
Complexity analysis of optical-computing
paradigms

Ahmed Louri and Arthur Post

Optical computing has been suggested as a means of achieving a high degree of parallelism for both

scientific and symbolic applications. While a number of implementations of logic operations have been

forwarded, all have some characteristic that prevents their direct extension to functions of a large number

of input bits. We analyze several of these implementations and demonstrate that all these implementa-
tions require that some measure of the system (area, space-bandwidth product, or time) grow

exponentially with the number of inputs. We then suggest an implementation whose complexity is no
greater than the best theoretical realization of a Boolean function. We demonstrate the optimality of
that realization, to within a constant multiple, for digital optical-computing systems realized by bulk
spatially variant elements.

1. Introduction

Measures of gate count are as important in designing
Boolean functions as are measures of operations in
program design. In designing algorithms, the no-
tion of an upper bound to the number of computa-
tions required for implementing a given function is
fundamental to the analysis of the run time of an
algorithm. On the other hand, a knowledge of lower
bounds on the number of computations can provide
an understanding of when an algorithm is optimal,
and when no further reduction in operations is
possible. Similar observations can be made of Bool-
ean functions. In general, a design method that can
implement any Boolean function may not provide
optimum solutions for certain special cases. Shan-
non' demonstrated lower bounds to the cost, in
numbers of gates, for almost all functions, mapping n
Boolean input variables to a single output of fl(2n/n),
where i() represents the lower bound notation

f(n) = fl[g(n)] limg(n) < c, (1)
n-*cf(n)

where c is a constant, f(n) is, in this instance, the cost
of implementing a Boolean function, measured in
numbers of gates, g(n) represents the function that
bounds the cost, and n is the number of inputs.

The authors are with the Department of Electrical and Com-
puter Engineering, University of Arizona, Tucson, Arizona 85721.

Received 24 May 1991.
0003-6935/92/265568-16$05.00/0.
© 1992 Optical Society of America.

Thus Shannon's theorem states that the number of
gates that are required for implementing almost all
functions cannot be less than a constant multiple or
fraction of 2n/n as the number of inputs increases.
The qualification that the theorem is true for almost
all functions of n inputs means that the ratio of the
number of functions for which the theorem is true to
the total number of functions of n inputs tends to
unity as n increases without bound. A more detailed
discussion is included in Appendix A.

While the Shannon limit applies to the general
case, certain functions may have an inherent struc-
ture that can be exploited to provide significant
reductions in complexity order, which a general de-
sign methodology cannot achieve. As a concrete
example of this sort of reduction in gate count,
consider the simple full adder. By using standard
minimization techniques, we see that the carry func-
tion has three prime implicants, while the sum
function has four prime implicants, and these impli-
cants are minterms. Thus it would appear that the
sum function cannot be minimized, and the resultant
realization as a direct implementation of the sum-of-
products formulas requires four 3-input AND gates
and one 4-input OR gate for computing the sum, along
with three 2-input AND gates and one 3-input OR gate
to compute the carry. Further, in the computation
of the sum function, all the inputs appear in each of
the terms, requiring that each input be mapped four
times (twice as the negation of the variable), while the
computation of the carry requires that each input be
mapped twice; the result is a total fan-out of 5 from
the input nodes and 2 from the inverters. Construct-

5568 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

ing this circuit from 2-input gates alone requires
eleven AND gates, three inverters, and five OR gates.
But the fact that the Karnaugh map of the sum is that
of the odd-parity function (which can be implemented
by two XOR gates as A D B C), along with the fact
that the carry can be realized as

C=AB + (AfflB)C (2)

results in an implementation that has two XOR gates,
two AND gates, and one OR gate while requiring a
maximum fan-out from any one input of only 2.
While the above example is quite simple, taking
advantage of inherent structures of certain functions
can produce large reductions in the complexity of
many functions.

Other considerations, such as restrictions imposed
by the nature of the target environment, can impact
the size of a circuit realization to a significant degree.
For example, imposing restrictions on the nature of a
circuit graph can significantly increase the complex-
ity of a design. McColl2 has studied the behavior of
circuits when they are restricted to strictly planar
implementations (i.e., no edges may cross), and has
shown that almost all functions, when implemented
in this way, require a minimum of 2n gates, where n
is, again, the number of inputs to the function. This
minimum is a factor of n greater than the lower
bounds for almost all functions derived by Shannon.
It is interesting to note that the restriction imposed
on circuit graphs in this paper is a restriction on the
edges of the graph; most previous work in Boolean
function theory has imposed limitations on only the
basis functions employed. That such a seemingly
simple restriction on the graphs that implement a
circuit should have this kind of impact on circuit size
has important implications for optical computing
since the use of spatially invariant interconnections
imposes rigid limitations on the interconnections in a
circuit graph.

Systems that employ both spatially invariant and
spatially variant imaging have been proposed in the
literature. For example, Brenner et al.3 discuss spa-
tially invariant imaging systems for interconnections
between gates, while Jenkins et al.

4 implement inter-
connections by spatially variant imaging techniques.
It is the thesis of this paper that, while systems
constructed from spatially invariant imaging tech-
niques seem to be cheaper to build than spatially
variant systems, the nature of the restrictions im-
posed on the graphs that can be constructed from
spatially invariant interconnections forces these sys-
tems to be much larger and costlier than spatially
variant systems, particularly when the number of
inputs to a function constructed in this manner
becomes large.

In discussing this issue we make use of the order
notations frequently used in computer science. In
addition to the f() notation used above, we use two
other similar notations in this text. The 00 nota-
tion is the dual of the }() notation in the sense that it
is an upper-bound notation and has the precise

meaning

f(n) = O[g(n)] - 1ig.(n)
n-- g(n) ~ (3)

Equivalently the function f(n) can increase no faster
than a constant multiple of g(n), or, in the limiting
case, as n grows without bound. A special case of
this notation is f(n) = 0(1), which has the meaning
that the function is a constant, or finds a limit in a
constant value.

We also make use of the E() notation, which can be
defined in terms of the Q() and 00 notations as

f(n) = 0[Ig(n)] -

f(n) = Ol g(n)] A f(n) = fl[g(n)]. (4)

That is, again in the limiting case, f(n) will increase
no faster than a constant multiple of g(n), nor slower
than a (possibly different) constant multiple of g(n);
less precisely, f(n) is bounded above and below by
g(n).

We briefly analyze several proposed optical-comput-
ing paradigms constructed by spatially invariant tech-
niques in Section 2. In Section 3, we implement
several of the 2-input functions by using a simple
spatially variant imaging technique. This same tech-
nique is extended in Section 4 for constructing some
larger functions. The system we present in Sections
3 and 4 is described in architectural and computa-
tional terms. A comparison of the various tech-
niques in terms of underlying complexity is presented
in Section 5, with conclusions and suggestions for
further research discussed in Section 6. We include
an amplification of Shannon's theorem Appendix A.

2. Complexity Analysis of Several Optical-Computing
Paradigms

In the interest of continuing the development of
digital optical computing, and to demonstrate the
applicability of the field of Boolean complexity theory
to optical systems, in this section we analyze several
of the proposed implementations of digital optical-
computing systems from a system complexity view-
point, and show that these systems have similar
system complexities. The systems that we detail are
symbolic substitution logic, which is implemented by
additive methods3 56 and by convolution or correla-
tion techniques,7-10 shadow-casting logic,"1-14 the pro-
grammable logic of Murdocca et al.,1516 and the
combinatorial logic-based system of Guilfoyle and
Wiley.17 We analyze these implementations in terms
of their complexity and, hence, the ability of these
systems to compute Boolean functions of sizes compa-
rable to those currently achieved in electronic sys-
tems.

While it might be argued that our choice of Boolean
function implementations is unsuitable for the opti-
cal domain, we note that some model of what comput-
ing means is required, and that the two major bodies

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5569

of study in computation center around Turing ma-
chines and Boolean functions. Because of the lack of
some other model of computation, we must formulate
our theories of optical computation around one of
these models. Since the optical techniques we wish
to study incorporate the implementation of Boolean
functions, we restrict our discussion to this model.

A. Symbolic Substitution Logic

The basic idea behind symbolic substitution logic
(SSL) is that one first detects the presence of one or
more patterns in the input plane, and then substi-
tutes some appropriate pattern for each detected
pattern. Three primary methods for performing
SSL have been advanced, both based on spatially
invariant optics. The first method, which is known
as additive logic, involves making copies of the data
plane, shifting these copies, and superimposing the
shifted copies to determine where in the data plane
certain patterns occur. The second method involves
filtering in the spatial frequency domain, and is
commonly known as spatial filtering logic. A more
recent method, proposed by Louri,'8 combines shadow-
casting logic (which is discussed below) with polariza-
tion techniques to address some of the optical engi-
neering questions involving SSL. We analyze the
first two techniques separately.

1. Additive Logic
Data is typically represented in additive logic-based
SSL in a dual-rail intensity-coded format, in which
two pixels are used to encode each bit, although other
codings are possible (see, for instance, Refs. 19 and
20). The locations of these patterns may be defined
by masking, or by providing detectors at only those
locations to which the origin of the pattern is mapped.
Thus in the conventional split-shift-recombine tech-
nique, the origin of the pattern is the location in the
detector planes to which the dark pixels of each bit
are mapped.

The disadvantage to this approach is that for a
given number n of inputs coded in any arbitrary
manner, the total number of combinations of these
bits is 2n. In order to implement completely speci-
fied digital logic, each of these 2n combinations (which
correspond to the 2n possible minterms) must be
generated. The reason for this may be seen from the
following argument. Suppose that less than the 2n
combinations are generated in space and imaged onto
the corresponding detection planes. Then some com-
binations of inputs will exist that will not be detected
by the system. For these combinations, no determi-
nate output will be generated, and some indetermi-
nate value will result. In the typical dual-rail coding
scheme, the result is the substitution of two dark
pixels in the position in the output plane at which the
function is to be computed. But in dual-rail binary
logic encoding, two dark pixels are undefined. Hence
in this implementation not specifying the output
values for some combinations yields a mapping to a
value outside the set 10, 11. If the data are to be

processed simultaneously, 2 image planes must be
formed at discrete locations in space. If each image
plane has the same area as the input plane, the area
occupied by the detection planes will be fl(2n) times
that of the input plane.

This result is due to the nature of the paradigm, not
to a function of the encoding scheme that is used to
represent the data. Intensity encoding can achieve a
twofold reduction in the area of the input plane that
is required for representing the inputs; or, alterna-
tively, a twofold increase in the density of data in this
plane. The nature of the paradigm does not change,
however, and still requires separate detection of each
of the possible combinations of the inputs. Thus an
intensity-encoded SSL implementation of a com-
pletely specified Boolean function of two inputs will
need to detect each of the four patterns [(dark, dark),
(dark, light), (light, dark), and (light, light)] in order
to be able to generate the appropriate output for each
of these combinations. This observation extends to
functions of larger numbers of inputs in the same
manner as for dual-rail encoding. Louri' 9 has pro-
posed a technique in which pairs of dual-rail inputs
are superimposed before imaging, which reduces the
number of rules in the initial detection phase to
three; he has also demonstrated an increase in compu-
tational throughput for addition by this method.
The method does require that a fourth rule be applied
as a separator in the final step to discriminate be-
tween outputs that the technique has mapped to a
code outside the range of the input coding of data.

The actual complexity of an SSL implementation
may be greater than that discussed above. The extra
complexity comes from the necessity of providing
extra rules to allow for the separation of data vectors
or regions of computation from one another.

2. Spatial Filtering
The second method for implementing SSL is based on
convolution-correlation techniques, wherein the in-
put plane is transformed to its Fourier domain repre-
sentation, filtered, and the inverse Fourier transform
is then taken of the filtered image. The principle is
the same as for additive logic: all combinations of
the inputs are detected, and suitable outputs are
generated for these combinations. A number of
input codings may be used: Casasent and Botha9

suggest a dual-rail coding similar to that discussed
above for the additive logic implementation, while
Jeon et al.10 propose a somewhat more complex
encoding to improve cross-talk characteristics. Bren-
ner et al.8 and Weigelt2l suggest several alternate
codings that achieve a spatial frequency modulation
representing the data. What is common to these
techniques is that a separate filter must be used for
each pixel pattern to be detected, regardless of the
encoding technique. Thus four filters are required
in order to detect patterns representing two binary
inputs. Implementing Boolean functions of three
inputs requires eight filters; ultimately 2n filters are
required for computing a function of n inputs. In

5570 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

the methods of Weigelt,7,2' and Casasent and Botha9

these filters are spatially multiplexed to create a
single filter upon which the input plane or planes are
imaged. But each each filter has a space-bandwidth
product that is a function of the space-bandwidth
product of the input plane, with the resultant band-
width increasing as a function of the number filters,
and hence as a function of 2 . In the technique
proposed by Jeon et al.'0 the filters are separated in
space, but one is required for each pattern detected.
Thus the spatial filtering techniques require that the
number of filters, and possibly that spatial bandwidth
of the filters, increase exponentially with the number
of inputs to implement Boolean functions correctly,
just as the number of detector planes increases
exponentially in additive logic-based SSL.

B. Shadow-Casting Logic

A second implementation of digital optical comput-
ing, attributable to Tanida and Ichioka,11-14 is known
as shadow-casting logic. In this method data is
mapped to multiple parallel spatial light modulators
(SLM's). These SLM's are composed of liquid-
crystal light valves driven by an electronic adjunct,
which is responsible for mapping the data to the
appropriate cells of each SLM. The planes of the
SLM's are set physically close to one another and are
parallel. The data encoding is by orthogonal dual-
rail transparent-opaque regions within overlapping
cells of the parallel planes. The orthogonality of the
parallel codings results in a portion of the resultant
combined cell being transparent. By having multi-
ple SLM's combined with suitable locations for the
detectors, any of the n-input functions may be com-
puted. The number of light sources and detectors is
dependent on the manner in which the system is to be
used.

While this method has the advantage of simplicity
in implementation [the light is provided by light-
emitting diodes or other inexpensive sources], the
size of the transparent area in each cell decreases
exponentially with the number of inputs mapped to
each cell. Thus the available power at the detector is
only 2-n times the power incident on the cell. Further,
the number of sources is equal to the number of
minterms in the ON set of the implemented function
(those minterms that map to the value 1 in the
function's output). The number of sources can then
vary from one to a maximum of 2 . (Should there
be more than 2n-1 minterms constituting the ON set of
a function, simply detecting the minterms mapping to
0, which is the OFF set, and inverting yields a number
less than 2n-1.) For good functions, such as the
n-input AND, only one source is required, while a
function such as the parity function requires 2n-1.

This exponential complexity was first described by
Arrathoon and Kozaitis,22 who then proposed the use
of this technique to provide an associative look-up for
multivalued logic. While these authors are able to
show some improvement in power and space band-
width, their system has many of the same drawbacks
as the original method.

The method also has the drawback that the output
is incompatible with the input, being intensity en-
coded rather than transparency encoded. Thus the
system is not directly extensible, and the outputs
must be converted to an electronic signal before being
mapped to the input plane for further computation.

C. Combinatorial Logic

Another computing paradigm, from Guilfoyle and
Wiley, is called combinatorial logic, which divides the
computational load between the electronic and the
optical domains.' 7 In this method, a pair of multi-
channel acousto-optic cells are telecentrically imaged,
with data within the cells counterpropagating. We
demonstrate how this structure can be used to achieve
an AND-OR structure, and relate their structure to a
programmable logic array (PLA) implementation.
The resultant AND-OR structure is shown in Fig. 1.

As noted above, this model does not perform all
computations in the optical domain, and requires a
certain amount of electronic logic to compute a
number of terms before the application of the optical
logic. This technique has the advantage that a large
number of computations are performed in parallel by
the optical devices. It has the disadvantage that the
optical logic performs only a fraction of the computa-
tions and that the computational capability of the
optical portion of the system is limited. The spa-
tially invariant optical subsystem can be modeled as a
set of n-2-input AND gates, whose outputs are con-
nected to the inputs of an n-input OR gate. We
assume that the function to be computed depends on
all inputs (is nondegenerate), and that the inputs to
the AND gates are two distinguished sets of n bits
each. That this system is inherently weak can be
established as follows:

* Since the structure of the AND-OR tree is fixed,
the only way to compute a variety of different func-

Fig. 1. AND-OR structure of the optical subsystem of combinato-
rial logic.

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5571

tions is by making different assignments to the leaves
of the tree (the AND gate inputs).

* The number of different possible assignments
of the variables in either set of n variables in n!.
Thus the total number of possible assignments of the
2n-input variables to the 2n inputs of the AND level is
n! x n! = (n!)2.

* The number of different possible Boolean func-
tions of 2n variables is given by

If} 22nI hfn) = 22

* The number of degenerate functions of 2n
variables (which are denoted by f2n) can be shown to
be

I|f2nil (2n)22 - 2n22

* Thus the number of nondegenerate functions of
2n inputs is given by

fn - An I > 222n - 2n222.- 1

> (22 - 2n)22

222n- 1

* Taking the limit of the ratio of the number of
functions computable by the AND-OR tree to the
number of nondegenerate functions establishes the
result:

(n!)2 n!
lim - = lim 2222 0.

One example of a function that this spatially invari-
ant optical subsystem cannot perform is the parity
function over 2n inputs. That the fraction of the
total functions implementable by this method is
actually quite small, even for small values of n, can be
seen from Table 1. Hence the optical subsystem
alone is not generally capable of computing Boolean
functions.

D. Programmable Logic

Murdocca et al. have proposed a method of digital
optical computing that uses optical nonlinearities
directly as a form of logic gate.15"16 In this method,
planes of these logic gates are interconnected by a
spatially invariant imaging system that is con-

Table 1. Comparison of the Number of Functions Implementable in the
Spatially Invariant Subsystem of Combinatorial Logic, and the Total
Number of Nondegenerate Functions versus the Number of Input

Variables

n 2n n! n!2 2 22-2 222-1

3 6 6 36 65 536 4 294 967 296
4 8 24 576 264 2128

5 10 120 14 400 2256 2512

structed from beam splitters and prism arrays, with
the resultant interconnection pattern forming a cross-
over network.

The essence of the design technique used in this
system is that the n-input variables are mapped to the
input array along with their complements. A series
of n + 1 interconnection stages consisting of one
crossover network and one mask per stage is then
used, along with n + 1 arrays of AND gates, to
generate all the minterms of the function. Once the
minterms of the function have been generated, the
appropriate minterms are combined through a simi-
lar n + 1 stage network in which the AND gate
functions have now been replaced by OR functions to
generate the appropriate functional output. The
total number of gates required by this method is
fl(n2n), where, again, n is the number of inputs.

It has been asserted that the size of the circuits
realized in this manner is optimal, being fl(n2n) in the
number of inputs, and that the number of levels in
the circuit is optimal, being linear in the number of
inputs. While it is true that Shannon's theorem
demonstrates that almost all Boolean circuits have
size fl(2n/n) and depth fl(n), Shannon noted that this
is not true for many fundamental circuits. But this
approach has lower bounds that are exponential in
the number of inputs, regardless of the function
implemented. Thus, while a given function might
be optimally computed by a circuit with size O(n2)
and depth 0 (log2 n) (see Ref. 23), programmable logic
will not allow minimization to this level. Even for
random functions whose size is 0(2n/n), this tech-
nique requires 0(n 2) more gates than the optimal
circuit realization.

In order to argue that the spatially invariant
interconnection pattern does not greatly increase the
cost of implementation over that of a spatially variant
implementation, a spatially variant implementation
of the full adder'5 that requires 78 AND gates, 11 OR

gates, and 6 levels is compared with the 128 gates and
8 levels required of the present method. But the
spatially variant implementation generates all the
monoms (not minterms) of the function, resulting in
a circuit that is not minimal. The minimal full adder
circuit, which was discussed above, requires only 5
gates (two XOR, two AND, and one OR), and has a depth
of 3. An alternate realization of the full adder has a
gate count of 6 (two XOR, three AND, and one OR) and a
depth of 2. Even when restricted to the use of NOR

gates alone, a minimized full adder should require no
more than 14 such gates (although the resultant
depth is 7). While it is possible that a spatially
invariant full adder circuit could be reduced to 48 AND
and OR gates, the result would still not be minimal.

While this technique does share the features of
topological regularity and the use of AND and OR gates
with a PLA design, a true PLA design has only two
levels of logic, regardless of the number of inputs, and
typically does not require that all minterms of a
function be generated. Rather, the PLA user devel-
ops one or more equations (depending on-the number

5572 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

of outputs required) that are in minimized sum-of-
products form. It is the product terms of these
equations that are then mapped onto the PLA struc-
ture. While some functions (the parity function, for
instance) do not admit to minimization of their
sum-of-products form, a ring-sum expansion will
frequently minimize these functions and permit an
economical circuit realization in XOR logic. Although
a minimized circuit has been demonstrated that does
not generate all minterms and then select from them,
the breadth of the ciruit is still exponential in the
number of inputs; hence the circuit is no more
minimal than would be an electronic circuit that
consists of an n-to-2n demultiplexer, whose outputs
are then connected to one or more trees of OR gates,
which generate the resultant function.

E. Commonalities of the Above Implementations

We have examined several implementations of digital
optical computing and have found that all these
systems require an exponential increase in the com-
plexity of some parameter of the system as the
implementation is used to compute functions of in-
creasing numbers of inputs. This exponential in-
crease impacts the feasibility of systems implemented
by these means in direct and profound ways:

* Only those functions, such as addition, for
which there are serial implementations, can be ex-
ploited, and the full potential for parallelism in
optical computing will not be developed.

* Control functions, which typically cannot be
serialized, will remain in the electronic domain.

* Other functions that require global communica-
tions will require some other computational domain
for solution.

These systems also lack the capability of interconnect-
ing even the small functions that have been imple-
mented in the arbitrary manner that is required in
order to construct larger functions. This lack of
interconnect capability is both the root cause of the
inherent exponential complexity of these systems and
the constraint that prohibits the economical construc-
tion of large functions from the smaller basis func-
tions.

3. New Approach

The inability of the systems discussed above to com-
pute Boolean functions with less than exponential
complexity severely limits the application of these
systems even in terms of their ability to perform
special-purpose computing in conjunction with elec-
tronic hosts. Thus we must look for new ways of
achieving digital optical computing that do not suffer
from the shortcomings of the previous implementa-
tions, but that still provide the advantages that
optical computing promises.

Whether optical computing remains an adjunct to
electronic computing, or whether general-purpose
optical computers are eventually developed, will de-

pend primarily on whether optical random access
memory is developed. Since optical memory is not
currently available, we restrict our discussion to the
use of optical computing as an adjunct to the elec-
tronic domain. In this regard, then, we would expect
an optical-computing adjunct to:

* Use nonlinear optics directly as logic gates, and
require a number of such gates that is commensurate
with the best theoretical implementation;

* Allow the parallel mapping of registers, or
register pairs, to the input of the optical system, and
output the results to one or more entire register;

* Perform a large amount of computation on the
registers before returning the results to the electronic
adjunct (the addition of two 8-bit registers would be
near the low end of this range);

* Perform the computations as quickly as possi-
ble, utilizing parallel implementations of the func-
tions rather than serial implementations.

In summary, we wish the optical subsystem to re-
quire minimum overhead in the electronic sub-
system, to compute functions on large data items
simultaneously, and to compute these functions by
using the greatest amount of parallelism possible
within each function.

While many of the optical-computing paradigms
proposed in the past have demonstrated the basis
functions that we demonstrate, these previous imple-
mentations have relied on spatially invariant intercon-
nections of one form or another to achieve their goals.
What we submit here is a simple spatially variant
construction of the basis functions, which can then be
extended for constructing larger functions from these
elementary ones. While the implementation pro-
posed here is constructed from simple spatially invari-
ant imaging elements, advances in holographic tech-
niques could substantially improve the speed and size
of our implementation.

A. NOR Function

We begin our development by demonstrating the
2-input NOR function applied to an object plane of
N 2 = 2n pixels, which computes n of these functions
simultaneously. We assume that the data pairs are
distinct and have the same spatial relation to each
other. This requirement is imposed by the spatially
invariant nature of the imaging systems we use. We
do not, in general, assume that the data elements are
adjacent, and we make use of the simple spatially
variant interconnections to perform computations on
pairs of elements that are not adjacent. The realiza-
tion of the NOR function is shown in Fig. 2, with a
schematic representation of the realization shown in
Fig. 3.

In Fig. 2, the input data are mapped into two pairs
of rows with all four possible combinations of the
inputs encoded in each pair of rows. The values 0
and 1 are shown numerically for clarity; in actuality,
the inputs would be intensity encoded. The input

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5573

Input Plane Beam Splitter1 1 0 0 1T f l I
100

Resultant Planes

D o ll0101
1100__

101 0

1 0 1 .

Fig. 2. Implementation of the 2-input NOR function.

array is replicated by means of a beam splitter. The
replicated images are then masked so that alternate
rows of pixels are blocked in either of the two images.
A pair of prisms now recombines the images in such a
way that every pair of pixels that is to be NORed is
incident on the nonlinear element that computes the
NOR function. While the operations performed here
could have been more directly implemented by a
lenslet array since the data were mapped in adjacent
pixels, our purpose is to demonstrate a more general
technique that may be used to construct significantly
larger functions in which computations may occur
between inputs or intermediate results that are not
physically adjacent.

The schematic representation of Fig. 3 is derived
from the implementation shown in Fig. 2 by taking
the top pair of rows from the implementation, divid-
ing the rows into columns, and stacking the columns
to achieve one column of eight elements. We rely on
schematic representations in the discussions below.

00

01
10
11

1
0
0
0

Fig. 3. Schematic of the NOR implementation.

The schematic representations will show a decrease
in active device density with increasing numbers of
inputs. This density decreases linearly with the
number of inputs, and is not different in this respect
from SSL.

In this regard, we note that the density of the NOR
elements is only one half that of the input plane.
In contrast, the density of threshold elements in SSL
(for 2-input functions) is one fourth the density of the
input plane when dual-rail encodings are used.
Further, with SSL, one requires four planes of such
devices, each essentially implementing the NOR func-
tion, for performing the same computation we per-
form with one such plane. Also, since we are using
simple intensity coding, we achieve twice the number
of computations with the same size planes. While
programmable logic fully populates the logic planes
with devices, implementation of the NOR function by
this method also requires a minimum of four planes
of devices (operated in AND and OR modes). Program-
mable logic also requires that a field of four pixel
positions be reserved for each 2-bit vector, and that
the complements of the inputs be provided in addition
to the noncomplemented inputs.

B. NOT Function

While not a 2-input function, the NOT function, or the
ability to achieve the function by other gates, is
essential for computing any nonmonotonic function.
The implementation of this function by the NOR is
direct, and is shown schematically in Fig. 4. This
implementation is trivial and requires little comment.
The main feature of this implementation that should

5574 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

Masks
Recombination

Stage
Plane of

NOR Gates

Legend:

El Data Value '1'

r Data Value '0'

M Mask Element
E Optical NOR Gate

g Transparent

0 1

0 0 0

A A'
B B1

C CC
D Do

Fig. 4. Schematic of the NOT implementation.

be noted is that if the intensity of the input plane is
sufficient to permit splitting into two separate im-
ages, then, with proper biasing, the intensity is
sufficient to drive the NOR into its low-transmission
state. Conversely, a low-intensity pixel in the input
plane will cause the NOR to remain in a high-
transmission state.

C. OR Function

The OR function may be obtained from the above two
functions by simply inverting the output of the NOR.
This implementation is shown in Fig. 5. The NOT
function-must be implemented with planes of NOR
functions with the same active device density as that
of the plane implementing the NOR.

D. AND Function

The construction of the AND in NOR logic is based on
the tautology AB = A + . A schematic of the
implementation of this function is shown in Fig. 6.
As with the OR and NOR functions, the input is densely
mapped to the input plane, requiring no more than
one pixel position per bit, while the density of active
elements in the NOR planes is one half that of the
input. This construction achieves a savings of one
plane of active elements over that required by SSL or
programmable logic.

E. Equivalence (X-NOR) and the XOR Function

In the above sections, we developed implementations
for two complete basis sets, the set NOR} and the set
{AND, OR, NOT}. Either of these sets is sufficient for
computing all the Boolean functions. The ability to
compute the XOR and the equivalence or X-NOR func-
tions provides flexibility in designing a variety of
circuits. We first detail the design of the X-NOR.

The logic diagram of the X-NOR is shown in Fig. 7.
As can be seen, construction of this function from the
NOR requires five gates and three levels. It would

Input

a
C

a

g

a + b
b
d
f

h

c+d
e+f
g + h

Input

a ab
Cb c

e def
h~~~~~g

Fig. 6. Implementation of the AND function.

seem that this construction, when directly translated
to an optical realization, would require more gate
planes than SSL, which we have argued requires four
gate planes for implementing any 2-input function.
The freedom allowed by spatially variant interconnec-
tions, however, permits us to implement the invert-
ing NOR gates at level one and the NOR gates in level
two as single fully populated NOR planes for each level.
This realization is shown in Fig. 8. A careful exami-
nation of this figure reveals that we have provided the
five gates that the logical design requires, but have
collapsed the gates at levels one and two into only two
gate planes. Many designs may be able to take
advantage of this technique, if the designer is clever,
and if mass production of several densities of gate
planes is possible.

We noted that the X-NOR and the XOR functions
were merely complements of one another, and so the
simple inversion of the output of the X-NOR could be
used to implement the XOR. We have used instead an
alternative implementation that requires only the
same number of NOR gates as the X-NOR. The result-
ant logic diagram shown in Fig. 9. The implementa-
tion of this alternate realization of the XOR is shown in
Fig. 10. This implementation is also somewhat more
expensive than that which results from simply invert-
ing the X-NOR since it requires an extra intensifier and
does not collapse the second gate level into a single
plane.

We have argued that economy in implementation of
optical computers requires that spatially variant inter-
connections be used to construct Boolean functions.
We have also given several characteristics that we
believe are required of optical adjuncts to electronic
computers. Further, we have demonstrated how a
simple spatially variant imaging technique can be
used to construct two basis sets and two other useful
functions. In Section 4 we expand this discussion to
the construction of larger functions, which are opti-
mal in gate count and depth.

A

A (B

B

Fig. 5. Implementation of the OR function. Fig. 7. Logic diagram of the X-NOR or equivalence function.

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5575

Masks

a a IV b
bCc d
dee f

Fig. 8. Implementation of the X-NOR or equivalence function.

4. Construction of Larger Functions

Here we illustrate the extension of our technique to
functions of larger numbers of inputs. In this exten-
sion, we develop all functions from the basis gate NOR,
as was done in Section 3. This restriction on gate
selection increases the gate count we require for
implementing a given function, and thus tends to
impose worst-case gate counts on our implementa-
tions. This is in keeping with our general desire to
demonstrate that, even when such conditions are
imposed on the proposed method, this method still
retains a significant advantage over other methods
that have been forwarded. This advantage is a
reflection of the underlying complexities involved in
the functions we demonstrate. Since these func-
tions have implementations that are less complex
than those imposed by SSL and other paradigms, and
since the use of the 2-input NOR gate as the sole gate
function in our implementation can affect only the
complexity of the systems we implement by, at most,
a constant multiple, we are able to demonstrate the
superiority of our proposed method.

A. Arbitrary 3-Input Function

The first function that we implement has 3 inputs,
and can be described by the shorthand notation for a
sum-of-products form:

f(a, b, c) = (O, M2 , M3 , M6)

= ab + Wc + bE

= a-(b +) + b. (5)

This function would require two AND, two OR, and
three NOT gates to implement in factored form. In

A

B

Fig. 9. Logic diagram of the OR.

a
C

e

g

a b
C d
e f
9 (h

b
d
f

h

Masks

Fig. 10. Implementation of the XOR.

the implementation shown in Fig. 11, the function
requires eight NOR gates. It should be noted that
only the uncomplemented inputs are mapped to the

-,input plane, and that all complementation results in
an increased gate count.

In Fig. 11 there are three basic elements: masks,
image intensifiers, and NOR gates. The process of
constructing the optical circuit begins by replicating
the input image (the column at left) as many times as
there are input variables. In this case, there are only
three variables, and so the image is split into three
images with one image representing the variables a,
b, and c. These variables are then mapped in pairs to
the first level of the computation graph. The output
of this first level is a set of five images (including the
image of the variable a, which does not participate in
any computation at this level), which is then focused
on the gate planes at the second level of computation.
The process continues until the final gate computes
the desired function.

Notice from Fig. 11 that the number of gates in
each computation plane is one third the number of
input variables, and that the density of these gates is
similarly reduced. This reduction is due to the
inherent parallel nature of light imaged by the spa-
tially invariant devices used in the method. By
isolating each variable in separate image planes, we
can map any two images to a gate plane with no
overlap of variables outside the two upon which we
operate. Thus we can achieve both masking and
gate functions with one plane. This will be the case
with all functions we demonstrate in this section.

Comparing this circuit realization to those ob-
tained -by other. methods, we note that there are
actually ten active elements in the optical realization,
including two intensifying elements, An additive

5576 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

Fig. 11. Optical implementation of the 3-input function.

logic SSL implementation requires eight detection
planes, which is an apparent saving over our realiza-
tion. An analysis of the energy requirements of the
two implementations shows that the energy required
at each pixel of the input plane in an additive logic
implementation is 24 times the switching energy
threshold of a given detector because of the need to
provide three shifted copies of the input plane for
each detection plane. In the above implementation,
the energy required is proportional only to the num-
ber of NOR gates and the number of intensifiers.
Hence the energy required for implementing this
circuit is less than half that of an SSL implementation.
A programmable logic implementation requires a
minimum of 48 gates, and hence more than four
times the energy required here. A shadow-casting
implementation requires four sources, but masks
one-eighth of the light incident on each computation
cell from the detector, hence requiring that the input
energy per cell be 32 times the detector threshold
energy.

B. Implementation of Two Adders

We now turn our attention to some practical applica-
tions, the full adder, and the carry look-ahead adder.
While numerous papers have demonstrated designs
of the serial ripple-carry adder, we extend this circuit
to demonstrate the design of the parallel carry look-
ahead adder. Despite the apparent parallelism hy-
pothesized for optical systems, most adders proposed
to date are based on the full adder with ripple carry
between full adder stages. This kind of addition is
fundamentally serial, and does not truly exploit the
high degree of parallelism that should accompany the
use of optical computing elements. After first dem-
onstrating the implementation of the full adder, we
demonstrate one possible implementation of the carry
look-ahead adder with spatially variant imaging.
Specifically, we demonstrate the design of an adder

that has two 2-bit vectors and a carry as its inputs,
and that computes a 2-bit sum vector and a carry as
its outputs. Larger adders can be constructed from
this circuit by rippling the carry between these stages,
by increasing the size of the adder to accept a greater
number of bits in each input vector, or by adding
another level of carry look-ahead. While a 4- or 8-bit
adder would be more practical in a real application,
the size of these adders merely complicate the figures
without illustrating the design technique we demon-
strate.

1. Full Adder
The design of the full adder was addressed in Section
I. We synthesize an optical realization of the full
adder on the basis of NOR from those equations.
Although there are several ways to implement the full
adder, the method we have chosen requires five gates
and three levels in XOR-AND-OR logic, and has a
maximum fan-out from any one gate of two. While
there is a two-level design, the total gate count is six,
and the fan-out of some of the nodes is greater also.
The choice of this implementation was dictated by the
minimality in the number of gates rather than fan-
out restrictions. This realization is shown in Fig.
12.

An adder computing an n + 1-bit result from a 2n +
1-bit input can be constructed from this circuit by a
process of replication, masking, and spatially variant
imaging in the same manner as the construction of
the full adder. The resultant ripple-carry adder
would have a gate count that would increase [(n)]
and a depth [also 0 (n)]. The details of this adder are
omitted so that we may concentrate on the carry
look-ahead adder.

2. Carry Look-Ahead Adder
As with any general adder, the carry look-ahead adder
takes as its inputs two n-bit vectors and a carry as its

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5577

Fig. 12. Optical implementation of the full adder.

inputs, and generates an n + 1-bit result. The 2-bit
carry look-ahead adder is shown in Fig. 13. In Fig.
13 the carry look-ahead adder is implemented on the
basis of the set {AND, OR, XOR}. The circuit operates
by computing in parallel a pair of intermediate signals
for each pair of inputs. These signals are shown in
Fig. 13 as Gi and Pi, where i = 1, 2. The signal G, =
AiBi is true if a carry is generated by inputs Ai and Bi.
The signal Pi = Ai (D Bi is true if a carry is propagated
by the pair. A carry look-ahead adder with 2n + 1

A2 B2 al B, Co

< w~ ~ ~~2 2 1 P

C2 C2

SI S

Fig. 13. Minimized circuit graph for the carry look-ahead adder.

inputs will then generate 2n of these intermediate
signals. From this information, the carryout of the
ith bit position can be computed as

+ (PiPi-1 ... PiCo), (6)

while the corresponding sum is computed as

Si = Pi CQ-.1. (7)

The cost in the number of gates and the delay in
realizing the adder for pairs of n inputs on the basis of
the set {AND, OR, XOR} can be computed by a counting
argument. The terms Gi and Pi can be realized in
unit size and depth. The computation of the sum Si
can also be realized in unit size and depth. Hence for
each sum output at least three gates are required.
The carry Ci requires one i + 1-input OR gate, and i
AND gates with (2, 3, . . . , i, i + 1) inputs. The i +
1-input OR gate may be implemented by a binary tree
whose nodes are 2-input OR gates. For i = 0, there is
no cost since the carry CO is an input. If i = 1, then

5578 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

only one 2-input OR is required. For i > 1, i 2-input
OR gates are required, and the depth of the OR is
[log2 il. Thus the i + 1-input OR may be replaced by
a circuit consisting of i OR gates, with a depth of
rlog2 i exactly.

The analysis of the number of AND gates is some-
what more involved. We can easily construct a
j-input AND gate from a binary tree of j - 1 2-input
AND gates (j 2 2). Thus, the total number of 2-in-
put AND gates required to implement the carry for the
ith bit is

i+l i(i +1)
CND' = 1: (-) = 2: =

j=2 j= 2
(8)

while the depth of the resulting tree is the depth of
the largest subtree, which is

DAND'S = [g 2 (+ 1)]. (9)

Thus the total cost of a carry look-ahead adder with
two n-bit inputs is the sum over the costs of all
outputs:

CCLA = (3 + i +)
l /~ 2

3 + 2+ 2i 2

3n(n + 1) 1(n n2 n3\= 3n + - + -2- +-

1 3 223
= 6n3 + n + n, (10)

where CLA is the carry look-ahead adder.
The depth is found as the maximum depth, which is

associated with the final carry:

Dc, = log2 n] + log2(n + 1)] + 2. (11)

The implementation to the 2-bit carry look-ahead
adder is shown in Fig. 14. An upper bound to the
number of NOR gates required to implement this
circuit can be calculated by multiplying the number of
XOR, AND, and OR gates by the number of NOR gates
required to implement each of these functions, and
summing the results. This is an upper bound be-
cause the possibility exists that minimization such as
canceling two successive inversions can reduce the
number of gates actually required. Even though the
direct conversion of the carry look-ahead adder to a
NOR-based implementation increases the gate count,
this increase is bounded by, at most, a constant
multiple; hence the implementation will still require
only 0(n 3) gates, and 0(log 2 n) depth. The direct
optical implementation of this circuit is shown in Fig.
15.

C2

Fig. 14. Minimized
ahead adder.

S2 51

NOR gate implementation of the carry look-

5. Comparisons with Other Methods

Having developed our method and demonstrated
several functional implementations, we can now dem-
onstrate the viability of our method in relation to
other digital optical-computing methods that have
been advanced. In terms of complexity, our method
has advantages over all the other methods analyzed,
since the other methods are so similar in complexity.
A tabular comparison of the orders of complexity of
the proposed system and the other systems addressed
by this paper may be found in Table 2.

A. Present Method Compared With Symbolic Substitution

In analyzing SSL, we saw that the power required at
the input plane increased as fl(n * 2n) times the
power required to switch the detector, and that there
was not way to reduce this requirement without
leaving the Boolean domain. While SSL is a viable
method for certain classes of algorithms that can be
transformed to serial implementations operating on
many sets of a small number of bits,24 or those
algorithms can make use of large numbers of don't-
care combinations, as a general-purpose computing
paradigm it suffers from the above-mentioned limita-
tions. In contrast, the method proposed in this
paper has several advantages.

Perhaps the greatest advantage with this method is
the ability to achieve near-minimal complexity in gate
count (and hence power dissipation) while retaining
the high degree of parallelism promised by optics.
Once the input has been duplicated to provide a
number of separate images that is equal to the

10 September 1992 Vol. 31, No. 26 APPLIED OPTICS 5579

Fig. 15. Optical implementation of the carry look-ahead adder.

Table 2. Order Analysis of an n-Bit Parallel Adder by Using the
Methods In This Paper,

Number
of Gates, Circuit Normalized

Light Sources, Depth or Energy
or Detection Time 1 Gate/

Method Planes Complexity Detector = 1

SSL 0(2n)(1) O(n2n)
Shadow casting 0(2n) O(1) (2n)
Programmable logic fl(n2n) £l(n) W(n2n)
Proposed spatially O(n3) 0(log2 n) O(n

3)
variant method
(carry look-ahead
adder)

aNormalized energy refers to the amount of energy required to
compute the function in terms of the energy required to switch one
gate or detector.

number of input variables la process which has an
0(n) gate or amplification count, and a depth
0[(log2 n)]1, the subsequent computations are per-
formed in a minimal number of operations, provided
that the circuit has been properly minimized. Thus
the design cycle is similar to that of the electronic
domain in that the initial effort is devoted to computa-
tions and methods that have an abstract connection
only to the physical realization, but that generate a
good realization when translated to the physical
realm. Hence we may use well-established methods
of circuit minimization in our initial design, with the
certainty that any minimal design so conceived will be
increased in complexity by an additive linear term
only, and the depth will be increased by an additive
logarithmic term only. More concretely, given a
function whose implementation requires an O(n3)

gate count and an 0(log 2 n) depth, we can implement

5580 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

the function optically with costs:

C(fA) = O(n3) + 0(n); D(fn)

= 0(log2 n) + 0(log2 n). (12)

Thus for functions of a large number of inputs, the
cost involved in duplicating the input plane is a small
fraction of the cost of implementation, which is itself
much smaller than that which could be achieved in
SSL.

We achieve a further gain over most SSL implemen-
tations by using simple intensity coding. A factor of
2 increase in data density achieved by this encoding
may be increased over that of SSL in those cases in
which SSL must provide dead space between fields of
operands. Our density of active elements is also
twice that of SSL. In additive SSL there is only one
active element for every n input bit, which corre-
sponds to 2n pixel positions. The method we pro-
pose here will result in one active element for every n
pixel.

B. Present Method Compared With Shadow-Casting Logic

Shadow-casting logic is the most difficult of the
proposed paradigms with which to compare our pro-
posed system. This difficulty results from the mea-
sures by which the paradigm's complexity is measured.
The decrease of available light with increasing
numbers of inputs does show an exponential variance
and the number of sources required is 0(2n). There
does not seem to be a good choice for a single unit of
measure that can combine these two variances. In
the best case for shadow casting, i.e., the implementa-
tion of a function with only one minterm in its ON-set,
the available light at the detector is only 2-n of that
which is incident on the corresponding cell. In this
case, however, a circuit with 0(n) gates may be
constructed by spatially variant techniques to com-
pute the function. That this is true may be seen
from the following argument. A single minterm of n
variables may be implemented by a n-input AND gate
whose inputs are suitable assigned the value of each
variable or that variable's complement, depending on
the form of the minterm. Hence, at most, n invert-
ers are required, in addition to the n-input AND, if the
complements of the inputs are not available. Now
an n-input AND gate may be constructed from n - 1
2-input AND gates; the resulting tree has a depth of
(log2 n). Thus a function with n-inputs, and with
one minterm only in its ON set may be implemented
by a circuit containing, at most, n inverters and n - 1
AND gates, for a total of 2n - 1 active elements.
Even when restricted to NOR gates alone, each AND

may be replaced by, at most, three NOR gates, and
each inverter with one, which results in a circuit with,
at most, 4n - 3 gates. Since the power required of a
circuit is proportional to the number of gates, such a
function can be constructed with 0(n) power require-
ments. At the other extreme, computing the parity
function a shadow-casting implementation requires

2n-1 sources or detectors. An implementation of this
function in terms of the XOR requires only 0(n) XOR
gates, each of which can again be replaced by a
constant number of NOR gates. In between these
extremes, there are functions that require a direct
optical implementation of the best theoretical solu-
tion and that have fl(2n/n) gate functions and, hence,
power dissipation. This will still be an improvement
over that achievable with Shadow Casting.

C. Present Method Compared With Programmable Logic

Our method provides many of the same strengths
while eliminating several of programmable logic's
weaknesses. As with programmable logic, our
method uses optical nonlinearities directly as logic
gates. The use of general interconnections, how-
ever, overcomes the exponential complexity imposed
by the limited interconnection capabilities of the
crossover network.

When we compare the carry look-ahead adder with
a parallel adder implemented with the crossover
interconnection only, we can see that, for the 2-bit
adder demonstrated, 34 NOR gates were required in
the spatially variant implementation, while the latter
method requires a minimum of 2 x 5 x 2 = 320 AND
and OR gates. Even given that the latter method can
provide fault tolerance,2 5 a triple-modular-redundant
version of the spatially variant circuit with voting
would still require fewer gates, and, hence, be funda-
mentally more reliable.

Further, even when a function implementation can
be minimized in programmable logic to a level requir-
ing only n x 2n logic elements, the number of outputs
that can then be computed is indeterminate, and is
limited by the ability to find contention-free paths
through the OR stage of the network.

D. Present Method Compared With Combinatorial Logic

Comparison with the method of combinatorial logic is
difficult. While the spatially invariant version of the
combinatorial logic method has been shown to be
capable of implementing only a small subset of the
possible functions, allowing spatially variant intercon-
nections may extend the capabilities of this system to
allow a greater portion, perhaps all, of the possible
Boolean functions to be computed. We note, how-
ever, that the system that we propose can implement
all Boolean functions, at a cost of power and speed
that is commensurate with the best theoretical imple-
mentations. Since our system is spatially variant
overall and uses optical elements directly as gates,
there is no need to precompute partial terms electron-
ically, and, hence, the speed should be close to the
maximum that is attainable optically.

6. Conclusions

We have shown that simple spatially invariant inter-
connects can reduce the complexity required of an
optical implementation. This reduction was achieved
because the spatially invariant implementations im-

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5581

pose such great restrictions on the capabilities of an
optical-computing system. We have seen that sev-
eral seemingly dissimilar optical-computing para-
digms have complexity measures that are quite simi-
lar. SSL requires 2 detector planes and 2n shift
operations per detection operation. Shadow-casting
logic requires n planes of SLM's and 0(2n-1) light
sources, with a resultant decrease in illumination on
the detector plane that is a function of 2-". Program-
mable logic requires a field in each plane of at least 2n
gates width and a number of planes, of which at least
2n are reserved. The spatially invariant subsystem
of the combinatorial logic method cannot compute all
the possible Boolean functions. It has been our
contention that all these systems share similar com-
plexity measures because of the nature of the restric-
tions imposed by their imaging techniques.

Obviously what we have presented here is in the
nature of a plausibility argument rather than a strict
proof. A rigorous model of spatially invariant imag-
ing elements and spatially invariant interconnections
applicable to the level considered here is needed.
Such a model could be used as the basis of construc-
tive proofs that could demonstrate rigorously whether
there is any set of spatially invariant interconnec-
tions that can optimally construct Boolean functions
of a higher order. The model of Thompson2 6 has had
a great impact on very large-scale integrated design; a
similar model for spatially invariant optical systems,
or possibly a model incorporating spatially variant
techniques, should make a similar impact on the field
of optical computing.

Appendix A. Some Results in Boolean Complexity

The limits imposed by Shannon's theorem' may seem
surprising, but are well established. To clarify the
implications of this theorem the following discussion
may prove helpful. The normal two-level realization
of a minimized sum-of-products Boolean formula
constitutes a general design methodology, and, hence,
can result in expensive implementations of most
functions. The worst-case function in this regard,
the parity function, has 2n-1 product terms, which
require that either the actual value of each variable or
that variable's complement be present. Implement-
ing this function directly from its minimized sum-of-
products representation requires the construction of
2"-1 n-input AND gates and one 2n-1-input OR gate.
While each of the n-input AND gates may be con-
structed from a Binary tree of n - 1 2-input AND
gates, realization of the 2n-'-input OR gate requires a
binary tree of 2n- 1 - 1 OR gates. While the complex-
ity of this realization is in excess of that of the
Shannon limit, there exists a realization of this
function that requires only n - 1 XOR gates and has a
depth of log2 n - 1. This example demonstrates
that the Karnaugh map or the Quine-McCluskey
reduction techniques can fail to yield a truly mini-
mum realization, and other techniques such as a
ring-sum expansion (which is used to derive the XOR
implementation) or factoring may achieve reductions
that other techniques cannot.

The problem of finding a minimal realization of a
function becomes worse when functions with mutiple
outputs are considered. Each output is, in general, a
function of all inputs and hence may require a large
number of gates to implement. In these cases,
finding terms that are common to two or more
outputs may decrease the number of gates required.
All these techniques can fail to find a minimum
realization in cases in which a function has an
underlying structure that can be exploited. Hence,
careful analysis of the nature of the function being
implemented is required.

It is interesting to note that increasing the fan-out
of gates does not decrease the complexity of the
implementation of a function by more than a con-
stant multiple (restricting fan-out to 1 imposes a
special case). Additionally, increasing the fan-in of
the gate functions (actually changing to a different
basis set) increases the number of gates required to
implement a function by, at most, a constant multiple.
For proofs of these two statements the reader is
referred to Ref. 23. Consequently, from a theoreti-
cal viewpoint, we need only analyze the cost of
implementing a function with any of the 2-input basis
sets to determine the order of complexity of an
implementation, as long as we allow a fan-out of 2.

This research was supported by National Science
Foundation grant no. MIP-8909326. We are in-
debted to Udi Manber of the Computer Science
Department, University of Arizona, for many fruitful
discussions.

References
1. C. E. Shannon, "The synthesis of two-terminal switching

circuits," Bell Syst. Tech. J. 28, 59-98 (1949).
2. W. F. McColl, "Planar circuits have short specifications," in

Lecture Notes on Computer Science, G. Goos and J. Hartmanis,
eds., (Springer-Verlag, New York, 1985), Vol. 182, pp. 231-
242.

3. K. H. Brenner, A. Huang, and N. Streibl, "Digital optical
computing with symbolic substitution," Appl. Opt. 25, 3054-
3060 (1986).

4. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, and
T. C. Strand, "Architectural implications of a digital optical
processor," Appl. Opt. 23, 3465-3474 (1984).

5. A. Huans, "Parallel algorithms for optical digital computers,"
in Proceedings of the Tenth International Optical Computing
Conference (Institute of Electrical and Electronics Engineers,
New York, 1983), p. 13.

6. K. H. Brenner, "New implementation of symbolic substitution
logic," Appl. Opt. 25, 3061-3064 (1986).

7. J. Weigelt, "Binary logic by spatial filtering," Opt. Eng. 26,
28-32 (1987).

8. K. H. Brenner, A. W. Lohmann, and T. M. Merklein, "Sym-
bolic substitution implemented by spatial filtering logic," Opt.
Eng. 28, 390-396, (1989).

9. D. P. Casasent and E. C. Botha, "Multifunctional optical
processor based on symbolic substitution," Opt. Eng. 28,
425-433 (1989).

10. H. Jeon, M. A. G. Abushagur, A. A. Sawchuk, and B. K.
Jenkins, "Digital optical processor based on symbolic substitu-
tion using holographic matched filtering," Appl. Opt. 29,
2113-2125 (1990).

5582 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992

11. J. Tanida and Y. Ichioka, "Optical logic array processor using
shadowgrams," J. Opt. Soc. Am. 73, 800-809 (1983).

12. J. Tanida and Y. Ichioka, "Optical-logic-array processor using
shadowgrams. III. Parallel neighborhood operations and an
architecture of an optical digital-computing system," J. Opt.
Soc. Am. A 2, 1245-1253 (1985).

13. J. Tanida and Y. Ichioka, "OPALS: optical parallel array
logic system," Appl. Opt. 25, 1565-1570 (1986).

14. J. Tanida and Y. Ichioka, "Modular components for an optical
array logic system," Appl. Opt. 26, 3954-3960 (1987).

15. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, "Optical
design of programmable logic arrays," Appl. Opt. 27, 1651-
1660 (1988).

16. M. J. Murdocca and T. J. Cloonan, "Optical design of a digital
switch," Appl. Opt. 28, 2505-2517 (1989).

17. P. S. Guilfoyle and W. J. Wiley, "Combinatorial logic based
digital optical computing architectures," Appl. Opt. 27, 1661-
1673 (1988).

18. A. Louri, "Parallel implementation of optical symbolic substi-
tution logic using shadow-casting and polarization," Appl.
Opt. 30, 540-548 (1991).

19. A. Louri, "Throughput enhancement for optical symbolic

substitution computing systems," Appl. Opt. 29, 2979-2981
(1990).

20. G. Eichmann, A. Kostrzewski, D. H, Kim, and Y. Li, "Optical
higher-order symbolic recognition," Appl. Opt. 29, 2135-2147
(1990).

21. J. Weigelt, "Space-bandwidth product and crosstalk of spatial
filtering methods for performing binary logic optically," Opt.
Eng. 27, 883-892, (1988).

22. R. Arrathoon and S. Kozaitis, "Shadow casting for multiple-
valued associative logic," Opt. Eng. 25, 29-37 (1986).

23. J. E. Savage, The Complexity of Computing (Wiley, New York,
1976).

24. A. Louri, "Three-dimensional optical architectural and data-
parallel algorithms for massively parallel computing," IEEE
Micro II, 24-27, 65-82 (1991).

25. M. J. Murdocca, "Fault avoidance for optical logic arrays and
regular free-space interconnects," in Digital Optical Comput-
ing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.
1215, 116-122) (1990).

26. C. D. Thompson, "A complexity theory for VLSI," Ph.D.
dissertation (Carnegie-Mellon University, Pittsburgh, Pa.,
1980).

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5583

