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A new scalable interconnection topology called the spanning-bus connected hypercube ~SBCH! that is
suitable for massively parallel systems is proposed. The SBCH uses the hypercube topology as a basic
building block and connects such building blocks by use of multidimensional spanning buses. In doing
so, the SBCH combines positive features of both the hypercube ~small diameter, high connectivity,
symmetry, simple routing, and fault tolerance! and the spanning-bus hypercube ~SBH! ~constant node
degree, scalability, and ease of physical implementation!, while at the same time circumventing their
disadvantages. The SBCH topology permits the efficient support of many communication patterns
found in different classes of computation, such as bus-based, mesh-based, and tree-based problems, as
well as hypercube-based problems. A very attractive feature of the SBCH network is its ability to
support a large number of processors while maintaining a constant degree and a constant diameter.
Other positive features include symmetry, incremental scalability, and fault tolerance. An optical
implementation methodology is proposed for the SBCH. The implementation methodology combines the
advantages of free-space optics with those of wavelength-division multiplexing techniques. An analysis
of the feasibility of the proposed network is also presented. © 1997 Optical Society of America
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1. Introduction

The interconnection network, not the processing ele-
ments ~PE’s! or their speed, is proving to be the de-
cisive and determining factor in terms of the cost and
performance of parallel-processing systems.1–4 Sev-
eral topologies have been proposed to fit different
styles of computation. Examples include crossbars,
multiple buses, multistage interconnection networks,
and hypercubes, to name a few. Among these, the
hypercube has received considerable attention
mainly because of its good topological characteristics
~small diameter, regularity, high connectivity, simple
control and routing, symmetry, and fault tolerance!
and its ability to permit the efficient embedding of
numerous topologies, such as rings, trees, meshes,
and shuffle exchanges, among others.5
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However, a drawback to the use of the hypercube is
its lack of scalability, which limits its use in building
large-size systems out of smaller-size systems. The
lack of scalability of the hypercube stems from the
fact that the node degree is not bounded and varies as
log2 N. This property makes the hypercube cost pro-
hibitive for large N. Most hypercube-based inter-
connection networks proposed in the literature6–8

suffer from similar size-scalability problems.
Recently some networks have been introduced that

are products of hypercube topology with some fixed-
degree networks such as the mesh, the tree, and the
de Bruijn4,7,9 in the quest to preserve the properties of
the hypercube while improving its scalability charac-
teristics. Notable among these is the optical mul-
timesh hypercube ~OMMH!.10–12 The OMMH is a
network that combines the positive features of the
hypercube ~small diameter, regularity, high connec-
tivity, simple control and routing, symmetry, and
fault tolerance! with those of a mesh ~constant node
degree and size scalability!. The OMMH can be
viewed as a two-level system: a local-connection
level representing a set of hypercube modules and a
global-connection level representing the mesh net-
work that connects the hypercube modules.



The OMMH network has been demonstrated phys-
ically by use of a combination of free-space and fiber-
optics technologies and has shown good performance
characteristics for a reasonably sized network.
However, for very large networks ~greater than 1000
PE’s!, the OMMH experiences a logarithmic increase
in terms of diameter and requires a large number of
fibers that make implementation complicated and ex-
pensive.

In this paper, we propose a novel network that
improves the topological characteristics as well as the
implementation and performance aspects of the
OMMH network. The new network topology pro-
posed is called the spanning-bus connected hyper-
cube ~SBCH! and possesses a constant degree and a
constant diameter while preserving all the properties
of the hypercube. The SBCH, which is similar to the
OMMH, employs the hypercube topology at the local-
connection level. The global-connection level con-
necting the hypercube modules is a spanning-bus
hypercube ~SBH! network.13

The SBH is a D-dimensional lattice of width w in
each dimension. Each node is connected to D buses,
one in each of the orthogonal dimensions; w nodes
share a bus in each dimension. The SBH offers
small node degree, small diameter, low cost, and scal-
ability. It can be scaled up by expansion of the size
of the spanning buses.13 However, expanding the
size of the buses leads to a O~w! increase in traffic
density,13 which in turn leads to bus-congestion prob-
lems.14

The advantage of the SBCH network is that it
utilizes the hypercube local-interconnection level to
decrease traffic density, thereby alleviating the bus-
congestion problems encountered in pure SBH net-
works. This feature allows the SBCH buses to
support a larger number of processors than the
SBH network, thus allowing larger systems to be
built. As such, the SBCH is incrementally scal-
able, with a high degree of connectivity and a small
diameter. Additionally, we also propose an optical
implementation of such a network. Optical inter-
connects offer many desirable features, such as very
large communication bandwidth, reduced cross
talk, immunity to electromagnetic interference, and
low power requirements.3,4,15,16

2. Structure of the Spanning-Bus Connected
Hypercube Network

In this section, we formally define the structure of the
SBCH network and discuss its properties.

A. Topology of the Spanning-Bus Connected Hypercube
Interconnection Network

The size of the SBCH is characterized by a three-
tuple ~w, n, D!, where w, n, and D are positive inte-
gers. The first parameter, w, defines the number of
nodes attached to a bus. The second parameter, n, is
the degree of the point-to-point n cube ~hypercube!.
The third parameter, D, identifies the number of
buses spanned by a PE in the network.

For a SBCH~w, n, D! the number of nodes uVu is
equal to wD2n. A node address in the SBCH is de-
noted by a ~D 1 1!-tuple ~a1, a2, . . . , aD, an! by use of
a mixed-radix system, where, for i 5 1 to i 5 D, 0 #
ai # ~D 2 1! and 0 # an # ~2n 2 1!.

Given the set of nodes ~V!, the set of edges ~E! is
constructed as follows: For two nodes ~a1, a2, . . . ,
aD, an! and ~b1, b2, . . . , bD, bn!, where, for i 5 1 to i 5
D, 0 # ai , D for j 5 1 to j 5 D, we have 0 # bi , D,
0 # an , 2n, and 0 # bn , 2n:

1. The two nodes span the same bus ~i! if an 5 bn
and ~ii! if, for i 5 1 to i 5 D, there are only two
components ai and bi that are identical, while all
other components are different.

2. There is a link ~called a hypercube link! between
two nodes if and only if, for i 5 1 to i 5 D, ~i! ai 5 bi
and ~ii! an and bn differ by one bit position in their
binary representation ~Hamming distance of 1!.

In this paper, we consider only SBCH networks with
D 5 2. Therefore, in the notation the third parame-
ter, D, is dropped. Consequently, a SBCH~w, n, 2!
network is referred to as SBCH~w, n!. Figure 1~a!
shows a SBCH~2, 3! interconnection; the solid lines
represent point-to-point hypercube links, and the dark
thick lines represent buses. Small filled circles rep-
resent nodes of the SBCH network, which are, in this
paper, abstractions of PE’s or memory modules or
switches. Note that, because D 5 2, each node spans
two buses, one bus along each dimension. Further-
more, there are three bidirectional point-to-point links,
attached to a node, that correspond to the hypercube
links. Careful observation of Fig. 1~a! shows that the
node addresses satisfy the connection rules outlined
above.

As can be seen from Fig. 1~a!, the SBCH~2, 3! con-
sists of 22 3 23 5 32 nodes. It can be viewed as eight
concurrent two-dimensional ~2-D! SBH’s. Note that
w horizontal buses and w vertical buses are needed to
form one w 3 w 2-D SBH network. Figure 1~b!
shows one such 2-D SBH formed by nodes with the
same hypercube addresses and belonging to different
hypercube modules. Similar considerations apply to
the other seven 2-D SBH’s shown in Fig. 1~a!. The
SBCH~2, 3! network can also be viewed as four con-
current three-dimensional ~3-D! hypercubes in which
four nodes having identical hypercube addresses
form a 2 3 2 SBH. The SBCH~2, 3! shown in Fig.
1~a! looks like a hypercube-clustered SBCH. In gen-
eral, there are 2n 2-D SBH’s and w2 hypercube mod-
ules.

The choice of two parameters, w and n, completely
determines the size of the network, the resources and
implementation requirements, and the scaling com-
plexity. The parameter w determines the size of the
buses, whereas the parameter n defines the size of
the hypercubes. From a scaling viewpoint, two scal-
ing rules can be applied to a SBCH~w, n! network.
The first rule, which we call the fixed-w rule, keeps
the size of the buses constant and increases the size
of the network by increasing n. The second rule,
which we call the fixed-n rule, keeps the size of the
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hypercube constant and increases the size of the net-
work by increasing w. Clearly, the advantage of the
SBCH~w, n! network is its flexibility to scale up by
use of either or a combination of the two scaling rules.

For instance, the size of the SBCH can grow with-
out altering the number of links per node by expan-
sion of the size of the buses. For example, 3-D
hypercubes can be added on the perimeter of the 2-D
SBH’s of Fig. 1. Figure 2 illustrates a SBCH~3, 3!
that is constructed by expansion of the SBCH~2, 3!

Fig. 1. ~a! Example of the SBCH network: A SBCH~2, 3! ~32
nodes! interconnection is shown. The solid thick lines represent
bus connections, while the bold thin lines represent point-to-point
hypercube connections. ~b! Example of a 2-D SBH network
within a SBCH~2, 3! network. Note that the nodes that construct
the 2-D SBH belong to different hypercube modules but that they
posses the same binary hypercube-address representation within
their corresponding hypercube modules. Eight such 2-D SBH’s
coexist in the SBCH~2, 3! interconnection.
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network by addition of the hypercube modules along
an outer row and an outer column. The existing
configuration of the nodes of the SBCH~2, 3! network
did not change because each node still spans two
buses and still has three bidirectional point-to-point
links for the hypercube connections. This option al-
lows the SBCH to be truly size scalable.

B. Properties of the Spanning-Bus Connected
Hypercube Interconnection Network

1. Diameter and Link Complexity
The diameter of a network is defined as the maxi-
mum distance between any two processors in the
network. Thus, the diameter determines the maxi-
mum number of hops that a message may have to
take. Bearing in mind that D 5 2, the diameter of a
2-D SBH is 2. The diameter of a hypercube with N
nodes is n 5 log2 N; therefore the diameter of
SBCH~w, n! is ~n 1 2!. For the SBCH~w, n! net-
work, N 5 w22n, therefore n 5 log2~Nyw2!. Conse-
quently the diameter of the SBCH~w, n! network can
be written as log2~Nyw2! 1 2. Using the fixed-w
scaling rule shows that the diameter of the SBCH~w,
n! network experiences a logarithmic increase @O~log2
N!# when the network size increases. However, us-
ing the fixed-n scaling rule would make the diameter
constant for any network size. The constant value is
n 1 2.

Link complexity or node degree is defined as the
number of physical links per node. For a regular
network in which all nodes have the same number of
links, the node degree of the network is that of a node.
The node-link complexity, or degree, of a hypercube
with N nodes is n 5 log2 N and that of a 2-D SBH is
2. A node of a SBCH~w, n! network possesses links
for both the hypercube connections and the bus con-
nections. Consequently, the node degree of the
SBCH network is ~n 1 2! or log2~Nyw2! 1 2. Again,
when the fixed-w scaling rule is used the SBCH net-
work experiences a logarithmic increase in degree
@O~log2N!#; however, when the network is expanded
by use of the fixed-n scaling rule, the degree becomes
constant, i.e., ~n 1 2!.

2. Bisection Width
The bisection width of a network is defined as the
minimum number of links that have to be removed to
partition the network into two equal halves.17 The
bisection width indicates the volume of communica-
tion allowed between any two halves of the network
with an equal number of nodes. The bisection width
of an n-dimensional hypercube is 2~n21! 5 Ny2, since
that is the number of links that are connected be-
tween two ~n 2 1!-dimensional hypercubes to form an
n-dimensional hypercube. Since there are w2 such
n-dimensional hypercubes connecting 2n 2-D SBH’s,
the bisection width of a SBCH~w, n! is equal to w2 3
2n21 5 Ny2.



Fig. 2. SBCH~3, 3! ~72 nodes! interconnection. This SBCH network can be constructed by the addition of hypercube modules along a row
and a column to the network SBCH ~2, 3! of Fig. 1.
3. Granularity of Size Scaling
Ideally it should be possible to create larger and more
powerful networks by the simple addition of more
nodes to the existing network. For a 2-D SBH the
granularity of size scaling is only 2w 1 1 since at a
minimum one bus per dimension could be added to
the network to increase its size. Therefore the gran-
ularity of the size scaling in a w 3 w 2-D SBH of N 5
w2 nodes is 2N1y2 1 1. However, we can increase
the size of a hypercube only by doubling the number
of nodes; that is, the granularity of size scaling in an
n-dimensional hypercube is 2n.

In Subsection 2.A, we explained how the SBCH~w,
n! network can be scaled up by use of two different
scaling rules. When the fixed-w scaling rule is ap-
plied, the granularity of size scaling follows the hy-
percube size scaling. Therefore, the granularity of
size scaling by use of the fixed-w rule is w2 3 2n 5 N.
When the fixed-n scaling rule is used, the granularity
of size scaling follows that of the SBH. Therefore,
the granularity of size scaling with the fixed-n rule is
2n~2w 1 1! 5 2~Nyw! 1 2n. Note that the granular-
ity of size scaling for the fixed-w rule is O~N!, whereas
for the fixed-n rule it is O~Nyw!.

4. Topological Comparisons of the Spanning-Bus
Connected Hypercube with Other Known Networks
In this subsection we compare the SBCH network
with existing well-known topologies. These include
the Boolean hypercube ~BHC!,5 the Torus network,18

the SBH,13 and the OMMH.10 The comparison pa-
rameters include diameter, degree, number of links,
and average traffic density. More details of the der-
ivation of average traffic density and other parame-
ters can be found in Ref. 19. The topological
characteristics of the results of the comparison are
shown in Fig. 3.

In Fig. 3 the notation SBCH~16, n! denotes that the
network is expanded following the fixedw516 rule;
that is, the size of the buses is kept constant ~16 PE’s
per bus! and the size of the hypercube module is
changed to have the same network size for compari-
son purposes. The notation SBCH~w, 4! denotes
that the network is expanded following the fixedn54
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Fig. 3. Network comparisons for ~a! diameter, ~b! degree, ~c! number of links, and ~d! average traffic density.
rule, which means that the size of the hypercube
module is kept fixed ~n 5 4! and the size of the buses
is increased. Note that, when expanding the SBCH
network, some mathematical constraints exist. The
notation ~16, 16, n!-OMMH denotes that the size of
the mesh network in the OMMH is fixed, whereas the
size of the hypercube is varied. Similarly the ~l, l,
4!-OMMH notation denotes that the size of the hy-
percube is fixed, and the mesh size is varied. Fi-
nally, the notation SBH~D 5 3! means that the
dimension of the SBH network is kept constant, and
the size of the buses ~w! is changed.

Figures 3~a! and 3~b! show the graph comparisons
in terms of diameter and degree as the network size
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is increased. At the key mark of 10,000 nodes ~de-
sirable for massively parallel processing!, SBCH~w,
4! and SBCH~16, n! exhibit very good performances
in terms of diameter and degree, with values of 6 and
7, respectively. Note that SBCH~w, 4! is more de-
sirable than SBCH~16, n! because it possesses con-
stant degree and diameter, features that allow it to be
scalable. Figure 3~c! shows that large SBCH net-
works are feasible with a small number of links.
Conversely, the OMMH network experiences fairly
large diameters, high numbers of links, and high to-
pological cost. However the ~l, l, 4!-OMMH pos-
sesses constant degree ~8!, a feature that makes it
also size scalable. Nevertheless, the graphs indicate



that the SBCH network improves the OMMH net-
work drastically in terms of every topological charac-
teristic. The SBCH network possesses very small
diameter and low degree, while it offers size scalabil-
ity and regularity.

Figures 3~a!–3~c! suggest that the SBH network
experiences the best topological characteristics.
Figure 3~d! illustrates a graphic comparison among
the SBCH, the SBH, and the BHC in terms of average
traffic density. The average traffic density is de-
fined as the product of the average distance and the
total number of nodes, divided by the total number of
communication links.15 The BHC has low traffic
density, and it is insensitive to variations in network
size. The SBCH network demonstrates the capacity
for a higher traffic density than does the BHC, but for
a larger network size it also exhibits no sensitivity to
variations in network size. On the other hand, the
SBH network shows the capacity for an increase in
traffic density; therefore, for larger networks the
SBH network most likely would experience severe
bus-congestion problems that would lead to long mes-
sage delays. Hence, even though the SBH network
demonstrates better topological characteristics than
does the SBCH network, the latter is more efficient
because it can utilize a larger number of PE’s with
fewer communication delays ~Ref. 19!.

3. Optical Implementation of the Scanning-Bus
Connected Hypercube Network

Obviously an electronic implementation of the pro-
posed SBCH network is feasible. One methodology
would be to use multiprocessor-board technology
~e.g., multichip-module technology! for the hypercube
subnetwork connections and backplanes for the bus
connections. For limiting the number of boards re-
quired, k hypercube modules can be clustered to-
gether on a single multiprocessor board. However,
for a large number of PE’s and a greater bandwidth
and interconnect density, conventional backplanes
have major limitations.3,4,20 These include signal
skew, wave reflection, impedance mismatch, skin ef-
fects, and interference, among many others.

A possible alternative is the use of optical intercon-
nects. Optical interconnects offer many communi-
cation advantages over electronics, including
gigahertz transfer rates in an environment free from
capacitive loading effects and electromagnetic inter-
ference, high interconnection density, low power re-
quirements, and possibly a significant reduction in
design complexity through the use of multiple-access
techniques and the third dimension of free-space op-
tics. The effectiveness of optical interconnects has
been examined extensively.3,4,15,16 In the following
subsections we propose an all-optical implementation
of the SBCH~w, n! network in which the hypercube
modules are implemented by use of free-space space-
invariant optics,10 and the bus modules are imple-
mented by use of wavelength-division multiple-
access ~WDMA! techniques.
A. Optical Implementation of Space-invariant Hypercubes
by Use of Holographic Optical Elements

The free-space optical implementation of the hyper-
cube network has been studied and analyzed rigor-
ously in Refs. 4, 10, and 11. The main objective was
to exploit the third dimension and the communica-
tion advantages of free-space optics to provide effi-
cient and adequate implementation of the hypercube
network. The design methodology is based on an
observation that PE’s in an interconnection network
can be partitioned into two different sets such that
any two PE’s in a set do not have a direct link ~except
for completely connected networks!. This is a well-
known problem of bipartitioning a graph if the inter-
connection network is represented as a graph. For a
binary n cube, PE’s whose addresses differ by more
than 1 in the Hamming distance can be in the same
partition, since no link exists between two PE’s if
their Hamming distance is greater than 1.

Besides bipartitioning the graph, we arrange the
PE’s in each partition in the plane such that inter-
connection between two planes becomes space invari-
ant ~the connection pattern is identical for every PE
in the plane!. This self-imposed requirement re-
duces the design complexity of the optical setup.
The two partitions of PE’s are called planel and
planer. Optical sources and detectors are assumed
to be resident on processor–memory boards located in
planel and planer. Free-space holographic optical
elements ~HOE’s! are used to implement the connec-
tion patterns required among the PE’s of the two
planes.4,10,11

B. Implementation of the Spanning-Bus Hypercube by
Use of Wavelength-Division Multiple-Access Techniques

In this subsection we present the implementation of
the SBH subnetwork using WDMA techniques. For
exploiting the large communication bandwidth of op-
tics, WDMA techniques that permit multiple multi-
access channels to be realized on a single physical
channel can be utilized. Optical passive star cou-
plers can be utilized for the WDMA channels. The
purpose of an N 3 N star coupler is to couple light
from one of its N input guides to all the N output
guides uniformly. Star couplers with 128 3 128
ports and the capacity to handle more than 100 dif-
ferent wavelengths are feasible with the currently
available technology. An experimental integrated-
services digital network ~ISDN! switch architecture
that uses eight 128 3 128 multiple star couplers to
handle more than 10,000 input-port lines has been
reported.21

The SBCH~w, n! network consists of w2 hypercube
modules and 2n, w 3 w 2-D SBH’s. From the dis-
cussion of Subsection 3.A, every hypercube module is
bipartitioned into two planes, called planel and
planer. In the SBCH network all planes of planel
are grouped together to form a plane called PLANEL,
while all planes of planer are grouped to form another
plane called PLANER. The SBH buses can be imple-
mented by interconnection of the individual planes of
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Fig. 4. Optical implementation of PLANEL of a SBCH~4, 3! network by use of optical star couplers. We need two tunable transmitters–
receivers for every node. Similar connections exist for PLANER. For clarity of the figure only a few buses are shown. Note that each SCr

implements two rowwise buses, while every SCc implements two columnwise buses.
planel of PLANEL and planes of planer of PLANER. The
hypercube modules are implemented by use of free-
space optics to provide the connectivity between the
planes of planel and planer. Additionally, 2n21 2-D
SBH subnetworks per plane ~PLANEL or PLANER! need
to be implemented. Each 2-D SBH consists of 2w
buses, therefore a total of 2w 3 2n21 buses per PLANE

are required.
A trivial implementation of the SBH subnetwork

is to assign a distinct wavelength for every PE in
PLANEL and PLANER and then to perform WDMA tech-
niques to implement the buses. However, such a
straightforward method requires a prohibitively
large number of different wavelengths and fibers.
For example, for a SBCH~4, 3! consisting of 128
PE’s, a total of 64 wavelengths would be necessary.
A wavelength-assignment technique10,16 can be em-
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ployed to reduce the number of wavelengths used in
the system.

Let us take a running example, a SBCH~4, 3!.
Figure 4 shows how wavelengths are assigned for
each PE of PLANEL. The following wavelengths are
assigned to the first row: l1, l2, . . . , l8. Then,
l2, . . . , l7, l1 are assigned as wavelengths in the
second row. In general, wavelength assignment in
a row is achieved by rotation of the wavelength
assignment of the previous row by one column.
This wavelength assignment results in no two PE’s
in the same row or column of PLANEL that have an
identical wavelength. Similar considerations take
place for PE’s of PLANER. With this wavelength-
assignment technique, the total number of wave-
lengths required to implement the SBCH~4, 3!
network is reduced from 64 to 8. In general, for a



SBCH~w, n! the following wavelength assignment
for the first row must be performed: l1, l2, . . . ,
lw2~n21!y2, and then l2, . . . , lw2~n21!y2, l1, are assigned
to the PE’s of the second row, and so on. Thus an
implementation of a SBCH~w, n! with the above
wavelength assignment requires no more than w 3
2~n21!y2 wavelengths.

With reference to Fig. 4, the wavelengths assigned
to the PE’s of the first row are divided into two groups
of four wavelengths each. The groups are ~l1, l3, l5,
l7! and ~l2, l4, l6, l8!. Each of these groups corre-
sponds to the implementation of a rowwise bus. Ev-
ery PE in the group should be able to tune in to any
of the wavelengths assigned to that group. For ex-
ample, the node of group 1 with wavelength l1 must
be able to tune to wavelengths l3, l5, and l7, which
correspond to wavelengths that were assigned to the
other PE’s of that group. Rotating the wavelength
assignments of the previous rows will form the new
wavelength groups that correspond to every row.

Similarly, each column of Fig. 4 must also be di-
vided into two groups of four wavelengths each. For
example, for the second column of Fig. 4 the following
groups are formed: ~l2, l4, l6, l8! and ~l3, l5, l7, l1!,
Each of these wavelength groups corresponds to the
implementation of a columnwise bus. Again, rota-
tion of the columnwise wavelength assignment will
result in the formation of the wavelength groups for
the other columns.

We now consider the overall optical implementa-
tion of a SBCH~w, n!. For simplicity and without
loss of generality we consider the implementation of
an example network of size SBCH~4, 3!. Figure 4
shows an example PLANEL of the SBCH~4, 3! network.
We assume that each PE has three light sources:
one fixed source Sh that illuminates the HOE to gen-
erate the required hypercube links and two others Sr
and Sc that are relatively tunable sources and are
coupled into optical fibers to implement the two span-
ning buses. It should be noted that full tunability is
not required, as explained above. Furthermore,
each PE is equipped with three receivers. One fixed
receiver, Rh, receives light from the free-space optics
implementing the hypercube, and the other two re-
ceivers, Rr and Rc, receive light from fibers coming
from star couplers. The key component that pro-
vides bus connectivity here is the tunable-
transmitter–fixed-receiver scheme. The wavelength
assignment shown in Fig. 4 corresponds to the receiver
wavelength assignment of every PE. Other PE’s can
communicate with a particular PE by simply tuning in
to the wavelength assigned to that PE. Therefore, it
is important that tunable devices with sufficient tun-
ing range, as well as tuning time, be available. Rapid
progress is being made in the development of tunable
devices, both in the range over which they are tunable
and in their tuning times.21,22 Current tuning ranges
are of the order of 4–10 nm, and the tuning times vary
from nanoseconds to milliseconds.21

With reference to Fig. 4, each node utilizes two
star couplers, one for each spanning bus. Let each
star coupler that implements the rowwise buses be
denoted by SCr and each star coupler that imple-
ments the columnwise buses by SCc. In a given
SBCH network, a SCr multiplexes light from Sr
sources coming from nodes lying in the same row of
the plane, while SCc multiplexes light from Sc
sources coming from nodes lying in the same col-
umn of the plane. Note that, instead of using a
star coupler for every rowwise or columnwise bus,
every star coupler implements 2~n21!y2 5 2 buses of
a w 5 4 number of nodes. Which rowwise or
columnwise buses are implemented is dictated by
the wavelength assignment and wavelength group-
ing, as explained above. For example, the SCr of
the first row of Fig. 4 implements the buses with
wavelengths ~l1, l3, l5, l7! and ~l2, l4, l6, l8!. Us-
ing a single WDMA channel reduces the number of
star couplers required for implementation by a fac-
tor of 2~n21!y2. In general, a single star coupler
implements 2~n21!y2 buses.

Figure 5 shows a top view of both planes of the
SBCH~4, 3! network. In the middle of the figure the
HOE’s that implement the hypercube modules are
shown. Only two star couplers are visible. The top
SCr implements the two rowwise buses of the first
row of PLANER, while the bottom SCr implements the
respective buses of the first row of PLANEL. A total of
2w2~n21!y2 star couplersyplane are required. The
SBCH~4, 3! network shown in Fig. 4 requires 2 3 4 3
2~321!y2 5 16 star couplersyplane, resulting in a total
of 32 star couplers for both planes. For the case in
which each and every bus were to be implemented by
use of separate star couplers, the total number for the

Fig. 5. Top view of a SBCH~4, 3! network. The figure shows the
implementation of the first rowwise buses of PLANEL and PLANER.
Each star coupler implements two buses of size 4. Similar con-
nections exist for the other rows and columns of the SBCH~4, 3!.
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complete implementation would rise to 64 star cou-
plers.

For alleviating bus collisions ~e.g., different mes-
sages destined to the same PE at the same time!, the
time domain along each subchannel can be utilized.
Time-division multiple-access techniques can be com-
bined with the proposed WDMA scheme. However,
this issue is beyond the scope of this paper.

4. Comparisons with Other Networks that Employ
Optical Star Couplers for Their Implementation

When optical star couplers are used to implement an
optical network the implementation cost is domi-
nated basically by the number of star couplers and
tunable transmitters–receivers needed for the imple-
mentation. Recently two star-coupler-based optical
interconnection networks have been proposed.
Dowd15 proposed the wavelength-division multiple-
access channel hypercube, WMCH~k, n!. A
WMCH~k, n! network has k PE’s along each of n
dimensions for a total of kn PE’s. One tunable trans-
mitter and one tunable receiver per PE and per di-
mension are required. All PE’s along each
dimension are connected by means of a passive opti-
cal star coupler with the WDMA technique.

The WMCH network is essentially an optical ver-
sion of the conventional SBH network. Therefore
they have similar network characteristics and per-
formance. Liu et al.16 proposed an optical inter-
connection network called a dBus-array~k, n! as a
hardware improvement to the WMCH. A dBus-
array~k, n! consists of an n-dimensional array with
kn PE’s and kn21 unidirectional buses that are also
implemented by use of optical passive star couplers.
The dBus-array~k, n! required one tunable trans-
mitter and one tunable receiver per PE, compared
with n tunable transmitters and n tunable receivers
per PE for the WMCH. In what follows, we com-
pare the hardware costs of these two networks with
that of the SBCH.

Figure 6~a! compares the SBCH~8, n! network with
the WMCH~8, n! and the dBus-array~8, n! networks
in terms of the number of star couplers as the net-
works grow in size. The SBCH~8, n! grows by use of
the fixedw58 rule, while the other two networks grow
by use of the fixedk58 rule. Figure 6~b! shows a com-
parison of the SBCH~w, 3!, WMCH~k, 3!, and dBus-
array~k, 3! networks as they grow in size by use of the
fixedn53 scaling rule. Figures 6~c! and 6~d! show the
comparison in terms of the number of tunable
transmitters–receivers used. As the figures show,
the SBCH network requires fewer optical star cou-
plers and a smaller number of tunable transmitters–
receivers than do the WMCH and the dBus-array~8,
n! networks. Hence the SBCH network offers re-
duced implementation costs compared with the
WMCH and the dBus-array~8, n! while providing
performance advantages. We note that Szyman-
ski describes a star-based optical network called
Hypermesh.23 This research was not available to us
at the time of this study. Comparison of the SBCH
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and the Hypermesh networks is under way and is the
subject of a separate paper.

5. Power-Loss Analysis of the Optical Implementation

In this section we present some system-noise calcu-
lations to investigate the bit-error rate ~BER! char-
acteristics of the proposed optical implementation of
the SBCH network. Calculation of the BER of an
optical system requires the estimation of the signal-
to-noise ratio ~SNR!. Estimation of total power
losses, leading into receiver-sensitivity calculations is
required to obtain the SNR. In what follows the
optical power loss of the implementation methodol-
ogy is calculated. Then receiver sensitivity is esti-
mated, and consequently the BER of the proposed
implementation is evaluated.

The number of PE’s that an optical system can
support is determined by the emitting power of the
transmitter, the required receiver sensitivity, and the
losses occurring between the transmitter and the re-
ceiver. Let Lsf be the source-to-fiber coupling loss,
Lfd be the fiber-to-detector coupling loss, and Lf be the
fiber-attenuation loss. We also assume that all PE’s
are equidistant. Let Le be the excess loss of the
optical star coupler. To estimate the star-coupler
splitting loss, it is necessary to know the input power
to the coupler and the fan-out. Let Pin be the power
coming into the coupler from an input channel and
Pout be the power coming out from an output channel;
then Lsp 5 10 log ~PoutyPin!.

The total transmission loss is then

Ltotal 5 Le 1 Lsp 1 dLf 1 Lsf 1 Lfd. (1)

Pout is equal to Pinyk, where k is the fan-out of the star
coupler. For the SBCH, k is equal to w 3 2~n21!y2

~number of PE’s in a row or column of PLANEL or
PLANER!. Consequently, Eq. ~1! can be rewritten as

Ltotal 5 Le 2 10 log k 1 dLf 1 Lsf 1 Lfd 2 3

5 Le 2 10 log w 2
3
2
~n 2 1! 1 dLf 1 Lsf

1 Lfd 2 3. (2)

To estimate the total loss of the optical system, we
consider values from commercially available compo-
nents. We assume laser diode sources with a char-
acteristic 17 dBm. Also, the insertion loss for a
commercially available fiber coupler is taken to be 21
dB, while fiber-to-detector losses are Lfd 5 20.46 dB.
The fiber loss is taken to be Lf 5 0.3 dBykm, but since
d is of the order of centimeters the total fiber loss is
negligible. In addition, a 23-dB loss is added for
engineering errors. Rearranging Eq. ~2! and using
the above values determine the number of PE’s sup-
ported by the star couplers, given a desirable BER.
For a desired 10217 BER the required receiver sensi-
tivity of the GaAs metal-Semiconductor field-effect-
transistor transimpedance24 can be calculated to be
219.2 dBm. For laser diodes of 7.0-dBm power the
total loss in the optical system should be 226.2 dB,



Fig. 6. Comparison of the number of optical star couplers and number of tunable transmitters or receivers among the SBCH, dBus-
array~k, n!, and WMCH networks. ~a! and ~b! show the results for optical star couplers, and ~c! and ~d! show the results for the number
of tunable transmitters or receivers.
yielding a star-coupler fan-out of k 5 118. This
value is within the capabilities of current star-coupler
technology. The optical fan-out of star couplers re-
ported to date is 128 3 128.21 For k 5 118, large
SBCH networks are feasible. For example, a
SBCH~30, 5! network supporting ;28,800 PE’s could
be implemented.

6. Conclusions

In this paper, we proposed a novel hybrid network
that significantly improves hypercube-based topol-
ogies in general and the SBH and OMMH networks
in particular. The key attractive features of the
proposed network include the possibility of a
constant-diameter and a constant-degree network,
while it is feasible to interconnect thousands of pro-
cessors at a reasonable cost. Additionally, the net-
work is incrementally scalable and fault tolerant.
Theses features make the SBCH very suitable for
massively parallel systems. A WDMA technique
has been proposed for the optical implementation of
the SBCH network. Analysis of the implementa-
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tion reveals that a greater than 20,000-PE SBCH
network with a BER of less than 10217 is currently
feasible.

This research is supported by National Science
Foundation grant MIP-9310082.
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