Standards for Wireless Home Network Junseok Kim Wireless Networking Lab (WINLAB) Konkuk University, South Korea

http://usn.konkuk.ac.kr/~jskim

IEEE 802.x Standards

802.11 for Wireless Local Area Network

- 802.15 for Wireless Personal Area Network
- 802.16 for Broadband Wireless Metropolitan Area Network

IEEE 802.x Standards

- 802.11 for Wireless Local Area Network
- 802.15 for Wireless Personal Area Network
 - Task Group (TG) 1 (WPAN / Bluetooth)
 - Released in 2002 Revised in 2005 / max. 1Mbps / 2.4GHz / freq. hopping (Bluetooth 2.0+EDR supports 3Mbps)
 - TG 2 (Coexistence)
 - TG 3 (high rate WPAN)
 - Released in 2003 / max. 55Mbps / 2.4GHz / no spreading code
 - TG 4 (low rate WPAN / ZigBee)
 - Released in 2003 / max. 250kbps / 2.4GHz / DSSS

Home Network with IEEE Standards

CSMA-CA

Carrier Sense Multiple Access – Collision Avoidance

CSMA-CA (Cont.)

Collision Avoidance

CSMA-CA (Cont.)

RTS-CTS handshaking

CSMA-CA (Cont.)

• Random back-off (BO)

CSMA-CA (Cont.) cwj

Contention Window (CW)

*Window: An interval of time during which an activity can or must take place

802.11e

- enhanced distributed channel access (EDCA)
 - Enhancement of distributed contention function (DCF) in 802.11 legacy

Access Class	CWmin	CWmax	AIFSN	TXOP limit
BACKGROUND	aCWmin (=15)	aCWmin (=15) aCWmax (=1023)		0
BEST EFFORT	aCWmin	aCWmax	3	0
VIDEO	(aCWmin+1)/2-1	aCWmin	2	3.008ms
VOICE	(aCWmin+1)/4-1	(aCWmin+1)/2-1	2	1.504ms

802.11e (Cont.)

Block ACK

802.11n

- Data rate is up to 600Mbps
 - 802.11g's max. data rate is 54Mbps

802.11g vs. 802.11n

- 802.11g
 - 64QAM: 6bits (=log₂64) per one symbol
 - OFDM: 48 sub-carriers * 6 = 288bits
 - 3/4FEC: 288 * 3/4 = 216bits
 - 4us symbol duration: 216/4 = 54*Mbps*
- 802.11n
 - 64QAM: 6bits
 - OFDM: 108 sub-carriers * 6 = 648bits
 - 5/6FEC: 648 * 5/6 = 540bits
 - 4 sets of TX/RX antennas: 540 * 4 = 2160bits
 - 3.6us symbol duration: 2160/3.6 = 600*Mbps*

Do not Confuse

• Wireless Sensor Network (WSN) is neither Bluetooth, ZigBee, WiFi, or any IEEE Standard.

802.15.1

• IEEE Standard for Wireless Personal Area Network (WPAN)

- For wireless connectivity with fixed, portable, and moving devices within a personal operating space.
- 1600 hops/sec across 79 frequencies
 - Class 1: +20 dBm (100 mW), 50-100 meters
 - Class 2: +4 dBm (2.5 mW), 20 meters
 - Class 3: o dBm (1 mW), 10 meters

802.15.1 (Cont.)

- Master establishes a piconet with up-to 7 slaves
 - Master determines piconet's frequency hopping pattern

802.15.4

- IEEE Standard for Low-Rate Wireless Personal Area Network (LR-WPAN)
 - For communication devices using
 - low data rate
 - low power
 - low complicate
 - short range radio
- Do not Confuse
 - 802.15.4 is not ZigBee
 - ZigBee is not WSN

802.15.4 - Low Power

- Most LR-WPAN devices operates with small batteries
 - Turn off the radio periodically to save the energy

802.15.4 – Super-frame Structure

• Most LR-WPAN devices operates with small batteries

beacon

beacon

	CONTENTION ACCESS Period	CONTENTION Free Period	INACTIVE			
	active					
Super-frame						

802.15.4 – ZigBee vs. Bluetooth

• ZigBee defines network, security, application layers

Home Network with IEEE Standards

Wireless Sensor Network (WSN)

• Large Ad-hoc Network consists of numerous sensors (which have RF transmitter)

WSN applications

- But, very few commercial success. Why?
 - In addition, research interests on WSN decline.

Maybe. It's Future direction

 A few leading research centers started these kinds of projects

Future WSN device?

Pedestrian navigation Location-based services Intelligent Transportation Systems Smart shopping assistant Entertainment integration Environment Monitoring in City by iPhones

25

Research topics on WPAN and WSN

