Consider the scenario in the figure below. There are two available paths between a source S and a destination D. The first path goes through routers R_1 and R_2, while the second path goes through R_3 and R_4. The fixed propagation delays are shown in the figure. For $i = 1, 2, 3, 4$, the queueing delay at router i is gamma distributed with scale parameter λ_i and shape parameter r_i. Let

- $\lambda_1 = \lambda_2 = 0.1$
- $\lambda_3 = \lambda_4 = 0.2$
- $r_1 = 2$
- $r_2 = 1$
- $r_3 = 2$
- $r_4 = 3$

1. Numerically compute the exact 0.9-quantile of the end-to-end delay for $\alpha = 0.1$ for both routes (hint: Suppose that X_1 and X_2 are two independent and gamma distributed random variables with scale parameters λ_1 and λ_2, and with shape parameters r_1 and r_2, respectively. If $\lambda_1 = \lambda_2$, then $X \overset{\Delta}{=} X_1 + X_2$ is also gamma distributed with scale parameter λ_1 and shape parameter $r_1 + r_2$).

2. Repeat part (1) but using the simple additive scheme for QoS accumulation.

3. Repeat part (1) but using the asymptotic scheme for QoS accumulation.

4. Repeat part (1) but using the Chernoff-bound scheme for QoS accumulation.

5. According to your calculations for each part, which route is preferable?