
An Improved Router Design for Reliable On-Chip Networks

Pavan Poluri
Department of Electrical and Computer Engineering

University of Arizona
Tucson, USA

pavanp@email.arizona.edu

Ahmed Louri
Department of Electrical and Computer Engineering

University of Arizona
Tucson, USA

louri@email.arizona.edu

Abstract—Aggressive technology scaling into the deep
nanometer regime has made the Network-on-Chip (NoC) in
multicore architectures increasingly vulnerable to faults. This
has accelerated the need for designing reliable NoCs. To this
end, we propose a reliable NoC router architecture capable
of tolerating multiple permanent faults. The proposed router
achieves a better reliability without incurring too much area
and power overhead as compared to the baseline NoC router
or other fault-tolerant routers. Reliability analysis using Mean
Time to Failure (MTTF) reveals that our proposed router
is six times more reliable than the baseline NoC router
(without protection). We also compare our proposed router
with other existing fault-tolerant routers such as BulletProof,
Vicis and RoCo using Silicon Protection Factor (SPF) as a
metric. SPF analysis shows that our proposed router is more
reliable than the mentioned existing fault tolerant routers.
Hardware synthesis performed by Cadence Encounter RTL
Compiler using commercial 45nm technology library shows
that the correction circuitry incurs an area overhead of 31%
and power overhead of 30%. Latency analysis on a 64-core
mesh based NoC simulated using GEM5 and running SPLASH-
2 and PARSEC benchmark application traffic shows that in
the presence of multiple faults, our proposed router increases
the overall latency by only 10% and 13% respectively while
providing better reliability.

Keywords-Network-on-Chip, Reliability, Area, Power

I. INTRODUCTION

Aggressive technology scaling [1] has enabled single
chips with billion transistors. This increased availability of
on-chip resources has led to the widespread use of Chip
Multiprocessors (CMPs) or multicore architectures. The ad-
vent of CMPs has forced the design shift from a computation
centric to a communication centric architectures. The need
for an efficient and scalable communication mechanism to
continue to harvest the benefits of CMPs has led to the
evolution of Network-on-Chip (NoC) [2], [4] paradigm.

NoC is a packet based interconnection network that scales
bandwidth with network size. It facilitates simultaneous
communication between multiple cores on a single chip and
plays an effective role in decoupling the intra-core computa-
tion from the inter-core communication. Major components
of a NoC include routers and links.

Technology scaling [3] into deep nanometer regimes has
decreased the size of a transistor and has increased the
vulnerability of transistors to different fault mechanisms.

Transistors are predominantly vulnerable to two kinds of
faults namely, permanent and transient faults.

A permanent fault continues to affect the operation of a
circuit from the time of its inception. Electromigration [5],
Hot carrier degradation [6] and Time Dependent Dielectric
Breakdown [7] are typical sources for permanent faults. A
transient fault affects the operation of a circuit for a smaller
period of time typically in the order of one clock cycle. Ther-
mal radiation from cosmic rays [8], process variation [9] and
alpha particles from the packaging material [10] are common
sources for transient faults. This increased susceptibility of
transistors to fault mechanisms has made reliability a front
runner in the design of future systems.

NoC is neither immune to permanent and transient faults
nor is unaffected by the adverse increase in faults caused
by technology scaling. The ramifications for the NoC are
immense: a single fault in the NoC may paralyze the
working of the entire chip. Faults in the NoC may result
in critical problems like lost packets, network deadlock and
disconnected network, which leads to severe degradation
of the performance of on-chip communication [11]. In this
work, we propose a fault tolerant router capable of tolerating
multiple permanent faults in its pipeline. The proposed
router employs minimum correction circuitry and exploits
idle time of existing resources to accomplish fault tolerance.

II. GENERIC NETWORK-ON-CHIP ROUTER

A. NoC Router Architecture

Figure 1 [12] shows the architecture of a P input port,
P output port router with V virtual channels per port.
The control logic of a NoC router comprises of Routing
Computation (RC) unit, Virtual Channel Allocation (VA)
unit and the Switch Allocation (SA) unit. A central crossbar
(XB) connects the input and output ports of the router.

For efficient utilization of router resources, data traverses
in the NoC in the form of flits (flow control information
units). Typically, a packet is segmented into a head flit, single
or multiple body flits and a tail flit. Head flit allocates router
resources to the packet, body flit(s) contain the payload of
the packet and tail flit frees the router resources allocated to
the packet.

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.39

283

Figure 1: Generic NoC Router Architecture

B. NoC Router Pipeline

NoC router pipeline (Figure 2) is a 4-stage pipeline com-
prised of Routing Computation, Virtual Channel Allocation,
Switch Allocation and Crossbar stages.

Figure 2: Router Pipeline

1) RC Stage: This is the first stage in the pipeline and is
active upon the arrival of a head flit into the router. Based
on the destination information available in the head flit and
the routing protocol used, the RC unit determines the output
port of the current router through which the head flit will
leave. This stage remains idle for body and tail flits.

2) VA Stage: This is the second stage in the pipeline
and is active upon completion of RC stage. This stage
also operates only on head flits. Figure 3a [13] shows the
architectural block diagram of a two-stage separable virtual
channel allocator. In the first stage, based on the result of
RC, every input VC with a head flit arbitrates for an empty
VC at the downstream router. In the second stage, head flits
across different input VCs that have been allocated the same
VC at the downstream router compete with each other. The
input VC that wins the arbitration in the second stage is
allocated the VC at the downstream router.

3) SA Stage: This is the third stage in the pipeline and
is active for head, body and tail flits. SA unit is responsible
for determining which input VC from an input port gets to
transmit a flit through the crossbar in the next cycle. Figure
3b [13] shows the architectural block diagram of a two-stage
separable switch allocator. In the first stage, the SA unit
decides which VC of an input port gets to transmit its flit
through crossbar. In the second stage, competition between
different input VCs trying to gain access to the same output
port of the crossbar is resolved. The input VC that wins the

arbitration in the second stage gets to transmit its flit through
the crossbar in the next cycle.

4) XB Stage: This is the final stage in the pipeline and
is active for head, body and tail flits. Crossbar connects the
input and output ports thus facilitating flit traversal from a
VC of an input port to an output port. Figure 3c shows the
architecture of a pixpo crossbar, where pi and po are the
number of input and output ports of the crossbar. SA unit is
responsible for generating control signals to the multiplexers
in crossbar. Input output port connections of the crossbar are
configured every cycle based on the winners in SA stage.

C. Input Port Architecture

Figure 3d [12] shows the internal architecture of an input
port of a router with four VCs where each VC can hold up
to four flits. Each VC is associated with state fields namely
’G’, ’R’, ’O’, ’P’ and ’C’. ’G’ field indicates the status of the
VC with respect to the pipeline stage in the current cycle.
’R’ field is used to store the result of RC unit. ’O’ field
stores the result of VA unit that indicates which VC in the
downstream router is the current packet headed to. ’P’ field
indicates the read/write pointers in the VC and ’C’ field
indicates the credit count.

III. RELATED WORK

Here, we provide an overview of the architectures of
the fault tolerant routers presented in BulletProof [14],
Vicis [15], and RoCo [16] as they also tackle the issue of
tolerating permanent faults in the NoC router pipeline.

Constantinides et al. proposed the BulletProof [14] router
that employs N-modular redundancy (NMR) technique to
provide fault tolerance. Redundancy based techniques such
as NMR demand for the existence of N copies of the
protected component. Providing fault tolerance to a NoC
router via NMR technique increases the silicon area required
to fabricate the protected router by N times. Since the area of
a design has a linear relationship with the possible number
of faults, employing redundancy based technique to achieve
fault tolerance is not always efficient.

Fick et al. proposed Vicis [15] methodology that can
tolerate faults at network and router level. Faults at the
network level are tolerated via an input port swapping
algorithm and an adaptive routing algorithm that updates the
routing tables to redirect traffic around faulty links. Within
the router, a bypass bus is used to tolerate faults in the
crossbar and low overhead Error Correcting Codes (ECC)
are used to tolerate faults in the datapath.

Kim et.al proposed RoCo [16] router architecture, which
enables the router to be decomposed into individual row and
column components. Decomposition is facilitated by using
decoupled parallel arbiters and smaller crossbars for row and
column connections. Fault tolerance for routing computation
stage is achieved by using look ahead routing and for
switch allocation stage is achieved by sharing arbiters from

284

(a) Virtual Channel Allocator (b) Switch Allocator (c) Generic Crossbar (d) Input Port Architecture

Figure 3: Baseline Router Pipeline Components

virtual channel allocation stage. It cannot tolerate faults in
virtual channel allocation and crossbar stages. Since the row
and column components are independent of each other, a
permanent fault in one of the components does not affect
the other component and the router continues to function in
a degraded fashion with the fault free component.

Our proposed router is different from these methodologies
in that it provides protection for each individual stage of
the pipeline. It exploits idle time of existing resources and
employs minimum correction circuitry to achieve tolerance
from multiple faults as explained next.

IV. CONTRIBUTIONS

The proposed router architecture is capable of tolerating
multiple permanent faults in its pipeline. It is designed
by making minimal architectural modifications to the 4-
stage pipeline of a baseline NoC router. These architectural
modifications involve adding extra circuitry to individual
pipeline stages of a NoC router and taking advantage of the
inherent redundancy thereby enabling each pipeline stage
to tolerate a single permanent fault. Assuming that each
individual pipeline stage is affected by only one permanent
fault, the protected router pipeline will be able to tolerate
four permanent faults. The main contributions of this paper
can be summarized as:

1) A router architecture that can tolerate multiple perma-
nent faults in the routing pipeline.

2) Performance analysis involving area, power, latency
and critical path of the proposed architecture with
respect to the baseline router architecture.

3) Estimating the improvement in reliability of the pro-
posed router architecture in comparison to the baseline
router architecture using MTTF [17].

4) Comparing the reliability of the proposed router with
other existing fault-tolerant NoC routers such as
BulletProof [14], Vicis [15] and RoCo [16] using
SPF [14].

V. PROPOSED RELIABLE NOC ROUTER

Since each stage in the router pipeline has a distinct and
very specific role, the proposed architectural modifications
to each stage are tailored according to the responsibilities
of that particular stage. Note that in this paper, we focus on
fault tolerance and not on fault detection. We assume that
faults can be detected by using one of the many existing fault
detection mechanisms [18]. Also, we only consider faults in
different stages of the router pipeline. Faults in the other
components of a router such as multiplexers and buffers are
studied in [23] and are out of scope of this paper.

A. Routing Computation Stage

Each input port has its own RC unit. A permanent fault
in the RC unit results in the calculation of a faulty output
port. Since the execution of remaining pipeline stages is
dependent on the result of this stage, the entire pipeline is
affected as a result of permanent fault in RC unit.

The architecture of the RC unit is dependent on the
routing protocol employed in the NoC. In this work, we
employ dimension order (XY) routing protocol in the NoC.
XY routing protocol does not require routing tables [24].
The fundamental logic block required for implementing XY
routing protocol is a comparator. To provide fault tolerance
to this stage, we propose to have a redundant RC unit for
each input port. The duplicate RC unit can be turned on and
used upon detection of a fault in the original unit.

B. Virtual Channel Allocation Stage

Since the VA unit is composed of two stages, we consider
fault scenario in each stage independently.

1) First VA Stage: Figure 3a illustrates that each input
VC has a set of po v : 1 arbiters where, po is the number of
output ports of the router and v is the number of VCs in the
downstream router. When an input VC enters the first stage
of VA unit, the v : 1 arbiter corresponding to the output port
computed by the RC unit is used to choose a single empty

285

VC from the available empty VCs at the downstream router
connected to that output port. When an arbiter associated
with an input VC is faulty, it will not be able to arbitrate for
a VC at the downstream router for the corresponding output
port whose arbiter is faulty. As a result, the head flit in that
input VC would not be allocated a VC at the downstream
router resulting in the flit being blocked at the input VC. A
blocked flit in a network leads to serious ramifications. To
avoid this, we propose to use the following methodology.

Each input VC has po v : 1 arbiters that are identical to the
arbiters of any other input VC. When an arbiter associated
with a VC of a specific input port is affected by a fault, the
complete set of po v : 1 arbiters is considered faulty and are
not used in future computations. Instead, the affected VC,
requests to use the arbiters of another VC belonging to the
same input port. Since every input VC has identical set of
arbiters, they can be shared between VCs. The affected VC
can choose another VC it intends to borrow the arbiters from
by scanning through the ’G’ state field (indicates state of the
VC) of all the other input VCs and picking out the first VC
it encounters that is either idle or in switch allocation state.
Thus, by using another virtual channel’s arbiters, virtual
channel allocation can be performed for the head flit residing
in the affected virtual channel.

One of the two possible scenarios can arise while sharing
arbiters between virtual channels of an input port. Consider
the input port architecture shown in Figure 3d, and assume
that VC1’s arbiters are faulty and is requesting to use arbiters
of VC2 in both the scenarios.

Scenario 1 - When VC1 requests to use arbiters of VC2, if
the arbiters of VC2 are idle, the delay involved in borrowing
the arbiters of VC2 is the same as the affect on critical path
of the virtual channel allocator (Section VI-B).

Scenario 2 - When VC1 requests to use arbiters of VC2, if
VC 2 is non-empty and is in VA stage like VC1, in addition
to the affect on critical path, there will be an additional
latency of 1 cycle. This is because; the arbiters of VC2 first
perform allocation for the head flit in VC2 and on successful
allocation, in the next cycle can be used for allocation for the
head flit in VC1. Since the head flit in VC1 had to wait for
the arbiters of VC2, the waiting induces additional latency.

Scenario 2, where two different VCs of the same input
port are attempting to perform virtual channel allocation
in the same cycle arises only if there was an unsuccessful
virtual channel allocation encountered by one of the input
virtual channels in the previous cycle. This is because; all
the flits going to different VCs of the same input port have
the same point of entry (input port) into the router. Two
flits cannot enter two different VCs of an input port at the
same time. These flits have to come one after the other thus
making the input VC the flit has entered first trigger the
router pipeline earlier than the other VC where the other flit
has entered in the following cycle.

This unsuccessful virtual channel allocation is not a

consequence of the permanent fault but is due to the lack
of empty VCs at the downstream router. This typically
happens during high network traffic rate. In this high traffic
rate situation, latency gets affected regardless of the fault.
However, in the presence of a fault, sharing arbiters to
provide fault tolerance further increases the latency by only
one more cycle.

2) Modified Input Port Architecture: Figure 4 shows
the architecture of the input port with the new state fields
namely, ’R2’, ’VF’, ’ID’, ’SP’ and ’FSP’ added to facilitate
arbiters sharing between virtual channels of an input port.

Figure 4: Modified Input Port Architecture

Consider a VC (e.g., VC1) that intends to use the arbiters
of another VC (e.g., VC2) of the same input port. VC1
initiates the process by placing its RC result in the ’R2’ field
of VC2, its identification in the ’ID’ field of the VC2 and
setting the ’VF’ (virtual channel flag) field of VC2 to high.
This field indicates whether the arbiters associated with that
input VC are active for that specific input VC or are they
being used by a different VC of the same input port. Once
the arbiters of VC2 have successfully allocated an empty
VC in the downstream router to the head flit in VC1, the
VA unit resets the ’R2’, ’ID’ and ’VF’ fields of VC2. After
virtual channel allocation is done, using the ’ID’ field, the
appropriate virtual channel’s state field is updated by the
virtual channel allocator. The ’SP’ and ’FSP’ fields are used
to provide fault tolerance for switch allocator and crossbar
and will be described later.

3) Second VA Stage: This stage is comprised of a set of
arbiters where each arbiter is associated with a specific VC
at the downstream router. A fault in one of the arbiters in
this stage will result in that specific VC at the downstream
router not being allocated to any of the head flits in the
current router. However, this fault does not lead to the flit
being blocked at the current router because, the flit can
be allocated another VC belonging to the required output
port in the downstream router by using the associated non-
faulty arbiter. However, to accomplish this, virtual channel

286

allocation must be recomputed causing an additional latency
of 1 cycle. Thus by utilizing the inherent redundant resources
(multiple VCs), a fault in second stage can be tolerated
without the involvement of any additional circuitry.

C. Switch Allocation Stage

Since the SA unit is composed of two stages, we consider
fault scenario in each stage independently.

1) First SA Stage: The first stage (Figure 3b) is com-
prised of pi v : 1 arbiters where, pi is the number of input
ports and v is the number of VCs per input port. Each input
port has an associated v : 1 arbiter. The responsibility of an
arbiter in this stage is to choose a VC from the associated
input port. If the chosen VC eventually wins the arbitration
in second stage, then a flit from the winning VC traverses
through the crossbar in the next cycle.

Consider the scenario when a v : 1 arbiter is faulty. Due to
the fault, the arbiter cannot choose a VC from the associated
input port and as a result the VC cannot participate in the
arbitration in second stage and hence will never win the
arbitration. If the VCs of an input port never win switch
allocation, the flits in those VCs will be blocked.

To avoid this situation, we propose to create a bypass
path for each v : 1 arbiter that can be used to choose a
VC when the arbiter is faulty. When the bypass path is
activated, it chooses an input VC as the winner without
arbitration. We call this winner as default winner. This can
be accomplished by adding a 2:1 multiplexer that takes the
output of the arbiter as one input and the identification of
VC (stored in a register) that will be selected as the winner
using bypass path as the other input. For example, consider
there are v virtual channels namely VC1, VC2 ... VCv and
let us say that when using the bypass path, VC2 (any VC
can be considered) is always chosen as the winner. So, the
inputs to the additional 2:1 multiplexer will be the output of
the arbiter and the VC identification of VC2. The best way
to choose the default winner is to make every input VC as
default winner at different point of time. In other words, for a
period of time VC1 would be the default winner followed by
VC2 being the default winner for the next period of time and
so on. By doing this, we can avoid the potential starvation
problem that could arise from static allocation of the default
winner.

When an arbiter is faulty, the 2:1 multiplexer is configured
such that the value from the register (identification of VC2)
is forwarded instead of the output of arbiter. If VC2 is not
empty and is in SA stage, flits in VC2 can traverse through
the crossbar if VC2 wins the arbitration in second stage.
However, if VC2 is empty and there are flits in other virtual
channels, then flits from any other VC that belongs to the
same input port as VC2 can be transferred into VC2 by
implementing a logic that can execute read/write operation.

When transferring flits from one virtual channel (e.g.,
VC1) to another virtual channel of the same input port (e.g.,

VC2), in addition to the flits, state fields of VC1 also need to
be transferred into the state fields of VC2. After the transfer
of flits and state fields is completed, the flits (initially in
VC1) now in VC2 can traverse through the crossbar when
VC2 wins the arbitration in second stage. Thus, with the
help of transferring and using a bypass path, flits avoid being
blocked and continue to traverse to their destination. Note
that flits can only be transferred between two VCs of the
same input port. Since reading and writing multiple flits
and reading and writing the state fields can be performed
in parallel, the transferring process between two input VCs
incurs an additional latency of only 1 cycle. Figure 5 shows
the modified switch allocator.

Figure 5: Modified Switch Allocator

2) Second SA Stage: The second stage (Figure 3b) is
comprised of po pi : 1 arbiters where po is the number of
output ports and pi is the number of input ports. Each arbiter
is associated with an output port. The input VC that wins
the arbitration gets access to the associated output port of
the arbiter. If the arbiter is faulty, then the input VCs cannot
arbitrate for the arbiter’s associated output port thus making
the output port unreachable.

This situation can be solved by having a secondary path
to reach the output port that is unreachable using the normal
path. For example, consider output ports x and y of a router.
Assume that the arbiter associated with output port x is faulty
and there exists a secondary path to reach output port x by
using the arbiter associated with output port y. Now, using
the fault-free arbiter associated with output port y, flits of
any input port can reach output port x. Details regarding
the existence of a secondary path to reach an output port,
how an arbiter associated with one output port helps reach
another output port will be explained in the following sub-
section where we describe the fault tolerant methodology for
crossbar. The fault tolerant methodology used for crossbar
also helps in tolerating a fault in this stage.

287

D. Crossbar Stage

From Figure 3c, it can be inferred that each output port has
an associated multiplexer that a flit from any input port needs
to traverse through to reach the aforementioned output port.
A fault in a multiplexer blocks the passage to its associated
output port. Since there is only one path to reach an output
port, flits attempting to reach the output port associated with
the faulty multiplexer cannot reach the output port.

To provide fault tolerance to the generic crossbar archi-
tecture, we propose to have two paths to reach a specific
output port of the crossbar. This can be achieved by using
additional smaller sized demultiplexers and multiplexers.
Figure 6 shows the proposed architecture for a 5x5 crossbar.
For a 5x5 crossbar, the additional circuitry is composed
of four demultiplexers (one 1:3 demultiplexer, three 1:2
demultiplexers) and five 2:1 multiplexers.

Consider for example, output port 3 (out 3) in Figure 6. It
can be reached through either multiplexer M3 or M2. When
a fault affects the corresponding multiplexer (M3) of out
3, using M2 and configuring the additional demultiplexer
(D1) and the multiplexer (P3) accordingly, flit(s) can still
reach out 3. In addition to the select signals required for the
multiplexers (M1, M2, M3, M4 and M5), the select signals
to these new demultiplexers (D1, D2, D3 and D4) and
multiplexers (P1, P2, P3, P4 and P5) are also controlled by
the switch allocator. In the fault-free scenario, the protected
crossbar behaves just like the baseline crossbar. In the event
of a permanent fault, the secondary path can be used if
necessary in order to reach the appropriate output port.

For an input VC to use the secondary path, it should
arbitrate for a different output port in its SA stage. Consider
the scenario where M3 is faulty and an input VC needs to
transmit flits to out 3. To reach out 3, the input VC needs to
go through M2 (secondary path). So, the input VC needs to
arbitrate for access to output port 2 (out 2) in order to gain
access to M2. To make this feasible, we add a state field
named ’SP’ (secondary path) to every input VC. This field
contains the output port the input VC needs to arbitrate for
in SA stage in order to reach the correct output port.

When the RC unit finishes its execution and finds out
that the output port the flits of this input VC need to go is
unreachable using the regular path, it updates the ’SP’ field
with the appropriate output port that should be used. The
’FSP’ (secondary path flag) field is set to indicate that the
secondary path needs to be used. In our example of faulty
M3, the ’SP’ field of the input VC is updated to hold the
identification of out 2, thus arbitrating for access to out 2
and reaching out 3 using M2, D1 and P3.

VI. PERFORMANCE ANALYSIS

The proposed router design can be applied to a router with
any radix in any kind of topology. The performance analysis
is conducted on a router with 5 input ports, 5 output ports
with each input port consisting of 4 VCs.

Figure 6: Modified Crossbar

A. Area and Power Analysis

We developed pipeline stages for the baseline and pro-
tected router in Verilog and synthesized these stages using
Cadence Encounter RTL Compiler at 45nm technology.
Based on the synthesis results, the correction circuitry in-
creases the area and average power (dynamic+static) con-
sumption of the protected router by 28% and 29% with
respect to that of the baseline router. Incorporating fault
detection mechanism [18], the resulting area and power
overhead is 31% and 30% with respect to the baseline router.

B. Critical Path Analysis

To determine the effect of the correction circuitry on
the critical path of each stage, we synthesized individual
pipeline stages of both the baseline and protected router at
varying clock periods. The critical path of an individual stage
is calculated by finding out the specific clock period that
results in zero slack time. Since RC stage employs spatial
redundancy, there is negligible impact on the critical path of
this stage. However, due to the correction circuitry, critical
paths of VA, SA and XB stages have increased by 20%,
10% and 25% with respect to the baseline stages.

VII. RELIABILITY IMPROVEMENT ESTIMATION

USING MTTF

In this section, we estimate the reliability improvement
achieved by the proposed fault tolerant router with respect to
the baseline router using Mean Time to Failure (MTTF) [17].
MTTF of a component is calculated as inverse of Failures in
Time (FIT) of that component (Equation 1), where FIT of a
component is defined as the number of failures encountered
by the component per billion hours.

MTTFcomponent =
1

FITcomponent

(1)

288

A. Failure in Time Estimation Model

To calculate the FIT of a component, we use the ar-
chitectural level reliability modeling framework presented
in Shin et al [19]. This reliability framework proposes a
concept referred to as Failure in time Of Reference Circuit
(FORC) that facilitates designers to quantify the failure rate
of a component without having to deal with its low level
circuit and technology specific implementation details. This
framework provides equations to compute the FIT rate of
a component due to time dependent dielectric breakdown
(TDDB), electromigration (EM) and negative bias tem-
perature instability (NBTI) fault mechanisms respectively.
Among these three fault mechanisms, we are interested in
TDDB because the effects of EM and NBTI on a digital
circuit can be recovered by moderating the stress on the
circuit, but, no easy recovery process exists for TDDB.

TDDB results in the formation of a conductive path in the
gate oxide resulting in leakage current through the gate [20].
The flow of current through this conductive path opposes the
current of the logic state driving the effected FET resulting
in slow zero to one or one to zero transitions. These slow
transitions make the device susceptible to timing violations
resulting in a failure. Considering a continuous device stress
(100% duty cycle) on either a pFET or an nFET along the
critical path, the FORC for TDDB is given by [19].

FORCTDDB =
109

ATDDB

.Vdd
a−bT .e−

X+Y

T
+ZT

kT (2)

where, ATDDB , a, b, X , Y and Z are fitting parameters, k
is the Boltzmann’s constant, T is the operating temperature
of the circuit in Kelvin and Vdd is the operating voltage in
volts. Equation 2 and the above mentioned fitting parameters
have been derived through a thorough set of experimental
results performed by Wu et al in [20].

Using Equation 2 and the fitting parameter values obtained
from [21] at an operating voltage (Vdd) of 1V and an oper-
ating temperature (T) of 300K, we calculate the FIT of the
reference circuit. With the FORCTDDB value calculated,
the FIT due to TDDB of a field-effect-transistor (FET) can
be calculated as [19]

FITTDDB per FET = dutycycle ∗ FORCTDDB

(3)

Once the FITTDDB per FET is calculated,
FIT of a logic gate can be calculated as
number of transistorslogic gate ∗ FITTDDB per FET .
For example, to calculate the FIT of a 2-input AND
gate (FITAND2), we first calculate FORCTDDB and
FITTDDB per FET values using equations 2 and 3. Then
the resulting FITTDDB per FET is multiplied by the
transistor count of a 2-input AND gate, i.e., 6 to get the
value of FITAND2.

To calculate the FIT of a digital circuit with multiple logic
gates, Sum-of-Failure-Rates (SOFR) [22] model is used.
SOFR model assumes that the failure rate of a digital circuit
is the sum of failure rates of the individual gates in the
circuit. For example, the FIT of a logic circuit consisting of
an AND gate, an OR gate and an XOR gate is calculated as
the sum of FIT rates of AND, OR and XOR gates.

Using this FIT calculation methodology and assuming a
SOFR [22] model, we proceed to calculate the FIT values
of the individual pipeline stages of a NoC router.

B. FIT estimation of NoC Router Pipeline stages

FIT values of NoC router pipeline stages are calculated
for a 5x5 router with each input port consisting of 4 VCs
in a 8x8 mesh topology that employs XY routing protocol.
The fundamental component of VA, SA and XB stages can
be deduced to be an arbiter, arbiter and a multiplexer. To
implement XY routing, the fundamental component used is
a comparator. The RC unit needs two comparators, one for
the X-direction and one for the Y-direction. Since, the router
is in a 8x8 mesh, there are 64 possible destinations and hence
the RC unit needs two 6-bit comparators.

Table I lists the fundamental components (FC) used in the
design of the pipeline stages, their corresponding FIT values,
the total number of FCs involved in a particular stage and
the FIT value of the stage calculated based on SOFR model.

Table I: FIT values of baseline pipeline stages

Stage FC FITFC # FCs FITstage

RC 6-bit comparator 11.7 10
(11.7*10)

= 117

VA
4:1 Arbiter

20:1 Arbiter
7.4

36.7
100
20

(100*7.4
+ 20*36.7)

= 1478

SA

4:1 mux
4:1 Arbiter
5:1 Arbiter

4.8
7.4
9.3

25
5
5

(25*4.8 +
5*7.4 + *9.3)

= 203

XB 32-bit 5:1 mux 204.8 5
(204.8*5)

= 1024

C. FIT estimation of Correction Circuitry

1) RC Stage: This stage employs spatial redundancy to
provide fault tolerance. Since the baseline router has 5 RC
units, the correction circuitry also includes 5 RC units.

2) VA Stage: New state fields namely ’R2’, ’VF’, and
’ID’ are added to facilitate arbiter sharing. There are 20
input VCs per router and these state fields are added per
VC. ’R2’ field is implemented by a 3-bit D flip-flop (DFF),
’VF’ field by a 1-bit DFF and ’ID’ field by a 2-bit DFF.

3) SA Stage: Correction circuitry (Figure 5) for this
stage involves 5 2:1 multiplexers and 5 2-bit registers. Each
register is implemented as a 2-bit DFF. Two new state fields
namely, ’SP’ and ’FSP’ are also added per virtual channel
to provide fault tolerance. ’SP’ field is implemented by a
3-bit DFF and ’FSP’ field is implemented by a 1-bit DFF.

289

4) XB Stage: Correction circuitry (Figure 6) for this
stage involves 5 32-bit 2:1 multiplexers, 3 32-bit 1:2 de-
multiplexers and 1 32-bit 1:3 demultiplexer.

Table II shows the FIT rates (per 109 hours) of the
correction circuitry for each individual pipeline stage.

Table II: FIT rates of Correction Circuitry

Stage Components FIT
RC 10 6-bit comparators 117

VA
20 3-bit DFF (’R2’), 20 1-bit DFF (’VF’),

20 2-bit DFF (’ID’) 60

SA
5 2:1 muxes, 5 2-bit DFF (register),

20 3-bit DFF (’SP’), 20 1-bit DFF (’FSP’) 53
XB 5 2:1 muxes, 3 1:2 demuxes, 1:3 demux 416

D. MTTF of Protected Router

Using the SOFR model, the MTTF of the pipeline in the
baseline router is calculated as,

MTTFbaseline =
109

117 + 1478 + 203 + 1024
≈

354,358 hours (4)

The proposed router continues to work as long as either
the baseline stages or the corresponding correction circuitry
are fault free. Using SOFR model, the FIT of the entire
correction circuitry is 117+60+53+416 = 646 (Table II).
MTTF of a system that has two components with failure
rates λ1 and λ2 requires only one the two components to
continue to function can be calculated as

MTTFsystem =
1

λ1

+
1

λ2

+
1

λ1 + λ2

(5)

Applying Equation 5 to the proposed fault tolerant router
with λ1 = 2822 (FIT of the baseline router pipeline) and
λ2 = 646 (FIT of the correction circuitry), MTTF of the
protected router can be calculated as

MTTFprotected =
109

2822
+

109

646
+

109

2822 + 646
≈

2,190,696 hours (6)

Using equations 4 and 6, the reliability improvement in
the protected router can be calculated as the ratio of MTTF
of the protected router and the baseline router,

MTTFprotected

MTTFbaseline

=
2, 190, 696

354, 358
≈ 6 (7)

From equation 7, we can prove that the protected router is
approximately 6 times more reliable than the baseline router.

VIII. RELIABILITY COMPARISON USING SPF

Here, we study the reliability improvement of protected
router in comparison to other fault tolerant routers namely
BulletProof [14], Vicis [15] and RoCo [16] using Silicon
Protection Factor (SPF) [14] as a metric. SPF is defined as
the ratio of mean number of faults required to cause a failure
and the area overhead incurred due to correction circuitry.
Higher SPF value indicates higher reliability.

We estimate the SPF of a 5x5 protected router with each
input port consisting of 4 VCs. We calculate the mean
number of faults to cause failure by calculating the average
of minimum and maximum number of faults to cause failure.

A. RC Stage

A fault in the original RC unit of an input port can be
tolerated by using the duplicate RC unit of that input port.
Since each input port has a duplicate RC unit, the router
can tolerate a maximum of 5 faults, where each fault has
affected the functionality of one RC unit per input port. On
the other hand, a minimum of 2 faults, one in the original
and the other in the duplicate RC unit of the same input port
would result in failure because, routing computation can no
longer be performed at that input port.

B. VA Stage

There are 4 VCs per input port. A packet in the VC of
an input port can borrow arbiters from three other virtual
channels of the same input port. So, the VA unit can tolerate
3 faults per input port, resulting in a maximum of 15 faults
that can be tolerated. If the arbiters associated with all the
4 VCs of an input port are affected by 4 different faults, it
would result in failure because virtual channel allocation can
no longer be performed at that particular input port. Thus,
the minimum number of faults to cause failure is 4 faults.

C. SA Stage

In the first stage of SA unit, if an arbiter is affected by
a fault, the bypass path can be used to overcome the faulty
arbiter. There are 5 arbiters in the first stage of SA unit
and thus, a maximum of 5 faults, one per arbiter can be
tolerated. On the other hand, a minimum of 2 faults, one
in the arbiter and the other in the bypass path of the same
input port would result in failure because switch allocation
can no longer be performed at that input port.

Fault tolerance to the second stage of SA unit is provided
by the same methodology that provides fault tolerance to
crossbar. In other words, either the crossbar or the second
stage of SA unit can be protected but not both. Since
we considered faults in the first stage of SA unit in the
calculation of SPF, we choose to consider faults in the
crossbar instead of in the second stage of SA unit.

290

D. XB Stage

A packet in an input VC uses the regular path to reach
the output port of a crossbar. If the multiplexer associated
with the regular path is faulty, the secondary path is used.
A fault in the secondary path will result in failure. Thus, a
minimum of 2 faults will cause failure. From Figure 6, it
can be deduced that a maximum of 2 faults can be tolerated.
For example, if multiplexers M2 and M4 are each affected
by a fault, the crossbar is still functional with the help of
correction circuitry. A fault in any other multiplexer (M1,
M3 or M5) or in the correction circuitry will result in failure.

E. SPF of Protected Router

The minimum number of faults to cause
failure in the router pipeline is calculated as
min{2(RC), 4(V A), 2(SA), 2(XB)}, which is 2
faults. The maximum number of faults tolerated
by the router pipeline is calculated as sum of
maximum faults tolerated by each individual stage,
i.e., 5(RC) + 15(V A) + 5(SA) + 2(XB) = 27 faults.
Note that this is the total number of tolerated faults. An
additional fault in any of the pipeline stages or correction
circuitry would result in failure. So, the maximum number
of faults to cause failure is, 27 + 1 = 28 faults. Thus, the
mean number of faults to cause failure is (2 + 28)/2 = 15
faults. Area overhead incurred by the correction circuitry is
31%. Thus, using the definition, SPF of protected router is
calculated as 15/1.31 = 11.

This SPF value increases further beyond 11 if the number
of VCs per input is increased beyond 4. If the number of
VCs per input port is decreased to 2, the SPF value is 7.

Table III shows the area overhead, number of faults to
cause failure and SPF values of BulletProof, Vicis, RoCo
and our proposed router. BulletProof evaluates different
designs and calculates their SPF values. We choose a design
that incurs approximately the same area overhead as our
proposed router for doing the comparison. The authors
of BulletProof and Vicis used an experimental approach
through simulations to determine the number of faults to
cause failure. For our router, we used a theoretical approach
to calculate the number of faults to cause failure based on
the fault tolerant methodology and the circuit necessary to
implement the fault tolerant methodology for each pipeline
stage. For RoCo, the authors did not provide the number
of tolerated faults and the area overhead (N/A) of the fault
tolerant methodology. Based on the proposed methodology
of RoCo, we deduced the number of faults to cause failure as
5.5. Using the definition of SPF, the SPF of RoCo is < 5.5.
Comparing the SPF values, we can deduce that our proposed
router is more reliable than the existing methodologies.

IX. LATENCY ANALYSIS

Here, we study the impact on latency caused by the
correction circuitry of protected router in the process of

Table III: SPF Comparison of our Proposed Router with
BulletProof, Vicis and RoCo

Architecture Area # Faults to cause failure SPF
BulletProof 52% 3.15 2.07

Vicis 42% 9.3 6.55
RoCo N/A 5.5 <5.5

Proposed Router 31% 15 11.4

accomplishing fault tolerance. We use GEM5 [26], a cycle
accurate simulator to simulate a 8x8 mesh based NoC.
GARNET [25], integrated into GEM5 is used to model the
baseline router pipeline.

The ideal way to simulate faults is to inject them based on
the FIT values described in section VII-B. Since the derived
FIT values are very small, the applications need to run for a
long time to inject faults. To accelerate simulations, we inject
faults based on a uniform random variable with a mean of
10 million cycles. A fault is injected into a pipeline stage
after 10 million cycles of its operation.

We simulated an 8x8 mesh-based NoC using GEM5
with each core associated with its own cache and direc-
tory. The cache coherence protocol used in the NoC is
MOESI CMP directory. Figures 7 and 8 show the la-
tency results in both the fault-free and fault injected scenario
on a 8x8 NoC executing SPLASH-2 [27] and PARSEC [28]
benchmark applications. Overall NoC latency has increased
by 10% and 13% for SPLASH-2 and PARSEC benchmark
applications respectively in the presence of multiple faults.

Figure 7: Impact of faults on latency running SPLASH-2

X. CONCLUSION

We considered each individual pipeline stage of a NoC
router and added minimal correction circuitry to provide
better fault tolerance. Synthesis results reveal that the cor-
rection circuitry results in an area and power overhead of
31% and 30% with respect to the baseline router. Reliabil-
ity analysis using MTTF metric reveals that the proposed

291

Figure 8: Impact of faults on latency running PARSEC

router is six times more reliable than the baseline router.
Further, we use SPF as a metric to evaluate the reliability
improvement of our proposed router with respect to other
fault tolerant routers namely BulletProof, Vicis and RoCo.
SPF calculations reveal that our proposed router has an SPF
value of 11 suggesting that it provides better reliability with
less overhead compared to the other fault tolerant routers.

ACKNOWLEDGMENT

This research was supported by NSF awards ECCS-
0725765, CCF-0915537 and CNS-1318997.

REFERENCES

[1] S. Borkar, ”Thousand core chips: a technology perspective,” in
Proceedings of the 44th annual Design Automation Conference
(DAC) pp. 746-749, 2007.

[2] L. Benini and G. Micheli, ”Networks on chips: a new SoC
paradigm,” IEEE Computer, 35: pp. 70-78, 2002.

[3] S. Borkar, ”VLSI design challenges for gigascale integration
(keynote address),” in 18th International Conference on VLSI
Design, 2005.

[4] W.J. Dally and B. Towles, ”Route packets, not wires: on-
chip interconnection networks,” in Proceedings of the Design
Automation Conference (DAC), 2001.

[5] R. Barsky and I.A. Wagner, ”Electromigration-dependent para-
metric yield estimation,” in Proceedings of the 11th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS), pp. 121-124, 2004.

[6] G.V. Groeseneken, ”Hot carrier degradation and ESD in sub-
micrometer CMOS technologies: How do they interact?,” IEEE
Transactions on Device and Materials Reliability, 1(1): 23-32,
2001.

[7] S. Oussalah and F. Nebel, ”On the oxide thickness dependence
of the time-dependent-dielectric breakdown,” in IEEE Proceed-
ings of Electron Devices Meeting, pp. 42-45, 1999.

[8] J. Zieglar, ”Terrestrial cosmic rays,” IBM Journal of Research
and Development, 40(1): 19-39, 1996.

[9] K.J. Kuhn, ”Reducing variation in advanced logic technologies:
Approaches to process and design for manufacturability of
nanoscale CMOS,” in IEEE Proceedings of Electron Devices
Meeting, pp. 471-474, 2007.

[10] T. May and M. Woods, ”Alpha-particle-induced soft errors in
dynamic memories,” IEEE Transactions on Electronic Devices,
26(1): 2-9, 1979.

[11] K. Aisopos et.al, ”Enabling system-level modeling of
variation-induced faults in networks-on-chips,” in Proceedings
of the Design Automation Conference (DAC), 2011.

[12] W. Dally and B. Towles, Principles and Practices of Inter-
connection Networks, Morgan Kaufmann, 2003.

[13] L.S. Peh and W.J. Dally, ”A delay model and speculative
architecture for pipelined routers,” in Proceedings of the 7th
International Symposium on High-Performance Computer Ar-
chitecture (HPCA), pp. 255-266, 2001.

[14] K. Constantinides et.al, ”BulletProof: A defect-tolerant CMP
switch architecture,” in Proceedings of the 12th Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), pp. 5-16, 2006.

[15] D. Fick, et.al ”Vicis: a reliable network for unreliable sili-
con,” in Proceedings of the 46th annual Design Automation
Conference (DAC), pp. 812-817, 2009.

[16] J. Kim, et.al ”A Gracefully Degrading and Energy-Efficient
Modular Router Architecture for On-Chip Networks,” in Pro-
ceedings of the 33rd International Symposium on Computer
Architecture (ISCA), 2006.

[17] D.P. Gaver, ”Time to failure and availability of paralleled
systems with repair,” in IEEE Transactions on Reliability,
12(2), 30-38, 1963.

[18] A. Prodromou, et.al, ”NoCAlert: An On-Line and Real-
Time Fault Detection Mechanism for Network-on-Chip Ar-
chitectures,” in Proceedings of the 45th annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp.
60-71, 2012.

[19] J. Shin, et.al, ”A Framework for Architecture-level Lifetime
Reliability Modeling,” in Proceedings of the 37th Annual
IEEE/IFIP conference on Dependable Systems and Networks
(DSN), pp. 534-543, 2007.

[20] E.Y. Wu, et.al, ”CMOS scaling beyond the 100-nm node
with silicon-dioxide-based gate dielectrics,” in IBM Journal
of Research and Development, vol. 46, no. 2/3, pp. 287-298,
2002.

[21] J. Srinivasan, et.al, ”The case for lifetime reliability-aware
microprocessors,” in Proceedings of International Symposium
on Computer Architecture (ISCA), pp. 276-287, 2004.

[22] K. Trivedi, ”Probability and Statistics with Reliability, Queue-
ing, and Computer Science Applications,” Prentice Hall, 1982.

[23] J.H. Collet, et.al, ”ROBUST: a new self-healing fault-tolerant
NoC router,” in Proceedings of the 4th International Workshop
on Network on Chip Architectures (NoCArc), 2011.

[24] Q. Yu, et.al , ”Exploiting Inherent Information Redundancy
to Manage Transient Errors in NoC Routing Arbitration,” in
Proceedings of the 5th ACM/IEEE International Symposium
on Networks-on-Chips (NOCS), pp. 105-112, 2011.

[25] N. Agarwal, et.al, ”Garnet: A detailed on-chip network model
inside a full system simulator,” in Performance Analysis of
Systems and Software (ISPASS), pp. 33-42, 2009.

[26] N. Binkert et.al ”The gem5 simulator,” SIGARCH, Computer
Architecture News 39, 2:1-7, 2011.

[27] S.C. Woo, et.al, ”The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations,” in Proceedings of
the 22nd International Symposium on Computer Architecture
(ISCA), pp. 24-36, 1995.

[28] C. Bienia, et.al, ”The PARSEC Benchmark Suite: Charac-
terization and Architectural Implementations,” in Proceedings
of the 17th International Conference on Parallel Architectures
and Compilation Techniques, 2008.

292

