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Abstract- A new interconnection network for massively par- 
allel computing is introduced. This network is called an Op- 
tical Multi-Mesh Hypercube (OMMH) network. The OMMH 
integrates positive features of both hypercube (small diameter, 
high connectivity, symmetry, simple control and routing, fault 
tolerance, etc.) and mesh (constant node degree and scalability) 
topologies and at the same time circumvents their limitations 
(e.g., the lack of scalability of hypercubes, and the large diameter 
of meshes). The OMMH can maintain a constant node degree 
regardless of the increase in the network size. In addition, the 
flexibility of the OMMH network makes it well suited for opti- 
cal implementations. This paper presents the OMMH topology, 
analyzes its architectural properties and potentials for massively 
parallel computing, and compares it to the hypercube. Moreover, 
it also presents a three-dimensional optical design methodology 
based on free-space optics. The proposed optical implementation 
has totally space-invariant connection patterns at every node, 
which enables the OMMH to be highly amenable to optical 
implementation using simple and efficient large space-bandwidth 
product space-invariant optical elements. 

Index Terms-Hypercube, interconnection network, optical in- 
terconnect, parallel computing, scalability, space-invariance. 

I. INTRODUCTION 
T has become very clear that significant improvements in I computer performance in the future can only be achieved 

through exploitation of parallelism at all machine design 
levels [ 11. On the architectural side, communication among 
the elements of a high-performance computing system is 
recognized as the limiting and decisive factor in determining 
the performance and cost of the system [2], [3]. In recent 
years, there have been considerable efforts in the design 
of interconnection networks for parallel computers. Two of 
the most popular point-to-point interconnection networks for 
parallel computers today are the binary n-cube, also called the 
hypercube, and the mesh interconnection networks. Several 
companies, including NCUBE, Connection Machine Inc., FPS, 
Intel, and Ametek, are currently selling parallel machines 
based on the hypercube topology [ l ] .  In a binary n-cube we 
have N = 2" nodes each of degree n, where the degree of 
a node means the number of nodes directly connected to it. 
A node in this paper could be a processing element (PE), a 
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memory unit, or a switch. The attractiveness of the hypercube 
tQpology is its small diameter, which is the maximum number 
of links (or hops) a message has to travel to reach its final 
destination between any two nodes. For a binary n-cube 
network the diameter is identical to the degree of a node 
n = log,N. Each node is numbered in such a way that 
there is a one binary bit difference between any node and 
its log, N neighbors that are directly connected to it. This 
property greatly facilitates the routing of messages through 
the network. In addition, the regular and symmetric nature of 
the network provides fault tolerance. 

However, a major drawback of the hypercube network is 
its lack of scalability, which limits its use in building large 
size systems out of small size systems with little changes in 
the Configuration. Among important parameters of an intercon- 
nection network of a multicomputer system are its scalability 
and modularity [ 2 ] ,  [ 3 ] .  Scalable networks have the property 
that the size of the system (e.g., the number of communicating 
nodes) can be increased with minor or no change in the 
existing configuration. Also, the increase in system size is 
expected to result in an increase in performance to the extent 
of the increase in size. As the dimension of the hypercube is 
increased by one, one more link needs to be added to every 
node in the network. In addition to the changes in the node 
configuration, at least a doubling of the size is required for 
the regular hypercube network to expand and to remain as a 
hypercube. 

The second interconnection network that has been ex- 
tensively studied is the mesh. Mesh networks are easily 
implemented because of the simple regular connection and 
small number of links (four) per node. Due to the constant node 
degree, the mesh network is highly scalable. With a network 
size of N nodes, the minimal incremental size is approximately 
N1/' for the perfectly balanced network. However, the mesh 
network also suffers from a major limitation which is its 
large diameter (N1/' for an N-node network). Moreover, 
a relatively small portion of algorithms for scientific and 
engineering problems efficiently fits the mesh topology. 

On the technological side, optics, owing to its inherent 
parallelism, high spectral and spatial bandwidth, and low 
signal crosstalk, possesses the potential for a better solution 
to the communication problem in parallel and distributed 
computing [4]-[8]. Recent studies have shown that free-space 
optical interconnects provide far better communication band- 
width and power dissipation for sufficiently long connection 
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paths than possible with VLSI technology 191, [IO]. There 
have already been considerable efforts in designing optical 
interconnection networks [SI, [7], [ 111-[16]. However, optical 
implementations of these networks often require the use of 
space-variant optics, which often results in low interconnection 
densities, and requires complex optical (active) components 
[ 171. The degree of space-variance determines the complexity 
and regularity of an interconnection network [17], 171. A to- 
tally space-invariant system has a very regular structure where 
all the nodes have the same connection patterns which conse- 
quently lower the design complexity. There is a fundamental 
trade-off between the space-bandwidth product (SBWP), the 
total degree of freedom in an optical interconnect (the space 
is considered the cross section area and the bandwidth is the 
highest spatial frequency handled by the system), and the 
degree of space-variance. A totally space-invariant system has 
minimal SBWP requirements, whereas a totally space-variant 
system has extensive SBWP requirements. Also, totally space- 
invariant systems are much easier to implement than totally 
space-variant systems. 

Motivated by these limitations, we have explored a novel 
network topology, called Optical Multi-Mesh Hypercube 
(OMMH), which combines advantages of both the hypercube 
(small diameter, high connectivity, symmetry, simple control 
and routing, fault tolerance, etc.) and the mesh (constant 
node degree and scalability) topologies, while circumventing 
their disadvantages (lack of scalability of the hypercube, and 
large diameter of the mesh). We have also developed a three- 
dimensional (3-D) optical implementation for the OMMH. The 
distinctive advantages of the proposed design methodology 
include: 1) an efficient and scalable interconnection network, 
2) better utilization of the SBWP of optical imaging systems, 
3) full exploitation of the parallelism of free-space optics, 
4) simple optical implementations because of the use of 
large SBWP space-invariant optical elements, 5 )  cost-efficient 
implementations because the beams which will be directed 
orthogonal to the device plane would share the same set of 
imaging optics for interconnects, and consequently, the cost 
of the optical hardware would be shared by a large amount 
of communicating elements, and 6) compatibility with the 
emerging two-dimensional (2-D) optical logic and switching, 
and opto-electronic integrated circuit (OEIC) technologies. 

The rest of the paper is organized as follows. Section I1 
introduces the OMMH network and its architectural properties. 
Section I11 presents the proposed (3-D) optical implementation 
methodology. Section IV describes possible optical hardware 
and settings of the physical implementation of the OMMH 
network. Section V concludes the paper. 

11. OPTICAL MULTI-MESH HYPERCUBE NETWORKS 

A. Definition of OMMH Network 
An OMMH is characterized by a triplet (l ,m,n),  where 

1 represents the row dimension of a four-nearest-neighbor- 
connected mesh, rn the column dimension of the mesh, and 
n the dimension of a binary hypercube. The total number of 
nodes in (l,rn,n)-OMMH is 1 x m x 2". An address of a 

node consists of three components: (z,j, k ) ,  where 0 5 i < 
1,O 5 j < m, 0 5 k < 2*, and i , j , k  are integers. The 
first two components, i and j ,  represent the address of the 
node in a mesh, and the last component, k ,  represents the 
address of the node in a hypercube. Connection rules of the 
(1, m, n)-OMMH, for two nodes (Zl, j~,  k l )  and ( i z , j p ,  k z ) ,  
are as follows: 

There is a link, called a hypercube link, between 
two nodes if and only if (1) il = i p ,  and (2) j1 = j 2 ,  

and (3) kl and k2 differ by one bit position in their binary 
representation (Hamming distance of one). Connection rule 
1 generates 1 x m hypercubes with dimension n and these 
hypercubes are separated from each other until the following 
connection rule is applied. 

Rule 2 A link, called a mesh link, exists between two nodes 
if and only if ( I )  kl = kz and (2) two components, i and j ,  
differ by one in one component while the other component is 
identical. This rule generates 2" meshes with dimension 1 x m. 
If we neglect hypercube links made by rule I ,  the meshes 
generated by rule 2 are also separated from each other. The 
combination of both rule I and rule 2 connects hypercubes and 
meshes such that 1 x m nodes (one node from one hypercube) 
in the same positions of 1 x m hypercubes are linked together 
to form a mesh with dimension 1 x m. 

From the above connection rules, the interconnection func- 
tions 1181, denoted by ommh ( z , j ,  k )  where i, j ,  k are three 
address components of a node, of the (I, m, n)-OMMH net- 
work with the wrap-around mesh can be described as follows: 

Rule 1 

ommh,,(z , j ,k)  = ((i + 1)mod 1 , j , k )  
ommh,,( i , j ,k)  = ( ( I  + i - 1)mod 1 . j . k )  
ommhm3( i , j , k )  = ( i ,  ( j  + 1)mod m , k )  
ommhm4( i , j ,  k )  = ( i ,  (m + j - 1)mod m, k )  
ommh cd ( i , j ,  5-1 . . . kd+lkdkd-1 ' . ' k o )  = 
( Z , j ,  k,-l ' ' .  kd+lkdkd-l ... ko) ,  ford  = 0,1, . . ' ,  72- 1, 
whereknPl . ' . kd+lkdk&l . . ' kois 
representation of integer k.  

a binary 

The first four interconnection functions, ommh,, , ommh,, , 
ommh m 3 ,  and ommh,, , are for the four-nearest-neighbor con- 
nections including wrap-around connections and ommhCd, for 
d = 0, 1, . . . , n - 1, determines the hypercube interconnection. 

Fig. 1 shows a (4,4, 3)-OMMH interconnection where solid 
lines represent hypercube links and dashed lines represent 
mesh links. Small black circles represent nodes of the OMMH 
network which are, in this paper, abstractions of processing 
elements or memory modules or switches. Both ends of mesh 
links, dashed lines, are connected for wrap-around connections 
of the mesh if they have the same labels. The size of the 
OMMH can grow without altering the number of links per 
node by expanding the size of the mesh; for example, by 
adding three cubes on the perimeter of the mesh in Fig. 1. This 
feature allows the OMMH to be scalable. More discussion on 
the scalability issue will follow in Section 11-C. A (4,4,3)- 
OMMH consists of 4 x 4 x 23 = 128 nodes. It can be viewed 
as eight concurrent meshes where eight nodes having identical 
mesh addresses form one three-cube. Alternatively, it can be 
viewed as 16 concurrent three-cubes in which 16 nodes having 
identical hypercube addresses form a 4 x 4 mesh. The (4.4,3)- 
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Fig. I .  An example of the optical multi-mesh hypercube network: a (4.4.3)-OMMH (128 nodes) interconnection is shown. Two links with the same 
labels are connected for the wrap-aroundconnections of the mesh. Only few addresses are shown in the parenthesis for clarity. Solid lines represent 
hypercube connections and dashed linesmesh connections. 

OMMH in Fig. 1 looks like a three-cube-clustered 4 x 4 
mesh. 

An interesting isomorphic network is shown in Fig. 2. The 
same network is redrawn as a 4 x 4 mesh-clustered three- 
cube. Depending on the problems at hand, the OMMH can 
be configured as mesh-clustered hypercubes or hypercube- 
clustered meshes. This configuration flexibility is very suitable 
for MIMD (multiple instruction stream multiple data stream) 
mode of computation. 

B. OMMH Network Properties 

Message Routing in OMMH The distributed routing 
scheme for the OMMH network gives many alternative paths 
between any two nodes. For an ( I ,  m, n)-OMMH network, let 
the addresses of two arbitrary nodes S and T be (zs,js, lcs) 
and ( i t , j t ,  k t ) ,  respectively, where O 5 i ,  < I ,  0 5 it < 1,0 5 
j ,  < m,O 5 j ,  < m,O 5 k,T < 2 n ,  and 0 5 kt < 2". The 
message routing scheme from S to T is that of an n-cube 

network or that of an 1 x m mesh network or a combination 
of the two depending upon the relative locations of the nodes. 

1) Routing within a hypercube: if is  = it and j ,  = j,, then 
S and T are within the same hypercube. The routing 
scheme for this case is exactly the same as that of the 
regular n-cube network [18]. 

2)  Routing within a mesh: if k,  = kt ,  then S and T are 
within the same mesh. The routing scheme for this case 
is exactly the same as that of the regular I x m mesh 
network [19]. 

3) Routing through meshes and hypercubes: if none of 
the above two cases is true, S and T share neither a 
hypercube nor a mesh. The routing scheme for this case 
is first to use the hypercube routing scheme until the 
message arrives at the same mesh where T resides, and 
then to use the mesh routing scheme for the message 
to arrive at T.  Or the mesh routing scheme can first be 
applied to forward the message to the same hypercube 
where T resides, and then the message can reach T 
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Fig. 2. 
are shown in the parenthesis for clarity. Solid lines represent hypercube connections and dashed lines meshconnections. 

A (4,4,3)-OMMH interconnection network, another isomorphic view. Wrap-around connections of the mesh are omitted and only a few addresses 

using the hypercube routing scheme. We can also mix 
the hypercube and the mesh routing until the message is 
forwarded to the same hypercube or to the same mesh 
where T resides, and then we can forward the message 
to T using the hypercube or the mesh routing scheme, 
respectively. 

The OMMH is less sensitive to performance degradation due 
to faults in links or nodes because the routing scheme in the 
OMMH has no preferred path, meaning all alternative paths 
have the same number of hops between any two nodes. This 
is an important advantage over other networks which have 
preferred paths such as Hypernet [ 2 ] ,  Enhanced hypercube 
[20], or Extended hypercube [21]. 

Diameter and Link Complexity The distance between two 
nodes in a network is defined as the number of links connecting 
these two nodes. The diameter of a network is defined as the 
maximum of all the shortest distances between any two nodes. 
The diameter of the network is of great importance since it 
determines the maximum number of hops that a message may 

have to take. For two extreme cases, the diameter of a linear 
array with N nodes is ( N  - 1) while that of a completely 
connected network is unity. An I x m four-nearest-neighbor 
mesh has diameter (L1/2] + Lm/2]) if the mesh has wrapped- 
around connections, otherwise (1 + m - 2). The diameter of 
a hypercube with N nodes is log,N. Thus, the diameter of 
(1, m, n)-OMMH is ( I  + m + n - 2) if the mesh does not have 
wrapped-around connections, otherwise (LZ/2J + Lm/2J + n). 

Link complexity or node degree is defined as the num- 
ber of links per node. The higher the link complexity, the 
greater is the hardware complexity and, consequently, the 
cost of the network. The node degree of a hypercube with 
N nodes is log,N and that of (1, m, n)-OMMH is (n  + 2 )  
or (n + 3) for outermost nodes, (n  + 4) for inner nodes 
if the mesh does not have wrapped-around connections. An 
(E,m,n)-OMMH with the wrap-around mesh has ( n  + 4) 
links at every node. N is equal to (1 x m x 2") if the 
hypercube and the OMMH have the same network size. 
A comparison of diameters should be accompanied by a 
comparison of link complexity, because a higher connectivity 
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Fig. 3. 
the OMMH when the two networks have the same number of nodes. 

Comparison of (a) diameter, (b) link complexity, (c)  total number of links, and (d) normalized average message distance of the hypercube and 

resulting &om a higher link complexity is expected to lead 
to smaller diameters. Fig. 3(a) compares the diameters of the 
hypercube and the OMMH, where (16,16, n)-OMMH means 
the size of the mesh in the OMMH is fixed and the size of 
the hypercube in the OMMH is changed to have the same 
network size for comparison purposes. Similarly, ( I ,  m, 4)- 
OMMH implies the size of the hypercube in the OMMH is 
fixed and that of the mesh is changed. Fig. 3(b) compares 
link complexities or node degrees of the hypercube and the 
OMMH. It should be noted that (I, rn, 4)-OMMH has constant 
link complexity over the network size. This feature enables 
OMMH network to be scalable; that is, the growth of the 
network size does not affect the link complexity. Fig. 3(c) 
depicts the growth of the total number of links in the network 
as the network size increases. For a network size of one 
million nodes, the hypercube network contains about 10.5 
million links while the (I, m, 4)-OMMH has about 4.2 million 
links and (16,16, n)-OMMH has approximately 8.4 million 
links. Since one link implies one physical path, electrical 
or optical, between two nodes, the OMMH network is cost- 

efficient compared to the regular hypercube network in terms 
of hardware requirement. 

The average message distance 
in a network is defined as the average number of links that a 
message should travel between any two nodes. It plays a key 
role in determining the queueing delay in a computer network 
[22]. In general, as the number of links per node increases, 
the average message distance decreases. In order to obtain a 
realistic comparison between different networks with different 
link complexity, some normalization should be made. For 
this purpose, it is assumed that the communication bandwidth 
available at a node is constant. As a consequence, the available 
communication bandwidth per link at a node decreases as 
the number of links at a node increases. In this context, the 
normalized average message distance was proposed as the 
average message distance multiplied by the number of links 
at the node [3]. This normalization is practical since, with no 
limits on the number of links, a completely connected network 
whose average message distance is unity could be designed. 
Thus, the above assumption is based on the fact that there are 

Communication ESJiciency 
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Fig. 4. (a) Normalized average message distance using threshold model with 8-link threshold when probability within the threshold is 0.9, 0.95, or 0.99. (b) 
Normalized average message distance using geometric distribution model with four-link wide region. Probability within each region is 0.5, 0.6,0.7, 0.8, or 0.9. 

physical limitations in the number of pins and in the amount 
of power available to drive communication lines. Figure 3(d) 
plots the normalized average message distances against the 
network size of the hypercube and the OMMH, assuming that 
the message traffic is globally uniform; that is, the probability 
of a message being sent from any node to any other node 
is the same for all pairs of nodes. If the message traffic is 
globally uniform, the normalized average message distance of 
the OMMH with the fixed mesh size is no more than that of 
the regular hypercube. 

However, it seems reasonable to assume that an efficient 
and realistic multicomputer system will show much heavier 
traffic over short distances than over long communication 
paths since tasks which can be partitioned into smaller sub- 
tasks would usually be assigned to neighboring processors. 
To characterize the locality of messages in multicomputer 
systems, the Threshold Model and the Geometric Distribution 
Model have been suggested and used to show performance of 
computer networks [2 ,  31. The threshold model assumes that 
a fraction of all message destinations is uniformly distributed 
within some distance (threshold) of the source. The remaining 
destinations are uniformly distributed over the entire network. 
The geometric distribution model is defined as follows. For 
every source S, the nodes of the network are divided into 
regions R I ,  Rz,  . . . of increasing distance from S. A fraction 
p of all messages is destined for region RI of S,p  of the 
remaining messages go to region Rz, and so on, Within each 
region, the distribution is uniform. 

Fig. 4(a) shows the normalized average message distance 
of localized messages using the threshold model of eight- 
link threshold and Fig. 4(b) shows the the normalized average 
message distance using the geometric distribution model where 
each region is four-hop wide. We compare normalized average 

message distances of the hypercube and the (1, m, n)-OMMH 
when the two networks have the same number of nodes. With 
N nodes as the network size, the dimension of the hypercube 
is log,N and 1 x rn x 2" nodes in the OMMH must be 
equal to N .  The size of the mesh in the OMMH is chosen 
as square as possible. Fig. 4(a) indicates that as the message 
traffic becomes more localized, the network size within which 
the normalized average message distance of the (1 ,  m, 10)- 
OMMH is shorter than that of the hypercube increases, where 
( I ,  m, 10)-OMMH means that the size of the hypercube in the 
OMMH is fixed and the size of the mesh is changed to have the 
same network size. Fig. 4(b) reveals that, with the geometric 
message distribution model, the increase of the normalized 
average message distance of the OMMH with constant cube 
with respect to the growth of the network size is negligible 
(constant in the graph) while that of the hypercube grows 
logarithmically with respect to the network size. This implies 
that the OMMH can be scaled up with little increase in the 
normalized average message distance. 

C. Architectural Considerations 

Scalabilio Scalable networks have the property that the 
size of the system (e.g., the number of communicating nodes) 
can be increased with nominal change in the existing config- 
uration. Also, the increase in system size is expected to result 
in an increase in performance to the extent of the increase in 
size. As the dimension of the hypercube is increased by one, 
one more link needs to be added to every node in the network. 
In addition to the changes in the node configuration, at least 
a doubling of the size is required for the regular hypercube 
network to expand and remain a hypercube. This implies that 
the regular hypercube does not allow an incremental expansion 
of small sizes. Thus the regular hypercube network is not 
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X Faulty Node 
Fig. 5 .  Rerouting messages in the OMMH in the presence of a single fault. 

Fig. 6. , A model for 3-D optical interconnects. 

scalable according to the above definition. We should note 
that the regular hypercube network may be scalable at a 
greater coit. Moreover, it is not modular [2], [3]. The lack 
of scalability and modularity have limited the application 
of the hypercube topology to large-scale high-speed data 
transmission systems despite the many other advantages it 
possesses. 

This major limitation has motivated us to develop a new 
network topology that not only retains the many attractive 
properties of the hypercube network but also provides scala- 
bility. As can be seen in Fig. 3(b), the OMMH with a constant 
cube as a basic building block has a constant node degree, 
which means that the size of the OMMH is ready to be scaled 
up by expanding the size of the mesh without affecting the 
link complexity (number of links per node) of existing nodes 
as is the case in expanding the size of the hypercube network. 
However, we cannot just add one node to the OMMH. For 
an (l,m,n)-OMMH, we need to add at least 1 x 2" nodes 
(if 1 < m) to have perfectly balanced mesh. In addition, 
in Fig. 4(b), the normalized average distance of the OMMH 
under geometric message distribution remains constant as the 
network size grows. This implies that the OMMH can be 

scaled up without increasing the normalized average distance. 
On the contrary, the regular hypercube can only be scaled up 
with logarithmic increase in the normalized average distance. 

Fault Tolerance As the number of components in a system 
grows, the probability of the existence of faulty components 
increases. For a large-scale system, we cannot always expect 
that all components in such a system are free from failures. 
However, we need to expect such a system to continue to 
operate correctly in the presence of a reasonable number 
of failures. Due to the concurrent presence of meshes and 
hypercubes in the OMMH, rerouting of messages in the 
presence of a single faulty link or a single faulty node can 
easily be done with little modification of existing fault-free 
routing algorithms. 

In the OMMH, any single faulty link or any single faulty 
node can be bypassed by only two additional hops as long 
as that particular node is not involved in the communication, 
namely, the node is neither the source nor the destination for 
any message. This can be proved as follows. As discussed 
in Section 11-B-l), a message in the OMMH is routed using a 
mesh routing function if both the source and the destination of 
the message are in the same mesh subnetwork, or a hypercube 
routing function if those of the message are in the same 
hypercube subnetwork, or combination of these two routing 
functions if those of the message are neither in the same 
mesh nor in the same hypercube subnetwork. Consider the 
rerouting scheme in the presence of a single faulty link when 
the mesh routing function is being applied. When the message 
arrives at the node which is connected to the faulty link, it 
is forwarded to the neighboring mesh via one hop of the 
hypercube link (n such neighboring meshes exist in ( E ,  m, n)- 
OMMH.). By applying the mesh routing function, the message 
arrives at a node which is one hop (one hypercube link) away 
from the destination since the message has been routed in 
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Fig. 7. Conceptual realization of a 3-D space-invariant five-cube network (a) the 32 nodes of the five-cube network are partitioned into two partitions 
with totally space-invariant connections between them, (b) a conceptual optical realization of the space-invariant five-cube network. The connections of 
two nodes, one from each plane, are shown as an example. The shift rule defines the amount of row-wise and column-wise shifts to be performed 
by the optical interconnect module. 

the neighboring mesh to detour the faulty link. Similarly, a 
single faulty link when the hypercube routing function is being 
applied can be bypassed by forwarding the message to the 
neighboring hypercube via a mesh link (four such hypercubes 
always exist in the OMMH). The rerouting scheme in the 
presence of a single faulty node is the same as that in the 
presence of a single faulty link but the message forwarding is 
done at the node located at one hop ahead of the faulty node. 
Thus, rerouting in the presence of a single faulty node or link 
can be done with two additional hops with little modification 
of the fault-free routing methods. 

Fig. 5 shows a rerouting scheme in the OMMH network in 
the presence of a single faulty node. Suppose that the source of 
a message is node a and the destination node f .  In the absence 
of faults, a message is forwarded from a to c by a hypercube 
routing scheme and from c to f by a mesh routing scheme. 
In the presence of a faulty node e, the message is forwarded 
to a neighboring mesh at node d which is one hop ahead 
of the faulty node. From g, the same mesh routing scheme is 

applied and when the message arrives at node i, it is returned to 
the original mesh where the final destination f belongs. Thus 
two additional hops are sufficient for rerouting the message to 
bypass the faulty node. 

111. OPTICAL IMPLEMENTATION OF OMMH NETWORK 
Recently there has been a great deal of interest in the 

application of optics as an interconnection medium for high- 
speed computing and parallel processing [4]-[8], [23]. One 
of the most promising approaches is the use of free-space 
optical interconnects as opposed to guidewave (e.g., fibers or 
waveguides based on polymers) because of their tremendous 
spatial parallelism [5].  In this section, we first summarize a 
3-D totally space-invariant optical implementation method- 
ology of the hypercube network and, then, present a totally 
space-invariant implementation methodology of the proposed 
OMMH network. A model for 3-D optical interconnects used 
in this paper is shown in Fig. 6. 
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Fig. 8. (2.4.5)-OMMH embedding: (a) PlaneL (b) PlaneR 

A. 3-0 Space-Invariant Optical Implementation 
of Hypercube Networks 

The basic idea is derived from an observation that nodes in 
an interconnection network can be partitioned into two sets of 
nodes such that any two nodes in a set do not have a direct 
link. This is a well-known problem of bipartitioning a graph 
if the interconnection network is represented as a graph. For a 
binary n-cube, nodes whose addresses differ by more than one 
in Hamming distance can be in the same partition, since no link 

Plane, Legend: 
Big number : Address in mesh 
Small number : Address in hypercube 

(b) 

exists between two nodes if their Hamming distance is greater 
than one. Besides bipartitioning the graph, we arrange the 
nodes in each partition onto the plane such that interconnection 
between two planes becomes space-invariant. 

A conceptual three-dimensional implementation of a five- 
cube (32 nodes) interconnection using the optical interconnect 
model is shown in Fig. 7. Fig. 7(a) illustrates the 3-D space- 
invariant embedding of a five-cube (32 nodes) network. All 
nodes on the left plane (PlaneL) (16 nodes) have the same 
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bi I barrier mint 

Source array 

Fig. 9. Optical setup for the barrier synchronization. 

connection patterns to nodes on the right plane (Planed (16 
nodes). Since the links are bidirectional, all nodes on the right 
plane have the same exact connection patterns to the left plane. 
A number in a node on the plane represents the binary address 
of the corresponding node. Conceptual implementation of a 3- 
D five-cube interconnection using the proposed model system 
is shown in Fig. 7(b). The required connections for a 3-D 
five-cube network are obtained by superimposing nine images 
of one plane onto the other plane (eight spatially shifted and 
one directly imaged onto the receiving plane). The amount of 
spatial shifts are *ld and f 3 d  in both horizontal and vertical 
directions where d is the size of a node, and the origin is 
taken to be the center of the plane. Recall that communication 
patterns from planer, to planeR are identical to those from 
planeR to planeL. The nine images are simultaneously incident 
on the receiving plane in which a receiving node gets five 
different optical signals representing the required hypercube 
connections. 

The construction of an arbitrary n-cube network is carried 
out incrementally by putting together two (n  - 1)-cube net- 
works, one of the two is column-wise or row-wise rotated 
version of the other. For more details, see [24] and [25]. The 
scheme in [25] is used for the implementation of the OMMH 
network. 

B. 3 - 0  Space-Invariant Implementation of OMMH Networks 

3-D space-invariant optical implementation of the OMMH 
is derived in this Subsection. To facilitate the description of 
the embedding scheme, a few notations are defined below 
which have been used in [24] for the description of embedding 
space-invariant hypercube networks. 

The embedding scheme of the (1,7n, n)-OMMH using the 
model of Fig. 6 can be described as follows: 

1. Construct layouts (two layouts per hypercube, one for 
PlaneL and the other for PlaneR) of I x m hypercubes 
with dimension n. 

column-wise - 
broadcast d Detector array 
mitor vector 

2. Place hypercube layouts in the above step as building 
blocks in a 2-D matrix form with 1 rows and m columns 
on each plane. 

3. Interchange the layout for PlaneL and the layout for 
PlaneR of hypercubes in every other row and in every 
other column. 

4. Separate each hypercube layout in the matrix by r empty 
rows and by c empty columns, where r = 0 , c  = 1 if 
n = 2 , r  = 1 , c  = 1 if n = 3, r = 1 , c  = 3 i f n  = 
4, r = 3, c = 3 if n = 5, and r = DT(n) - Dr(n - 3),  
c = D c ( n )  - Dc(n - 3) if n > 5 .  

Fig. 8 shows the 3-D implementation of (2,4,5)-OMMH 
network using the proposed construction algorithm (Fig. 8(a) 
corresponds to Planer, and Fig. 8(b) to PlaneR.). The required 
connections for the (1, m, n)-OMMH network constructed by 
the algorithm are as follows. Let d be the size of a node 
square. Shifts in the amount of f [ 2  x DT(n) - DT(n  - 
3)] x d in row-wise direction and f [2  x Dc(n)  - Dc(n - 
3)] x d in column-wise direction accomplish the required 
connection for the four-nearest-neighbor links in the mesh. 
Shifts in the amount of f [ 2  x DT(n)  - DT(n  - 3)] x (m - 
1) x d in row-wise direction and f [ 2  x D,(n) - Dc(n - 
3)] x ( I  - 1) x d in column-wise direction accomplish the 
required connection for the wrap-around links in the mesh. The 
shift rule for an n-cube, RowHc(n) and C o l ~ c ( n ) ,  generates 
required connection for the hypercube links. Thus the shift 
rule for an ( I ,  7n, n)-OMMH, denoted by R o w o ~ ~ ~ ( 1 ,  m, n) 
and CdOMMH(l, m, n),  can be expressed as follows: 

ROWOI\.ZMH(~, m, n) = RowHc(~) ,  [2DT(n) - DT(n - 311, 

C O ~ O M M H ( ~ ,  m,n) = C O ~ H C ( ~ ) ,  [2Dc(n) - Dc(n - 311, 

x [2DT(n) - DT(n  - 3)] x (1 - 1) 

x [2Dc(n) - D,(n - 3)] x (m - 1) 

(1) 

As can be seen in Fig. 8, we can expand the size of the 
OMMH by adding more hypercube layouts used as basic 

PlaneL (or PlaneR) : A plane on which one of the two partitions of nodes is placed. 
n - ( n )  (or Do,(n)) : the row (or column) dimension of the resulting n-cube on one plane. 
R o w ~ c ( n )  (or C o l ~ c ( n ) )  : the amount of row-wise (or column-wise) shifts to be performed 

by the optical interconnect module to realize an n-cube network. 
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Fig. 10. 
to nodes (O,O,l), (0,0,4), (0,0,16), (I,O,O)is shown for clarity. 

A (2,4,5)-OMMH implementation using a space-invariant Fourier plane hologram: Only side view (rz-plane) for connections from node (O,O,O) 

building blocks along the perimeter of the mesh. The num- 
ber of shifts (number of fanouts) in the shift rule remains 
unchanged. If we use the OMMH with meshes having no 
wrap around connections, the amount of shifts in the shift rule 
does not change, either. This is very desirable feature because 
the optical interconnect module that generates the required 
number of shifts and the required amount of each shift remains 
unchanged even if the network grows in size. 

C. Optical Support for the Barrier Synchronization 

Architectural support for efficient process synchronization 
is an important aspect of the design of any MIMD multi- 
processor. Message-based synchronization primitives require 
minimal hardware support but they would not be appropri- 
ate in a massively parallel system since lots of messages 
(overhead) are required in such a system whenever a barrier 
is encountered. Barrier synchronization is a mechanism that 
guarantees that all processes have reached a specified point 
in their execution before any are allowed to proceed. In Fig. 
9, we present an optical setup which implements a barrier 

mechanism for fast synchronization. This setup could be used 
as a control subnetwork when the OMMH network is used 
in a massively parallel system. The source array could be a 
spatial light modulator illuminated by a laser where the i- 
th row represents processor Pi and the j-th column represents 
barrier point bj .  In the detector array, the rows and the columns 
have the same meaning as those in the source array but the 
rows are numbered from bottom to top due to the image 
inversion. Let (Pi, b j )  denote a cell where 1:-th row and j -  
th column meet. Suppose that a logical 1 is coded as the 
presence of light and a logical 0 as the absence of light. For a 
given synchronization pattern, (Pi, b j )  is set to 1 if barrier 
point b j  is involved in the synchronization pattern and Pi 
is initiated. When Pi finishes its execution, (Pi, b 3 )  is reset 
to 0. Since the monitor vector is a row vector which is the 
column-wise logical OR (by cylindrical lens L1) of the source 
array, m j  is 0 only when all processors which need to be 
synchronized at barrier b j  finish their jobs. Now, the value of 
mj is broadcasted to all processors through cylindrical lenses 
Lz and L3 on the detector array. Processor Pi knows the 
time when all other processors reach the barrier point bj  by 
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detecting when the value of (P;,hj) changes from 1 to 0. A 
similar electronic implementation can be found in Ref. [26] 
where wired-NOR logic is used. The above dynamic barrier 
synchronization is possible only if the synchronization pattern 
is predicted at compile time and process preemption is not 
allowed. However, as discussed in Ref. [26], the above scheme 
along with counting semaphores can support multiprogrammed 
multiprocessors where preemption is allowed. 

IV. OPTICAL HARDWARE REQUIRED 

There is a wide variety of optical components for accom- 
plishing the basic interconnect operations, including, lenslet 
arrays [27] multi-split lenses [28], off-axis lenses [13], mirror 
arrays [ 141, gratings [29], and holographic techniques [3O]. In 
order to illustrate the approach, we choose as a target network 
an OMMH network with five-cubes as basic building blocks 
(e.g., (Z,m,5)-OMMH where 1 and m are integers) and will 
describe an optical module for its implementation. 

One particularly attractive approach for the realization of 
optical interconnects is the use of holographic optical elements 
(HOEs). HOEs offer high densities 104/cm2 for space-variant 
and as high as 108/cm2 for space-invariant interconnects using 
a single holographic element, while providing relatively low 
crosstalk. In addition, holographic approaches may be mass 
produced. 

One simple space-invariant Fourier plane hologram would 
realize the entire 3-D OMMH interconnection network [7]. An 
envisaged implementation with HOEs of an (2,4,5)-OMMH 
network, for example, is illustrated in Figure 10. In the figure 
only the side view (zz-plane) is shown for clarity and nodes 
in PlaneR are numbered from bottom to top because of image 
inversion due to the use of lenses. This figure illustrates how 
node (O,O,O) sends signals to node (O,O,l), (0,0,4), (O,O, 16), 
and ( l ,O,O).  The light beam from a source is collimated by 
the lenslet array (LA1) and incident on the hologram through 
a Fourier transform lens (151). The hologram, in this case, is 
placed in the Fourier plane. The hologram splits and spatially 
shifts the incident beam. Multiple beams are then focused 
on the corresponding detectors for the required connections 
through another Fourier transform lens (L2) and a lenslet 
array (LA2). Since the hologram is not bidirectional, methods 
for providing bidirectional communications need to be used. 
A possible setup would be the use of the two orthogonal 
polarization states of light. The hologram can be recorded 
optically or can be a computer generated hologram. In either 
case, since the hologram is space-invariant, it is expected to 
be relatively simple to construct. 

V. CONCLUSION 

To overcome the lack of scalability in the regular hypercube 
networks, a new interconnection network topology, called an 
Optical Multi-Mesh Hypercube, is presented. The proposed 
network is a combination of hypercube and mesh topologies. 
The analysis and simulation results show that the new intercon- 
nection network is very scalable, meaning the configuration of 
the existing nodes is relatively insensitive to the growth of the 

network size, and more efficient in terms of communication. It 
is also shown that the new interconnection network is highly 
fault-tolerant. Any faulty node or link can be bypassed by only 
two additional hops with little modification of the fault-free 
routing scheme. Due to the concurrent existence of multiple 
meshes and hypercubes, the new network provides a great 
architectural support for parallel processing and distributed 
computing. In addition, a wide body of parallel algorithms 
that have been designed for the hypercube and the mesh 
interconnection are readily implementable on the proposed 
network. 

More importantly, the proposed network is highly amenable 
to optical implementations. A three-dimensional optical imple- 
mentation technique of the proposed network is provided. It 
is based on an efficient three-dimensional space-invariant im- 
plementation scheme for the regular hypercube. The proposed 
optical implementation technique for the new network results 
in totally space-invariant connection pattern at every node. 
Consequently, simple and cost-efficient optical implementation 
of the proposed network with existing optical hardware would 
be possible. 
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