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Abstract—In an earlier paper, we reported that the low-density
parity-check (LDPC) codes from finite planes outperform any
other known forward error-correction (FEC) scheme for optical
communications. However, the number of different LDPC codes
of code rate above 0.8 is rather small. As a natural extension of
the prior work, in this paper, we consider LDPC codes on m
flats derived from projective and affine geometries, which out-
perform codes from finite planes. The codes on m flats also
provide a greater selection of structured LDPC codes of rate 0.8
or higher. The performance of the codes in a long-haul optical-
communication system was assessed using an advanced simulator
able to capture all important transmission impairments. Specifi-
cally, they achieve a coding gain of 10 dB at a bit error rate (BER)
of 10~°, outperforming, therefore, the best turbo product codes
proposed for optical communications. In addition, the simulator
implements a fixed-point (FP) iterative decoder that allows con-
trol of the precision of the soft information used in the decoder.
Such quantization is required to facilitate hardware implementa-
tions of the iterative decoder, and the high-speed operations for
long-haul optical transmission systems. The loss in performance
due to reduced precision of the soft information can be as low
as 0.2 dB.

Index Terms—Finite geometries, forward error correction
(FEC), low-density parity-check (LDPC) codes, m flats, optical
communications.

I. INTRODUCTION

N RECENT years, low-density parity-check (LDPC) codes

have generated great interests in the coding commu-
nity [6]-[10], and this has resulted in a great deal of under-
standing of the different aspects of the code and the decoding
process. An iterative LDPC decoder based on the sum—product
algorithm (SPA) has been shown to achieve a performance of
as close as 0.0045 dB to the Shannon limit [6]. The inherent
low complexity [11]-[14] of this decoder opens up avenues
for its use in different high-speed applications, such as optical
communications.

In a series of recent articles [1]-[5], we showed that error
performance and decoder hardware complexity offered by turbo
codes [15]-[17] can be greatly improved by using iteratively
decodable LDPC codes. Although several methods have been
proposed to construct “good” LDPC codes, the complexity of
LDPC encoders and decoders can be considerably reduced by
allowing cyclic or quasi-cyclic structures in the parity-check
matrices of the codes. These symmetries are especially critical
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to enable high-speed forward error-correction (FEC) architec-
tures for optical communications. The cyclic or quasi-cyclic
structures of these codes support simple encoders, realized
using shift registers, and low-complexity iterative decoders.
In [18], we presented a construction method based on the inci-
dence of points and lines of a finite projective plane, and in [1],
we extended the above construction method to include affine
planes and some secondary structures in projective planes like
ovals and unitals. In [3]-[5] and [19]-[21], we proposed several
LDPC designs based on integer lattice, mutually orthogonal
Latin squares and rectangles, and block-circulant parity-check
matrices. These codes have shown encouraging performances,
with a coding gain of larger than 10 dB at a bit error rate (BER)
of 10~°, outperforming the best turbo codes [17] proposed for
optical-communication systems.

The next step of generalization of these codes can be ob-
tained by considering incidence properties of higher dimen-
sional flats over finite (projective and affine) geometries. In [1],
LDPC codes are constructed based on the incidence of points
(zero-dimensional flat) and lines (one-dimensional flat) in a
plane (two-dimensional flat) of projective and affine geome-
tries. In this paper, we construct LDPC codes based on the
incidence of m-dimensional flats, where m is not necessarily 0,
and (m + 1)-dimensional flats in an n-dimensional flat, where
n >m+ 1, of projective and affine geometries. Apart from
excellent coding, these LDPC designs offer a larger number of
codes of rate above 0.8. This approach was first suggested by
Tang et al. [22], and the BER performances of these codes over
an additive white Gaussian noise (AWGN) channel presented
in the paper were impressive.

In order to make a realistic assessment of the code’s
performance in long-haul optical communication system, an
advanced simulator was developed [1], [23], which successfully
captures the effects of important transmission impairments
such as fiber nonlinearites [interchannel (four-wave mixing,
cross-phase modulation) and intrachannel (intrachannel four-
wave mixing, intrachannel cross-phase modulation, self-phase
modulation) nonlinearities, stimulated Raman scattering], chro-
matic-dispersion effects [group-velocity dispersion (GVD),
second-order GVD], linear crosstalk effects, (optical and elec-
trical) filtering effects [intersymbol interference (ISI)], ampli-
fied spontaneous emission (ASE) noise, and others.

The LDPC decoder iteratively uses soft information, re-
ferred to as log-likelihood ratio (LLR), in order to decode
the output of the channel. This soft information used in the
iterative decoder has to be quantized in order to facilitate digital
hardware implementations [30]. The performance loss using a
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fixed-point (FP) representation for quantized LLRs is assessed
as well in this paper. Another approach, which is the “bio-
inspired network-decoding” approach [31], has received greater
attention in recent years. This approach is promising from the
system-level-accuracy, speed, and power-consumption stand-
points [31].

In Section II, we present a brief introduction to finite geome-
tries, and outline the algorithm to construct LDPC codes on
m flats from these geometries. In Section III, we briefly de-
scribe the channel model implemented, and in Section IV,
we present the BER performance of the proposed codes. In
Section V, the BER performance is assessed by varying the
precision setting for LLRs. The final section summarizes the
major results of this paper.

II. ITERATIVELY DECODABLE CODES ON m FLATS

In this section, we present algorithms to construct two classes
of LDPC codes based on the projective and affine geometries
of finite-dimensional vector spaces over finite fields. A detailed
discussion on finite geometries can be found in [26]-[28]. The
following notation will be used in the paper:

1) pis a prime integer, and q is the power of p.

2) GF(q) is a Galois field of order q.

3) m and [ are integers less than n, where [ < m.

The projective geometry of dimension n over GF(q), rep-
resented as PG(n,q), is a set of all proper subspaces of a
vector space of dimension n + 1 over GF(g). In projective-
geometric terminology, an (m + 1)-dimensional element of the
set is referred to as an m flat. For example, points are O flats,
lines are 1 flats, planes are 2 flats, and m-dimensional spaces
are (m — 1) flats. An [-dimension flat is said to be contained in
an m-dimension flat if it satisfies a set-theoretic containment.
Since any m flat is a finite vector subspace, it is justified to
talk about a basis set composed of basis elements independent
in GF(p). In the following discussion, the basis element of a
0 flat is referred to as a point and, generally, this should cause
no confusion because this basis element is representative of the
0 flat.

Using the above definitions and linear algebraic concepts, it
is straightforward to count the number of m flats, defined by a
basis with m + 1 points, in PG(n, ¢). The number of such flats,
say Npg(m,n,q), is the number of ways of choosing m + 1
independent points in PG(n, ¢) divided by the number of ways
of choosing m + 1 independent points in any m flat.

NPG(man7q)
_ @ =D 9@ =) (@ =™
(g™t = D(gm™* — g) (g™ —¢?) ... (g™ —q™)
B m (qn-‘rlfi _ 1)
- pn (qm+l-i — 1)’

Hence, the number of 0 flats in PG(n,q) is Npg(0,n,q) =
(¢"*t —1)/(¢q—1), and the number of 1 flats is

Nec (1,n,q) = [(¢""" = 1) (¢" = D]/[(¢* = 1) (@ = D].
When n = 2, the number of points is equal to the number of
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lines, and this agrees with dimensions of point-line incidence
matrices of projective plane codes, introduced in [1]. In [1], we
considered point-line incidence matrices to construct cyclic
LDPC codes, while in this paper, we consider the incidence of
m flats and [ flats in PG(n, q).

An algorithm to construct an m flat in PG(n, q) recognizes
that the elements of GF(¢" ") can be used to represent points
of PG(n, q) [24]. If « is the primitive element of GF(¢"T1),
then a?, where v = (¢"*! —1)/(q — 1), is a primitive element
of GF(q). Each one of the first v powers of « can be taken as
the basis of one of the 0 flats in PG(n, ¢). In other words, if
' is the basis of a 0 flat in PG(n, ), then every o, such that
i = k mod v, is contained in the subspace. In a similar fashion,
aset of m + 1 powers of « that are independent in GF(q) forms
a basis of an m flat. If o, a®2,..., a°™+1 is a set of m + 1
basis elements of an m flat, then any point in the flat can be
written as

m+1
G = E Eija’
j=1
where the ¢;; are chosen such that no two vectors

(€i1,€i2, -+, Ei(m+1)) are linear multiples over GF(q). Now,
every (; can be equivalently written as a power of the primitive
element a.

To construct an LDPC code, we generate all m flats and [
flats in PG(n, q) using the method described above. An in-
cidence matrix of m flats and [ flats in PG(n, q) is a binary
matrix with Npg(m, n, q) rows and Npg (I, n, ¢) columns. The
(i,)th element of the incidence matrix Apg(m,l,n,q) is a
one if and only if the jth [ flat is contained in the ¢th m flat
of the geometry. An LDPC code is constructed by considering
the incidence matrix or its transpose as the parity-check matrix
of the code. It is widely accepted that the performance of an
LDPC code under an iterative decoder is deteriorated by the
presence of four cycles in the Tanner graph [25] of the code. In
order to avoid four cycles, we impose an additional constraint
that [ should be one less than m [22]. If [ is one less than m,
then no two distinct m flats have more than one /-dimensional
subspace in common. This guarantees that the girth (length of
the shortest cycle) of the graph is 6.

Example: Let us construct the incidence matrix of 2 flats
and 1 flats in PG(3,2). For some primitive element o« of
GF(2?), each element of the set P = {a° a? al,...,a}
is a generator of a unique O flat in the geometry, and this
agrees with the fact that there are Npg(0,3,2) = 15 points
in the geometry. There are Npg(0,2,2) = 7 points in each
2 flat of the geometry, and all points in one of those flats can
be generated as linear combinations of {a, a!, a®} in GF(2).
By working out all possible linear combinations, one arrives
at {a% al,a? a*, a7, a” o'} as the set of all points in the
2 flat. Using the above procedure, all m flats and [ flats in
the geometry can be generated. The incidence matrix of the
m flats and [ flats in PG(3, 2) is shown at the bottom of
the next page. As mentioned before, there are no four cycles
in the Tanner graph of the incidence matrix. This matrix or
its transpose will be used as the parity-check matrix of a
projective-geometry code.
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Fig. 1. Dispersion map under study.

The affine geometry of dimension n over GF(q), represented
as AG(n, g), is a set of all cosets of the proper subspaces of a
vector space of dimension n over GF(q). A coset of a subspace
U is defined as the set x + U, where x is any vector in the
space of dimension n over GF(g), and its dimension is equal
to the dimension of U. Unlike the projective geometry, an
m-dimensional element of the set is referred to as an m flat.
For example, points are O flats, lines are 1 flats, and planes are
2 flats. Note that points are, in fact, cosets of the unique zero-
dimension subspace. Similar to the projective geometry, an
l[-dimension flat is said to be contained in an m-dimension flat
if it satisfies a set-theoretic containment.

One of the interesting properties of this geometry is the
concept of parallelism. It can be shown that cosets of the same
dimension are parallel if and only if they are cosets of the same
subspace [26]-[28]. The construction of AG(n, ¢) is simplified
by the fundamental embedding theorem. The affine geometry of
dimension n is obtained from a projective geometry of dimen-
sion n by removing a hyperplane and all subspaces contained
in it. In other words, to create an m flat in AG(n, q), follow
this procedure.

1) Construct a hyperplane in PG(n, q).

2) Construct an m flat in PG(n, q).

3) Remove all points in the hyperplane contained in the
m flat.

In order to construct all flats in AG(n, ¢), fix the hyperplane
in PG(n, ¢) and remove all points in this hyperplane from all
flats in PG(n, ¢). An incidence matrix of m flats and [ flats
in AG(n, q) is defined similar to the projective-geometry case.

Also, the incidence matrix or its transpose can be used as a
parity-check matrix that defines an LDPC code. Also, m is
constrained to be one more than [ in order to avoid four cycles
in the resultant LDPC code.

III. SIMULATION MODEL DESCRIPTION

The system of interest in this paper is a wavelength divi-
sion multiplexing (WDM) system. The continuous-wave laser
signals at different wavelengths are modulated using inde-
pendently encoded electrical streams and a Mach—Zehnder
(MZ) modulator, WDM multiplexed, and transmitted over
the same fiber. The carrier-suppressed return-to-zero (CSRZ)
modulator employed is composed of a laser diode, two MZ
intensity modulators [the first serving as modulator, the sec-
ond as a non-RZ (NRZ)-to-RZ converter], a pseudorandom
bit sequence (PRBS) generator, and an encoder. The optical
signal at the receiver side is split into separate channels by
using an optical demultiplexer. Erbium-doped fiber amplifiers
(EDFAs) and dispersion-compensating fibers (DCFs) are de-
ployed periodically to compensate the loss and accumulated
dispersion of the standard single-mode fiber (SMF). The direct-
detection receiver observed is composed of a WDM demulti-
plexer, a p-i-n photodiode, an electrical filter, and a sampler
followed by a decoder. An EDFA is used as a preamplifier.

The propagation of a signal through the transmission media
is modeled by a nonlinear Schrodinger equation [29] and solved
using the split-step Fourier method. For more details on the
transmission-system model implemented, the reader is referred
to our previous papers [1], [23].
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Fig. 2. BER performance of codes on m flats.
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Fig. 3. Performance loss due to FP representation of LLRs.

The dispersion map, shown in Fig. 1, is composed of 25
spans of length L = 48 km, each span consisting of 2L /3 km of
D fiber followed by L/3 km of D_ fiber. The Q-factor is ad-
ditionally decreased by noise loading. The fiber parameters are
as follows. D fiber: dispersion of 20 ps/(nm - km), dispersion
slope of 0.06 ps/(nm? - km), effective area equal to 110 um?,
and loss equal to 0.19 dB/km. D_ fiber: dispersion of
—40 ps/(nm - km), dispersion slope of —0.12 ps/(nm? - km),
effective area equal to 30 um?, and loss equal to 0.25 dB/km.

The nonlinear Kerr coefficient is 2.6 x 1072° m?/W. The
precompensation of —320 ps/nm and corresponding post-
compensation are also used. The simulations were carried out
with an average channel power of 0 dBm, with a central
wavelength of 1552.524 nm, and CSRZ modulation format.
The influence of six neighboring channels on the observed
channel is considered. The optical filter of bandwidth 1.5R},
(Ry,—the line rate), and electrical filter of bandwidth 0.65R},
are observed.
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The effective (Q-factor is computed using the following
expression:

Qeir = V2erfc (2 Poune)

where P, ync is the BER of the uncoded signal.

IV. m-FLATS-CODES PERFORMANCE

The results of simulation are given in Fig. 2. The code
on 1 and 2 flats from PG(3,3?) [denoted as PG(3,3?,1,2)-
LDPC(4745, 4344, 0.915)] of code rate 0.915 (and redundancy
of only 9.29%) performs better than the best turbo code with
significantly higher redundancy (~ 24.3%) proposed for optical
communications in [17]. At a BER of 1077, the code from
projective geometry achieves a gain of 8.2 dB over the un-
coded scheme. Similarly, codes from finite geometries with rate
~ 0.62 achieve a gain of 12 dB at a BER of 10™°. In order to
achieve a BER as low as 107, we transmit (in simulation) an
encoded sequence of length 2'® over the whole transmission
system only once. Different ASE noise realizations are added to
the received sequence until 2000 decoder errors are collected.
The efficient realization SPA proposed in [13], employed in
simulations, allows an additional 0.5-dB improvement in cod-
ing gain compared to the min-sum approximation of SPA
implemented in [1] [PG(2, 2°) curve].

V. FP REPRESENTATION OF LLRS

The FP representation of a real-valued LLR ) is an integer
A, with an np-bit precision. Of the ny, bits, dj, bits are used
to represent the integer part (including the sign) of A and py,
bits are used to represent the decimal part of A. The range
of A\, is defined by (dy,py), where ny, = pp, + dp. The FP
representation of \ is obtained as follows:

min (szb)\ +0.5),2m 1 - 1)

Ao = max (LZPb)\ + O.5J,—2”b_1)

Hence, the range of A, is [2’””1 — 1, 2"~ and we refer to
A as (dp, pv) quantized.

In the decoding stage, the intrinsic information obtained from
the channel observations is (d,, pi,) quantized and fed to the FP
iterative decoder. The result of any operation performed within
the decoder is (d,, pp) quantized. We observe, from Fig. 3, that
the performance loss due to 5-bit quantization is within 0.2 dB
ata BER of 107.

VI. CONCLUSION

A novel class of error control for long-haul optical-
communication systems based on iteratively decodable codes
on m flats over affine and projective geometries is presented
in this paper. The iterative decoding has been demonstrated
to give a coding gain of 9-12 dB, depending on code rate
and the minimum distance, at a BER of 10™°. These codes
have many unique features, such as high code rate, large
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minimum distances, and simple decoding algorithms, that may
allow for very-high-speed implementations. The BER per-
formance is assessed using the advanced simulator that is
able to take into account all major transmission impairments
in long-haul optical transmission. The performance loss due
to a fixed-point (FP) representation of log-likelihood ratios
(LLRs) is found to be insignificant. The decoding complex-
ity of the proposed forward error correction (FEC) scheme
is comparable (if not smaller) to that of the turbo product
code decoded using the Chase II algorithm [32], [33]. How-
ever, the decoder complexity of serial/parallel concatenated
turbo codes is significantly higher [34]. The details of a low-
density parity-check (LDPC) chip architecture can be found in
[35] and details of a turbo-product-code architecture in [17].
On the other hand, the encoding complexity of the LDPC-
based scheme is smaller than that of the turbo-code-based
scheme [17].
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