode at noglés given by:
»  Pilhyl?
R = Dl (33)
J
Iz, w : ( ywl ) is the probability of successful transmission in the TS maugich has two conditions. First, SUgets a free
outcome after each and every sensing period ofrthsensing durations. This probablllty is denotedIE[j”1 l) Second,

SU i receives an ACK from Sy at the end off", which is denoted by probab|l|tyJA DefineP; = [P¢1 Pt2 ... Pf.,] and
Py = [Pa1 Pag2 ... Pim] asm-dimensional vectors that represent the false-alarm arectien probabilities, respectively, for
them FD sensing periods in the TS mode.

The probability of getting ACK/NACK from the transmissiomgeess and the belief update in the corresponding cases are
the same as that of the TR mode. The sensing process has alsmiteomes, either free or busy. We assume that if the PU is
sensed free/busy at timeat one end of the SU link, then the other SU will experienceghmme situation. Also, if the PU is
sensed busy at any sensing period, this yields a failure aorwation and the SU should abort the TS mode.

Hence, the probability that theh SU,7 = a,b gets a free outcome aftés; can be expressed as follows.

0 (1) = pigf™ (1) (1= Pra) + (1= pugf™ (1)) (1 = Pay) (34)

Similarly, the probability that theth SU gets a free outcome aftéiy;,j = 2,3,...,m given that it got a free outcome at
Ts(j—1) is as follows:

Wi () =4 () (1= Pry) + (1= 4f(5)) (1= Puy). (35)

The belief update aftef's; andTys;,j = 2,3,...,m in the case of a free outcome can be written, respectivelfolmsvs:

&Y (1) = [pat™ (1) (1 = Pr)| fuf 1) (36)
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£ () = [d6) (1 - Prp)] ) 0
Similarly, the probability that théth SU, = a,b gets a busy outcome aftdfs; is:
o (1) = pal® () Pg1 + (1= pal™ (1) Pas. o

Generally, the probability of getting a busy outcome affef, j = 2, 3,...,m given that it got a free outcome @ ;_1) is as
follows:

() = ¥ ) Prs + (1= 0% 0)) P (39)
The belief update aftef's; andTy;,j = 2,3,...,m in the case of a busy outcome can be written, respectiveliolimsvs:
&y (1) = [pat WP /0 (1) (40)
7 S
&5 () = [aVG)Prs | /0 G). (41)

TS mode is different from other modes as the SU may not coattiluthe end of the transmission duration. This happens if
the SU gets a busy outcome at the end of any sensing dur@tipn = 1,2...,m. However, if the SU gets a free outcome
after every sensing peridfls;,7 = 1,2...,m, there are two possible outcomes. The SU might get a Free @dfér correct
reception or Free and NACK for incorrect reception. Puttaligtogether, the expected future reward in the TS mode can be
formulated as follows:

m Jj—1
REO=S " wi)(, H <i)()U(5g>( Hgm t+ZTsz>
j=1

=1 =1

” 42)
+ 3wl TTwi ) (5,5,“1‘[5}9 (l),t+T>
k={A,N} I=1 =1
Finally,
Urs(pi.t) = Rig +1 R(L) (43)

3) SO mode: The immediate rewar(R(sé\f) in the SO mode will be zero as no transmission takes place.otittome of the
sensing process is either free or busy. The probability tirgea free/busy outcome and the belief update in each casde
formulated similarly as the sensing part of the TS mode ko consideration that the SO mode consists of a singlsisgn
period T's. Hence, the expected future reward in the SO mode can bessqutas follows:

RE = 3 wf'U (g0t +15) (44)
k={F,B}

where wF and wB are the probabilities of getting a free and busy outcomespestively, afterls. 8}” and 5};) are the
corresponding belief updates. Hence we can write the marirexpected utility that the SU gains from sensing the spettru
as:

Uso (pit) = 1 R (45)

4) CS mode: The SU might choose to switch to another frequency channkei@vno information about the PU state is
available) and carry out spectrum sensing, if the prokghihiat the PU returns is very high. The analysis for this afien
mode is the same as that of SO mode, except for the hglibEcause the belief in the new chanpelwill be the probability
that the PU is idle at time given that no previous information is available, which canvritten generally as follows:

=X/ (X+7). (46)
The maximum expected utility for the CS mode is as follows:
Ucs (pest) = n ReS 47
where Al
RE =Y @ (8,8),7? + Tg) (48)
k={F, B}

Wherewg),wg), ¢ and 5’( are formulated similarly ast ,wB ,8( and 55), respectively, after replacing, by p;.
In the Append|x, we discuss the convexity and other progertf the SU's utilitiestr (pe, t) , Urs (pe,t) , Uso (pe, t) , and
Ucs (p+, t) with respect to the belief. We also discuss hbp,, t) varies withp for a givent.
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C. Optimal Policy

After formulating the SU utilities in the four possible awts and adding a constraint on the collision probabilityhviite PU,
our problem can be formulated as follows:

maximize U (py,t)
subjectto P, < P i€ {TR TS}

whereP;,i € {TR, TS} is the PU collision probability in the TR and TS modes, resipety and P;* is the threshold PU collision
probability. Prr and Prs can formulated as follows:

(49)

Pr=(1=p) +p (1-0") =1 pugf" (50)
m i—1
Prs=pi Y S [J (0 =Pri) (1=a) b+ (1= po). (51)
i=1 | j=1

For certain probability distributions for the PU idle patias Gaussian distribution, uniform distribution, and Rayh distribution
(as an example)qt(T) will approach zero at large values tf This means that the probability that the PU returns toagtithe
channel increases with which is very intuitive for this type of distributions. Taekable to derive our optimal threshold-based
policy, we define a technical condition similar to the appfofollowed in [15]. This technical condition states that &l ¢ > t*,
the SU should not transmit any data (i.e. should not operatsther TR, or TS modes) as the collision probability ccaistr
will not be satisfied and hence, zero reward will be gainecheaten; = 1. This threshold time* is defined as the minimum
time where the PU collision constraint is not satisfied. Helg(1,¢) = 0,V¢ > ¢*.

t* = min {t : qu) <1- P{—‘R} . (52)
Theorem 1. The optimal policy for the SU can be written as follows:
CS e < Be
* m) c S < S
- (pt) _ B pe < fB (53)
TS Bs <pr < Pt
TR, Dt > B

Proof: SinceUcs(p,t) is constant withp,, and Uss (pe,t) is @ convex increasing function @f (lemma 6 in the Appendix).
Therefore, There exist at most one intersection betweertvibefunctions becausé&cs(p,t) > Us (0,t). This intersection
occurs whemp, = p, which is denoted bys.. This intersection exists wheh< S, (i.e., under two conditions: strict PU collision
constraint and highly loaded PU networks). Although the fitndition is guaranteed, the second one is not. In that ttes80
region might disappear, and henge= ;. SinceUcs (p, t) > Uso (pe, t) for p, < 8. andUcs (p, t) < Uso (pe, t) for py > fe,
the first two lines of the policy shown in (53) are optimal givéhat the aforementioned condition is satisfied.

Ut (pt, t) andUrs(py, t) are proved to be convex increasing functiongpft a givent (Lemmas (2), (3), (4), and (5) in the
Appendix). Sincdr (1,t) > Urs(1,t) and since3; > 3, (Generally, the amount of interference induced by the StherPU in
the TR mode is higher than that of the TS mode), therefore fuittions intersects together @t. SinceUrs (p;,t) > Utr (pe,t)
for p, < B: (asUrr (pe,t) goes to zero for violating the PU collision constraint) dig (p;, t) < Utr (pe, t) for p; > 5, the last
two lines of the policy shown in (53) are optimal. Note that (p;, t) goes to zer&p; < s due to the violation of the PU collision
constraint. |

The above theorem states that the SU should utilize the appty of having a high belief that the PU is idle and operate
in the TR mode ifp, > 5;, where g, is the transmission-reception threshold. In that case thendl dramatically increase
the throughput by transmitting and receiving data simétarsly over the same channel. If the belief decreases alsdriahe
following rangegs < p; < B, the SU should monitor the spectrum while transmitting. (iaperate in the TS mode) as the
probability that the SU returns is now relatively high, is called the sensing threshold. In that case, the SU stilingesome
throughput (lower than TR mode), however a lower collisioobability is achieved. The SU should stop transmitting] aarry
out HD sensing (i.e., SO mode) jif is relatively low 3. < p; < B because in that case the probability that the PU returns to
the channel is too high and the PU collision constraint wit be satisfied. Hence, a better sensing quality and a temigora
channel vacation is required, is called the channel switching threshold. At very low bielieluesp, < 3., where the PU is
most likely to return to use the channel, the SU should takeGB action. This happens when the probability that the PU is
idle in a new channel (where no information is available)ighbr than the current belief.

To solve our problem, we have to find the threshold tirhevhere our condition is satisfied and then apply backwarddtidn
to find the thresholdg,, 3;, 8; and the maximum utility for the SW (p, t) for different values ofp and¢.
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D. Discussion of the optimal policy

In this section, we will highlight some important featuresooir optimal policy that should be considered in our FD DSA
network. Until this point of discussion, we assumed that Zligays have data to transmit. That is, if the optimal policy
recommends the TR mode, then SUs will carry out simultané@ursmission and reception over the same frequency. But wh
if one of the nodes does not have data to its peer? This mesitae refinement of our adaptive strategy to account for SU’s
traffic flow. Before doing that, let us first discuss how we definaster/slave nodes, and data/control phases in the fofjow
two items:

« Master and slave nodes: A master node is a designation givanyt SU device that executes the optimal adaptive decision
strategy. The master node is the one that takes a final deciout the operation mode, whether receiving data while
transmitting, sensing the spectrum while transmittingit@ving to another channel, or solely sensing the spectiLime.
slave node is the SU device that is receiving orders from thsten node with regard to starting, continuing, or stopping
transmission. This is done through control packets. In tlesgnt design, the node that initiates the communicatidhes
master node, and the other one is the slave node. Howevee tbées may change over time, depending on which node
has traffic to send (i.e., the traffic directionality).

o Data and Control Phases: This concept is related to the iaiggnprotocol used between SUs, equipped with SIS/FD
capabilities, to communicate with each other. Once a cHasnthought to be idle by the initiating SU, the time frame
will be divided into two alternating phases: data phase amttrol phase. The SUs will start communicating together in
the data phase where data packets only are exchanged. pésrisn sensing is executed in the data phases as well. After
that, a control phase is established between the two nodeshWas two goals. First, this control phase is used to aonfir
the correct reception of packets transmitted in the prevaata phase in both directions, if applicable. Second, oiméral
phase is used by the master node to trigger the slave nodartp @intinue, or stop transmission while receiving. If the
two nodes switch to another channel, the data and contragshaill be terminated (until finding a free channel) and the
sensing durations can be optimized separately, without#te and control phases restrictions.

The four possible modes (TR, TS, SO, and CS) represent aesBig$ perspective. However, the links operation is detexchin
by the mode of operation at the two communicating nodes. élehese modes of operation should be written as followsTRR-
TS-R (or R-TS), SO, and CS. For instance, if an SU is transmgitind receiving data simultaneously, the other secondaag
will also be transmitting and receiving data, which is irmdéd by the TR-TR mode. However, if an SU is transmitting and
sensing, its peer will be only in the reception mode, whicfings the TS-R mode{R} stands for reception). The threshold-based
structure discussed so far has to be adjusted with the Sffis tead. For instance, assume that the optimal strategymetends
the SU to operate in the transmission-reception mode, whéeother communicating node does not have data to trankmit.
this case, the SU node can operate in the transmit-sense witldethe other SU can only receive data. To implement tls, t
two communicating SUs can utilize the more packets (MP)rbithe header of each packet to find the final decision. This MP
bit determines whether a certain node has more packets quése or not.

Another crucial point, in FD DSA networks, to be consideracdur design is the FCC requirements. Consider the scenario
where SUs are operating in the idle PU period using the TR miodéne case of good channel conditions, both nodes will keep
ACKing their packets, updating their beliefs, and will netitth to any other mode unless they collide with the PU (int tha
case they will get NACKSs), or whet> t*. To avoid this blind communication without monitoring th&) Bhannel, SUs should
periodically switch to any of the sensing modes (TS or SO}hdy violate the FCC requirements discussed next. The FCC
imposes rules for operating opportunistic wireless nettaoOne of these rules is the periodic sensing interval, vinmeans
that any channel used by an SU has to be sensed &vefyseconds to check for the PU activity. The SU has to vacate the
channel quickly if a PU activity is detected. Hence, thistdrthe decision strategy states that each SU link has totaiaia
maximum duration off’.., seconds between sensing periods, whether it was operatithg2 iSO or TS modes.

V. NUMERICAL RESULTS

We use the following parameters unless otherwise is mestiomhe sampling frequency and the SU signal powerfgre-
6M Hz ando? = 5, respectively and®\R™D = —204B. For evaluatingP; and Py, we consider a complex Gaussian primary
signal witha = 2. The PU idle period is uniformly distributed in the ranffe1000]. We also sefl’'s = 1, m = 30, T = 30,

09 = 0.01, andd; = 0.99.

A. Performance Metrics

1) False-Alarm And Detection Probabilities. The impact of the residual self-interference signalfynand P, for waveform-
based sensing is shown in Figures 4 and 5, respectivelyy Axreases the performance of the waveform-based sensing ge
worse (i.e.,Py increases an@’; decreases) due to the increment in the residual self-@rete. We also notice th&y and Py
converges to HD sensing at perfect SIS. In imperfect ser®thgmes, increasing the sensing duration improves therpehce
of the sensing technique. At low SNR regions, the SU needsndr@0% increment in the sensing duration to achieve the
sameP; and P; (achieved for HD sensing) fat0% residual self-interference from the original SU signal aegds abou0%
increment inTs for 40% increase in the residual self-interference.
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2) PU Caollision Probability: The advantage of the TS mode over the TR mode is the lowesiouiliprobability. Figure 6
shows the variation of the PU collision probability for th& TTS, and TO mode with. As ¢ increases, the collision probability
increase as the PU is more likely to return to utilize the cehnAs shown in Figure 6, the SU can achieve a lower collision
probability in the TS mode than that of the TR mode. This improent may reach in certain scenarios up reduction in
the collision probability.

3) SU Throughput: Figure 7 shows a comparison between the achievable SU'sighpat in the TS mode (assuming long
enoughTs) and the TR mode at different values of The SU’s throughput in the TR mode decreasesg ascreases due to
residual self-interference. Hence, working in a FD fash®omot always optimal especially at highvalues. According to our
simulation setup, the threshold SIS factor where the SU ldhswitch to the TS mode ig;, = 0.38. Also, ast increases the
SU’s throughput decreases due to the increment in the pildpabat PU returns.

B. Transmission-Sensing-Reception Strategy

We use backward induction to find the optimal thresholds dwednaximum SU utility. We sef = 0.3, Pigr = 0.2, Pig =
0.4, Py = 0.01, Py = 0.99, SNRHP) = 204B, and Y = 2000.

The variation of3;, 5, and 3. with t is shown in Figure 8, which shows the mechanism of our optpodity. The SU should
operate in TR mode as long as > 3;, switch to TS mode whep, < p, < 3;, switch to SO mode whepi. < p; < s, and
finally switch to a new channel whep < .. The SU should also switch to a new channel if ¢* as the PU is more likely
to return to utilize the channel, which justifies the conesice of3;, 55 and 5. to 1 for ¢ > ¢*. Note thatg, is constant (for
t < t*) because it depends on the channel availability, when rarnmdtion is known. Hencej. = 500/2500 = 0.2 according
to our setup.

Figure 9 shows the variation of the maximum SU utilities foe TR, TS, SO, and CS modes wjth The final SU utility is
the maximum of these four utilities. Note that the utilitytire CS mode is constant wifhbecause it is independent of the SU
belief in the currently used channel. The abrupt reductmmttie SU utilities in the TR and TS modes is due to the viotatio
of the PU collision probability constraints.

VI. CONCLUSIONS

We consider a novel application of FD communications in DSAworks, where we analyzed the performance metrics of
the TR and TS modes, namely the throughput and collisionaghitity. We determined the optimal switching policy of SUs,
equipped with SIS/FD capabilities, that maximizes the Suliity subject to a constraint on the PU collision probakil To
enable the TS mode, we analyzed the waveform-based semsithg icase of imperfect SIS, and derived the false-alarm and
detection probabilities. Using our adaptive strategy, e can achieve aboui0% reduction in the collision probability and
double the throughput comparing to the HD case. Finally, ptin@l threshold-based strategy is obtained, which depemd
the SU’s belief regarding the idleness of the PU. Our resoligcate that SU should operate in the TR mode if it has a high
belief that the PU is idle. As this belief decreases, the Stukhadaptively switch to the TS mode to monitor any change in
the PU activity while transmitting. At very low belief valsgwhere the PU is more likely to be active, the SU should $witc
to another channel. One possible direction of future wortoiaddress how SUs will negotiate together in the controkpha
determine the final action given that both nodes may haveréifit traffic flows.
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APPENDIX

A. Proofs for Waveform-based Sensing
Proof of Proposition 1: The mean ofM, can be expressed as follows:

gy = Re | Y B (xs(n)I*(n) +w(n)I*(n))| =0. (54)

Sinces(n),l(n), andw(n) are independent, the above result holds. The SU signal (amthdy for other signals) can be
written as a function of the real and imaginary componentlews: s(n) = s.(n) + js;(n). Hence, the variance d¥f/ is:

N
o, = Y Var (Re[(xs(n) 1" (n) + w(n) " (n))])

= ]\;[X2 {Var (s;(n)l.(n)) + Var (s;(n)l;(n))} + Var (w,(n)l,(n)) 4+ Var (w;(n)l;(n))]
=N [*{E (si() E (IZ(n))+E (si(n)) E (17(n) }+E (wi(n)) E (I2(n)) +E (wi(n)) E (I(n))]

N
= 5 [CE smIPE 0P +E wm)*E )] . o
Proof of Proposition 2: Due to independence, the mean/df, is expressed as follows:
N N
pan, = Y E )P +Re | D E (xs(n)*(n) +w(n) l*(n))] = NE [i(n)|” (55)
n=1 n=1

The variance of\/; can be shown to be:

=y [Var (Ji(m)[*) + Var (Re[(x s(n) I*(n) + w(n) I"(n))])|

n=1

- N [Var (|l(n)|2)+x2 {(Var (s,(n)l,(n))+Var (s;(n)l;(n))}+Var (w,(n)l,(n))+Var (wi(n)li(n))}
= N[E i(m)|* - B2 |i(n)

= N[B im)[* ~E2im) + 5 (B |s@) B [1n)* +E w(n)*E i(n)]?) ] . g

B. Proofs for SU utilities
Lemma 2: Urr (p:,t) increases irp for a givent.
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Proof: To prove this lemma we have to show that the first order dévivaf Utr (p;, t) with regard top is non-negative. We
will start first with the myopic reward and then the long tereward of (31).

R =3 of (5” )Tlog (1+SNR$,3) (56)
i€{a,b}

Which is non-negative aﬁf) > 56“. The long term reward consists of four terms as shown in 80).the ACK/Decoded term,
we have the following:

’

Rig = (wwl)) U (6965, 1+ T) +uulU" (€95, 1+ T) (e9e))
" (wgmy): U (9 t+7) +uQuU (698, 1+ 7) (g@g;p): -
+ (wQul)) U (eQel) 1+ T) + i wU" (695 1+ T) (£0e))
+ () U (6P 1+ T) +uu§U (06, 0+ 1) (06
Rig=[af (o7 = o) wiy + af (61" = 0" ) wl| U (€Dl 0+ T) + 0wV (e5)€5) 1+ 7) (5"))51(;‘))/
+ (o0 = o) wl — af (687 = 6" ) w) | U (€D 0+ T) + wPwU (el 1+ T) (55
+[=al (67 = o) wi + af (517 = 6§”) wP| U (P65t 4 T) + w0 (el 04 T) (eel)
+[=al (687 = o) wl — af (51 = 08" ) wP| U (eP€ 14 T) + w U (Pl 04 T) (e |
(58)

Rig=qf (o - 2" [wg> (v (gg>gg>,t +T) = U (e t+T) ) + 0l (U (68 1+ T) —U (P, 1+ 7))
+af (317 = 0") [0l (v (Dl t+T) U (5](;’)55“),7: +T)) +ul) (U (ePel) 1+T) —U (6Pt +T))]
+ufu U (g€ t+T) (53”5};’)) +ul U (el 1+ T) (e )

+ul U (Pl e+ ) (595};)), +wwU (ePef 4 T) (53’)55;”)/
(59)

Assume, for the time being, thé/t (pt, ) |s an increasing function qf (we will justify this assumption while proving lemma
(7) by backward induction). Smcé > 8 for i = a,b. Therefore, the following inequalities hold:

U(eyes) t+7) > U (el e+ )
U(eQel t+7) > U (el t+T)
U(eRe t+T) > U (eDel t+7)
U(ePes) t+T) > U (Pl 1+T)

Therefore, the first four terms of (59) are non-negativeatlt also be proved the(fg)gg)) , (5%’)5[(}”) , (5[(}7)6,(3”) , and

S,(Jb)S(U“) are non-negative. Hence, the last four terms of (59) areradsenegative, which completes the proof. |
Lemma 3: Urr(p:,t) is a convex function op for a givent.
Proof: To simplify the analysis of this lemma, we consider the cmbereé(()a) b) and6 6(b) From (56), the second

order derivative of the myopic rewarHT]‘é,.{" = 0. Next, we find the second order derlvatlve of the long termarekw
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RE = g (6~ ) [0 (90,04 7) — 0 (519,04 7)]

A (1 - 53“)) (1 - 55“)) U’ (5};”, t+ T) g5y’ (5’(“) t T) (60)
i @ * @
D U

Rk, is non-negative agl()“) > 51(]“) andU (ps,t) is an increasing function gf. The second order derivative @tk can be
expressed as follows.

af (1=0") (1=ai)U' (5004 7)  afog?si"0" (8,0 +17)

R = df (5~ 4")

] o)
. Fi-o) (1-o) e u” (e e+ T) wiy) —of (i =) (1= o) U (e 1+ T) o (51 - 66")
]
) aF 570U (£ 1+ T) wlf 4+ gF o800 (514 T) of (61 — o)
]
(61)
o [ (1-86") (1- 5§“>)J U (&5 t+1) . |aF56 01| U (:’[(f), L+ T) .
] ]
Sincel (p;, t) is a convex function of. ThereforeR%; > 0 and hencd/rg (p;, t) is convex. [}
Lemma 4: Urs(py,t) increases irp for a givent.
Proof: Cm
R = (wf (w)) I1 wi ()T log (1+ SNRYY) (63)
R = (a7(1) (Pas = Pro)wl)) +w? (gl (57 - 85)) Hw ()T log (1 + SR (64)

GenerallyP; > Py andd; > do. HenceR M’ > (). Next we will find the first order derivative for the long tereward in the TS
mode. To do that, we will split the long term reward shown i@)(#hto two parts to berig = Z; + Z». Let Cy = [, w(a)( D).

Zy = (w53>w<F‘”( ) U (f:g’)]_[e;“) (l),t+T> +wluwl® (e U’ (5“’ [T&s t+T> (595}”(1)) He}“)(o
=1 =1

=2

+ (P () o <5gb>Hgg“>(l),t+T> +uww (1)U ( 0 t+T> (e m) TTeww
=1 =1 =2
(65)
Zy = [af (887 = ") wi® (1) + ) af (1) (Pay = Pra)| C1U (6&? [Te .t + T)
=1
+a]lgrov <€S’ [[e .0+ T) el (1-60) (1= Pra) + a7l (1) (1-00") (1 = Pan)]
=2 =1
(66)

+ [ (51" - o) “”(>+w<b>qf<1><Pd,1—Pf1}cm( b>ﬁg t+T>

+a e o (6&”) H62“><Z>,t+T> |aF(EP 6 (1= Pra) + ol £ ()3 (1= Pu))|
=2 =1
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SinceU (pt, t) is an increasing function g (To be justified in lemma (7)). Smc‘é(b > £(b) Therefore, the first and third
terms on2 are non-negative. Hencé,2 >0

7y = wl® (1)U (5};‘)(1),1&+ Tgl) + @ (1wl (2)U (5}“)(1)5g“>(2),t +Tg + Ts2>
Fu Ol @ui U (65 R )5 ().t + Tor +Tsr +Tss) 4.

To simplify the proof, the first term of (67) can be safely reged. The reason is that the probability of getting a busyamme
after T's; (very small period) is almost negligible, given that is sufficiently large (to satisfy the PU collision probatyili
constraint) andn is large enough. Note also that the probability that the PlUsmiitch its state durind’s; is very small given
that the PU’s ON and OFF periods are much longer than

(67)

Zy = ¢(1) (Pay — Ppy)w') (2)U (5“( )Es t{m)w 9 (Dw) (2)U (s (1ES (2) t+ZTs>e<“>< 1ER (2)
=1

=1

+¢%(1) (Pyy — Prp)wi® (2wl 3)U (5}“)(1)5@ 2)e)(3 t+z Tsz)

+ i (ui @y’ (3)U <s<“>< DE S 3) Tsz) (e (2)E5(3) +
>0 u

Lemma 5: Urs(p:,t) is a convex function op for a givent.
Proof: First for the Myopic reward:

RM" = 2017 ¢°(1)qF (Pyy — Ppy) (5@ - 55”)) log (1 + SNR%)) >0 (68)

Next, we will find the second order derivative of the long teeward. LetC, = [],", & ( ). We first start with findingZ,
and then proceed t4, .

Zy =201q7 F (1) (817 = 00" ) (Pay = Ppa) U (D61 (1)Co,t + T) — U (€01, + T) |
+CyCy [qt <6 b _ 50 ) w@ 1)+ wP S (1) (Pay — Py, 1)} [U (5g’>5}“>(1)02,t + T)}
F OO (e W0t +7) (VLW [ WEY (1-50) (1= Pr) + €0 (1) (1— ) (1 - Pan)]
+CL0U (5,8”5}“)(1)02, t+ T) [qfu)g};”) (1 - 55“) (1= Pp1)+qPEL7(1) ( 55*’)) (1— Pd,l)}
+C1Cy [=a7 (50 = 60) i) (1) + 0 (1) (Pas — Pr)] [U (D0 0 Cant+7)|
+ O3 (PP Mot +T) (EPE2(1) |af MEP S (1= Pra) + € (1o (1= Puy)]

+CGU (806 (1)Ca,t+T) [af &S (1= Pra) + 6l €47 (168 (1 = Puy)]
(69)

SinceU (p¢, t) is an increasing function g (to be justified) and sincé,(jb) > El(f’). ThereforeU (595}”(1)02,75 + T) >

U (S(b)é’(a)( )Cs,t+T) and hence the first term df, is non-negative. Since convex functions have always areirsing

slope and sincé’ (p;, t) is proved to be a convex function pf Therefore the second and fifth terms of (69) are non-negativ
HenceZ2 iS non-negative.

2
2] = w25 2)a (1) (1 = Pp) (1= Pan) £ (1/w” (1)) U” (62‘”(1)5};)(2» Y Tsz)
=1

+wi ()£ 2w (3)EFV (3)af (1) (1-Pya) (1-Pa) €47 (1) (1/w” (1)) U”(eéf WE (2) t+Z TSl)
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SincelU (p;, t) is a convex function of. ThereforeZ, is non-negative, which completes the proof. |
Lemma 6: Ug (pe,t) is an increasing and convex function pffor a givent.

Proof:
Réc; =q; (pd - ﬁf) {U (Efva),t + Ts) -U (Eé“),t + Ts)}
af (1=Pr) (1= Pa) U' (2t +Ts) P PrPal’ (£50,0+Ts) (70)
N ) + @
F B
Where

s _1-Fx(t+Ty)

RL] is non-negative a§}“) > Sg‘) and U (p,t) is an increasing function gf. The second order derivative dt, can be
expressed as follows.

e lf (1= P7) (1-P4)] U (e, ¢+ 1) N [ PP U (&5, 6+ 1)
o ) 5]

SinceU (p;,t) is a convex function of. ThereforeRL; > 0 and hencé/ss (py, t) is convex. |
Lemma 7: U(p,t) increases irp for a givent.
Proof: This lemma can be proved using backward inductiont dh5]. SinceU (p:,t) = 0Vt > t* (@sU(ps, t) IS convex in
pandU(1,t) = 0,Vt > t*). Therefore,U(p,,t) is an increasing function of, V¢ > ¢*. Assume that for > t* — k, U(p;,t)
increases imp. Let us now check whethér (p,, t) increases irp or not for time instant = ¢* — k — 1. Using (21), and since we
proved thatUqgr (py, t) , Urs (pe, t) , Uso (pe, t) , and Ucs (P, t) are increasing functions of (Lemmas ((2), (4), (6)). Note that
U(p:, t* — k) increases irp by the induction hypothesis. Therefoii@(p;,t* — k — 1) also increases ip. [ |

(72)



