Localization

Junseok Kim
Wireless Networking Lab (WINLAB) Konkuk University, South Korea http://usn.konkuk.ac.kr/~jskim

Why Localization is important

- Location-based applications
- Personal navigation
- Tracking shipments
- Monitoring patients
- Location-based network protocols

- Geographical Routing
- Topology Control

Path loss vs. Distance

- Path loss is the reduction in power of an electromagnetic wave as it propagates through space
- Distance can be estimated by path loss model

Log distance Path loss Model

$$
\begin{gathered}
\overline{\boldsymbol{P L}}=\overline{\boldsymbol{P L}}\left(\boldsymbol{d}_{0}\right)+10 n \log \frac{\boldsymbol{d}}{\boldsymbol{d}_{0}} \\
d=d_{0} \cdot 10^{\frac{P L-P L\left(d_{0}\right)}{10 n}}
\end{gathered}
$$

- n : path loss exponent which indicates the rate at which the path loss increases with distance
- n is about $1.5 \sim 2.8$ in indoor
- d_{0} : close-in reference distance which is determined from measurements close the transmitter
- d : distance between sender and receiver
- $P L\left(d_{o}\right)$: path loss at distance d_{o}
- $P L\left(d_{o}\right)$ is about $38 \sim 42 \mathrm{~dB}$ in indoor

Trilateration

- Somehow complicated calculating
- Not precise because of variation of Path loss

$$
\begin{aligned}
& \alpha^{2}=\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)^{2}+\left(\boldsymbol{y}-\boldsymbol{y}_{1}\right)^{2} \\
& \chi^{2}=\left(\boldsymbol{x}-\boldsymbol{x}_{3}\right)^{2}+\left(\boldsymbol{y}-\boldsymbol{y}_{3}\right)^{2} \\
& \beta^{2}=\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)^{2}+\left(\boldsymbol{y}-\boldsymbol{y}_{2}\right)^{2} \\
& \boldsymbol{x}=\frac{\left(\frac{\alpha^{2}-\beta^{2}+\boldsymbol{a}^{2}}{2}\right)\left(\boldsymbol{y}_{3}-\boldsymbol{y}_{1}\right)-\left(\frac{\alpha^{2}-\chi^{2}+\boldsymbol{b}^{2}}{2}\right)\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)}{\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)\left(\boldsymbol{y}_{3}-\boldsymbol{y}_{1}\right)-\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right)} \\
& \boldsymbol{y}=\frac{\left(\frac{\alpha^{2}-\chi^{2}+b^{2}}{2}\right)\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)-\left(\frac{\alpha^{2}-\beta^{2}+\boldsymbol{a}^{2}}{2}\right)\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right)}{\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)\left(\boldsymbol{y}_{3}-\boldsymbol{y}_{1}\right)-\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right)} 5
\end{aligned}
$$

RSSI vs. Time

- RSSI value fluctuates due to environmental changes
- RSSI: Receive Signal Strength Indicator

Maximum Likelihood Estimation (MLE)

- Use probability to improve accuracy

MLE (Cont.)

- Divide region into many cells and find the cell with the highest probability of blind node being located

MLE (Cont.)

- Divide region into many cells and find the cell with the highest probability of a node being located
probability of blind node being located at j-th cell
probability of blind node being located at j-th cell in a view of reference node i

Min-Max Bounding Box

- Very easy and simple but less accurate than MLE

Q and A

